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Abstract

The emergence of low-cost sensing architectures for diveisdalities has made it possible to deploy
sensor networks that capture a single event from a large aeunfbvantage points and using multiple
modalities. In many scenarios, these networks acquire langounts of very high-dimensional data. For
example, even a relatively small network of cameras canrgémenassive amounts of high-dimensional
image and video data. One way to cope with such a data delugedsvelop low-dimensional data
models. Manifold models provide a particularly powerfukdnetical and algorithmic framework for
capturing the structure of data governed by a low-dimeradiset of parameters, as is often the case
in a sensor network. However, these models do not typicalke tinto account dependencies among
multiple sensors. We thus propose a rjeimt manifoldframework for data ensembles that exploits such
dependencies. We show that joint manifold structure cad teamproved performance for a variety of
signal processing algorithms for applications includitgssification and manifold learning. Additionally,
recent results concerning random projections of manifeluble us to formulate a universal, network-

scalable dimensionality reduction scheme that efficiehtes the data from all sensors.

. INTRODUCTION

The emergence of low-cost sensing devices has made it p@ssitbeploy sensor networks that capture
a single event from a large number of vantage points and usmiple modalities. This can lead to a
veritable data deluge, fueling the need for efficient alipons for processing and efficient protocols for
transmitting the data generated by such networks. In o@&dtress these challenges, there is a clear
need for a theoretical framework for modeling the complegrgiependencies among signals acquired by
these networks. This framework should support the devedoprof efficient algorithms that can exploit

this structure and efficient protocols that can cope withrtteessive data volume.
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Consider, for example, a camera network consisting/ ofideo acquisition devices each acquiring
N-pixel images of a scene simultaneously. Ideally, all camevould send their raw recorded images
to a central processing unit, which could then holisticalhalyze all the data produced by the network.
This naive approach would in general provide the best pedace, since it exploits complete access
to all of the data. However, the amount of raw data generayed bamera network, on the order of
JN, becomes untenably large even for fairly small networksatrgg at moderate resolutions and frame
rates. In such settings, the amount of data can (and oftes) dverwhelm network resources such as
power and communication bandwidth. While the naive apgraauld easily be improved by requiring
each camera to first compress the images using a compredgaithen such as JPEG or MPEG, this
madification still fails to exploit any interdependencieseen the cameras. Hence, the total power and
bandwidth requirements of the network will still grow limrgawith .J.

Alternatively, exploiting the fact that in many cases thel goal is to solve some kind of inference
problem, each camera could independently reach a decisiertact some relevant features, and then
relay the result to the central processing unit which wobh&htcombine the results to provide the solution.
Unfortunately, this approach also has disadvantageg, Biescameras must be “smart” in that they must
possess some degree of sophistication so that they cantexamlinear inference tasks. Such technology
is expensive and can place severe demands on the availakés pesources. Perhaps more importantly,
the total power and bandwidth requirement will still scafee&rly with J.

In order to cope with such high-dimensional data, a commiategy is to develop appropriate models
for the acquired images. A powerful model is the geometridtomoof a low-dimensionaimanifold
Informally, manifold models arise in cases whéilea K-dimensional parametér can be identified that
carries the relevant information about a signal difdthe signalf(f) € RY changes as a continuous
(typically nonlinear) function of these parameters. Tgbiexamples include a one-dimensional (1-D)
signal translated by an unknown time delay (parameterizethé translation variable), a recording of
a speech signal (parameterized by the underlying phonepud®s by the speaker), and an image of a
3-D object at an unknown location captured from an unknovemirig angle (parameterized by the three
spatial coordinates of the object as well as its roll, piwhg yaw). In these and many other cases, the

geometry of the signal class forms a nonlingadimensional manifold irR",
M={f(0):0¢c 06} (1)

where© is the K-dimensional parameter space. In recent years, research@nage processing have



become increasingly interested in manifold models due &dbservation that a collection of images
obtained from different target locations/poses/illuntioles and sensor viewpoints form such a man-
ifold [1]-[3]. As a result, manifold-based methods for ineagrocessing have attracted considerable
attention, particularly in the machine learning commuratyd can be applied to diverse applications
as data visualization, classification, estimation, dé&actcontrol, clustering, and learning [3]-[5]. Low-
dimensional manifolds have also been proposed as apprteximadels for a number of nonparametric
signal classes such as images of human faces and handvditis[6]—[8].

In sensor networks, multiple observations of the same ewentften acquired simultaneously, resulting
in the acquisition of interdependent signals that sharenanoon parameterization. Specifically, a camera
network might observe a single event from a variety of vamtpgints, where the underlying event is
described by a set of common global parameters (such as ¢hé&do and orientation of an object of
interest). Similarly, when sensing a single phenomenongusiultiple modalities, such as video and
audio, the underlying phenomenon may again be described diggée parameterization that spans all
modalities (such as when analyzing a video and audio rengrdi a person speaking, where both are
parameterized by the phonemes being spoken). In both erangll of the acquired signals are functions
of the same set of parameters, i.e., we can write each signg(@ whered € © is the same for all.

Our contention in this paper is that we can obtain a simpleehtbcht captures the correlation between
the sensor observations by matching the parameter valuabdodifferent manifolds observed by the
sensors. More precisely, we observe that by simply conatitenpoints that are indexed by the same pa-
rameter valud from the different component manifolds, i.e., by formifi¢9) = [f1(0), f2(0), ..., f1(0)],
we obtain a new manifold, which we dub th@int manifold that encompasses all of the component
manifolds and shares the same parameterization. Thiststeucaptures the interdependencies between
the signals in a straightforward manner. We can then applgdme manifold-based processing techniques
that have been proposed for individual manifolds to thererghsemble of component manifolds.

In this paper we conduct a careful examination of the topgoldgand geometrical properties of joint
manifolds; in particular, we compare joint manifolds toithdmponent manifolds to see how properties
like geodesic distances, curvature, branch separati@hcamdition number are affected. We then observe
that these properties lead to improved performance ane+toisrance for a variety of signal processing
algorithms when they exploit the joint manifold structuhes a key advantage of our proposed model,
we illustrate how the joint manifold structure can be exjgdivia a simple and efficient data fusion

algorithm based omandom projectionsFor the case off cameras jointly acquiringv-pixel images of a



common scene characterized By parameters, we demonstrate that the total power and coroation
bandwidth required by our scheme is linear in the dimengioand onlylogarithmicin J and N. Recent
developments in the field of compressive sensing has masledta acquisition model practical in many
interesting applications [9]-[11].

Related prior work has studiedanifold alignmentwhere the goal is to discover maps between datasets
that are governed by the same underlying low-dimensiomattstre. Lafon et al. proposed an algorithm
to obtain a one-to-one matching between data points frorarabmanifold-modeled classes [12]. The
algorithm first applies dimensionality reduction usingfufon maps to obtain data representations that
encode the intrinsic geometry of the class. Then, an affimetion that matches a set of landmark
points is computed and applied to the remainder of the dstashis concept was extended by Wang
and Mahadevan, who applied Procrustes analysis on the dioreity-reduced datasets to obtain an
alignment function between a pair of manifolds [13]. Sinceatignment function is provided instead of
a data point matching, the mapping obtained is applicabléhi® entire manifold rather than for the set
of sampled points. In our setting, we assume that eiff)éhe manifold alignment is implicitly present,
for example, via synchronization between the differentssesy or(ii) the manifolds have been aligned
using one of these approaches. Our main focus is an analyie denefits provided by analyzing the
joint manifold versus solving the task of interest sepdyad@ each of the manifolds. For concreteness,
but without loss of generality, we couch our analysis in tregluage of camera networks, although much
of our theory is sufficiently generic so as to apply to a varigft other scenarios.

This paper is organized as follows. Section Il introduced astablishes some basic properties of
joint manifolds. Section Ill provides discussion of praatiexamples of joint manifolds in the camera
network setting and describes how to use random projectiasploit the joint manifold structure in such
a setting. Sections IV and V then consider the applicatiojpiot manifolds to the tasks of classification
and manifold learning, providing both a theoretical anialys well as extensive simulations. Section VI

concludes with a brief discussion.

Il. JOINT MANIFOLDS: THEORY

In this section we develop a theoretical framework for erfdlesiof manifolds that arpintly param-
eterized by a small number a@bmmondegrees of freedom. Informally, we propose a data strudture
jointly modeling such ensembles; this is obtained simplgbycatenating points from different ensembles

that are indexed by the same articulation parameter torohtaingle point in a higher-dimensional space.



We begin by defining the joint manifold for the setting of gerlé¢opological manifolds.In order to
simplify our notation, we will letM = M; x My x - -- x M ; denote theproduct manifold Furthermore,
we will use the notatiom = (p1,p2,...,ps) to denote aJ-tuple of points, or concatenation dfpoints,

which lies in the Cartesian product df sets (e.g.,M).

Definition 1. Let {Mj}jzl be an ensemble of topological manifolds of equal dimensidfi. Suppose
that the manifolds are homeomorphic to each other, in whigbecthere exists a homeomorphism

betweenM; and M, for eachy. For a particular set of{«); 3]:2, we define thgoint manifold as

M ={peM:pj=1ip1),2<j<J}

Furthermore, we say tha{t/\/lj}jzl are the correspondingomponent manifolds

Note that M; serves as a commoparameter spacdor all the component manifolds. Since the
component manifolds are homeomorphic to each other, thigcehis ultimately arbitrary. In practice
it may be more natural to think of each component manifold esd homeomorphic to some fixed
K-dimensional parameter spae However, in this case one could still defild* as is done above by
defining; as the composition of the homeomorphic mappings frbfn to © and from® to M;.

As an example, consider the one-dimensional manifolds @n Ei Figures 1(a) and (b) show two
isomorphic manifolds, where1; = (0,27) is an open interval, ands = {¢»(0) : 6 € M1} where
Po(0) = (cos(#),sin(0)), i.e., My = S*\(1,0) is a circle with one point removed (so that it remains
isomorphic to a line segment). In this case the joint madifbt* = {(6, cos(#),sin(d)) : 6 € (0,27)},
illustrated in Fig. 1(c), is a helix. Notice that there exather possible homeomorphic mappings frarty
to Mo, and that the precise structure of the joint manifold as arsutifold of R3 is heavily dependent
on the choice of this mapping.

Returning to the definition of\*, observe that although we have calléd* the joint manifold, we
have not shown that it actually forms a topological manifold prove thatM* is indeed a manifold,
we will make use of the fact that the joint manifold is a subsfethe product manifoldM. One can
show thatM forms aJK-dimensional manifold using the product topology [14]. Byngoarison, we

now show thatM* has dimension onlyx.

Proposition 1. M* is a K-dimensional submanifold oM.

We refer the reader to [14] for a comprehensive introductibmanifolds.



(@ M; C R: line segment  (b)M, C R?: circle segment (c)\* C R3: helix segment

Fig. 1. A pair of isomorphic manifoldd1, and M., and the resulting joint manifold1*.

Proof: We first observe that sinc&* C M, we automatically have that1* is a second countable
Hausdorff topological space. Thus, all that remains is wasthat M* is locally homeomorphic t®R%.
Suppose € M*. Sincep; € M, we have a paifU;, ¢1) such that/; C M, is an open set containing
p1 and¢, : U; — V is a homeomorphism whefié is an open set iR, We now define foR < j < J
Uj = ¢;(Ur) and ¢; = ¢1 0 z/zj‘l : U; — V. Note that for eachy, U; is an open set ang; is a
homeomorphism (since; is a homeomorphism).

Now setU = U; x Us x --- x Uy and defineU* = U n M*. Observe thalU* is an open set and
thatp € U*. Furthermore, leg be any element of/*. Then¢;(g;) = ¢1 o w;l(qj) = ¢1(¢q1) for each
2 < j < J. Thus, since the image of eagh € U; in V' under their corresponding; is the same, we
can form a single homeomorphisat : U* — V' by assigningp*(q) = ¢1(¢1). This shows thatM* is
locally homeomorphic tR” as desired. [ |

Since M* is a submanifold ofM, it also inherits some desirable properties frévmj}j:l.

Proposition 2. Suppose tha{/\/tj}j:1 are isomorphic topological manifolds and(* is defined as above.
1) If {M;}/_, are Riemannian, theiM* is Riemannian.

2) If {Mj}jzl are compact, theoM* is compact.

Proof: The proofs of these facts are straightforward and follownfrthe fact that if the component
manifolds are Riemannian or compact, th&d will be as well. M* then inherits these properties as a
submanifold ofM [14]. [ |

Up to this point we have considered general topological folds. In particular, we havaot assumed
that the component manifolds are embedded in any partisgace. If each component manifald ;
is embedded ilRYs, the joint manifold is naturally embedded BV where N* = 3’:1 N;. Hence,

the joint manifold can be viewed as a model for sets of dath wdtrying ambient dimensiolinked



by a common parametrization. In the sequel, we assume ticht reanifold M; is embedded iRY,
which implies thatM* ¢ R7YN. Observe that while the intrinsic dimension of the joint fifiaid remains
constant atK’, the ambient dimension increases by a factor/oMWe now examine how a number of
geometric properties of the joint manifold compare to thoséhe component manifolds.

We begin with the following simple observation that Euctidedistancesbetween points on the joint
manifold are larger than distances on the component masifdfhe result follows directly from the

definition of the Euclidean norm, so we omit the proof.

Proposition 3. Let p, g € M* be given. Then

lp—q| =

J
> lpj = a5l
j=1

While Euclidean distances are important (especially whaenis introduced), the natural measure of
distance between a pair of points on a Riemannian manifoltbtsEuclidean distance, but rather the

geodesic distancelhe geodesic distance between pointg € M is defined as

dm(p,q) = inf{L(v) : v(0) = p,7(1) = q}, (2)

wherey : [0,1] — M is aC*-smooth curve joining andgq, andL(y) is the length ofy as measured by

1
£ = [ ol ©
In order to see how geodesic distances\dii compare to geodesic distances on the component manifolds,

we will make use of the following lemma.

Lemma 1. Suppose thal{/\/lj};’:1 are Riemannian manifolds, and let : [0,1] — M* be aC!-
smooth curve on the joint manifold. Denote pythe restriction ofy to the ambient dimensions a#*

corresponding toM;. Then eachy; : [0,1] — M; is a C''-smooth curve oo\, and

1 J J
—= D L) <L(v) < ) L(v)-
\/j; 7.] Y JZ::I /VJ

Proof: We begin by observing that

1 1
uwzéuwmmzé

%In the remainder of this paper, whenever we use the notdtioh we mean|| - ||¢,, i.e., thes (Euclidean) norm orR” .

J
> ;)12 dt. (4)
j=1

When we wish to differentiate this from othés norms, we will be explicit.
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For a fixedt, let z; = ||9;(t)||, and observe that = (z1,z2,...,2;) is a vector inR”. Thus we may
apply the standard norm inequalities

1
—= e, < llzlle, < llzlle, (5)

VI

1 ” V: - ;. 2 ! .
77 L0 = | S 01 < 3o ©

Combining the right-hand side of (6) with (4) we obtain

1 J J 1 J
</ UCEEDY / 0l = 3 26

Similarly, from the left-hand side of (6) we obtain

1 A . 1 JL ot ) 1
sz/O Tj;umwudt:ﬁ;/o @)l = =3 L

to obtain

<

We are now in a position to compare geodesic distancesrto those on the component manifold.

Theorem 1. Suppose thaf M } _, are Riemannian manifolds. Let ¢ € M* be given. Then

1
da-(p,q) > 7 ; d, (pj. 4j)- @)

If the mappingsys, ¥s, ..., ¢, are isometries i.e., da, (p1.q1) = da, (;(p1),¥;(q1)) for any j and
for any pair of points(p, q), then

J
1
A (P, @) = —= > dpa, (05, 45) = VT - d, (01, 01). ®)
Proof: If v is a geodesic path betwegnand ¢, then from Lemma 1,

J
dpt-(p,q) = L(7) > % ;Lw»

By definition L(v;) > dum, (pj, q;); hence, this establishes (7).
Now observe that lower bound in Lemma 1 is derived from thecloimequality of (5). This inequality
is attained with equality if and only if each term in the sunegual, i.e.,L(v;) = L(v;) for all j and

k. This is precisely the case when, s, ..., ; are isometries. Thus we obtain

J
dr-(p, q) = Z = VJL(m).



We now conclude thak(vy;) = d, (p1, ¢1) since if we could obtain a shorter pafh from p; to ¢; this
would contradict the assumption thatis a geodesic ooM*, which establishes (8). |

Next, we study local smoothness and global self avoidancpepties of the joint manifold.

Definition 2. [15] Let M be a Riemannian submanifold &". The condition number is defined as
1/7, wherer is the largest number satisfying the following: the openmalrbundle abouiM of radius

r is embedded iRY for all » < .

The condition number controls both local smoothness ptigseand global properties of the manifold;
as 1/7 becomes smaller, the manifold becomes smoother and mdravedding, as observed in [15].

We will informally refer to manifolds with large as “good” manifolds.

Lemma 2. [15] SupposeM has condition numbet /7. Let p,q € M be two distinct points on\,

and let~(¢) denote a unit speed parameterization of the geodesic paimgp and ¢q. Then

. 1
max ()] < .
-

Lemma 3. [15] SupposeM has condition numbet /7. Letp,q € M be two points onM such that
lp—q|| = d. If d < 7/2, then the geodesic distandg,(p, ¢) is bounded by

dm(p,q) < 7(1— /1 —2d/7).

We wish to show that if the component manifolds are smooth seiflavoiding, the joint manifold
is as well. It is not easy to prove this in the most general cabere the only assumption is that there
exists a homeomorphism (i.e., a continuous bijective mppetween every pair of manifolds. However,
suppose the manifolds adiffeomorphic i.e., there exists a continuous bijective map betweenetaing

spaces at corresponding points on every pair of manifoldthdt case, we make the following assertion.

Theorem 2. Suppose thai{/\/lj}jzl are Riemannian submanifolds &, and let 1/7; denote the
condition number ofM;. Suppose also that thgy); 3’:2 that define the corresponding joint manifold

M* are diffeomorphisms. If /7* is the condition number aM*, then

1 1
— < max —.
T* 1<5<T 75

Proof: Let p € M*. Since the{t; 3’:2 are diffeomorphisms, we may viewt* as being diffeo-

morphic toM;; i.e., we can build a diffeomorphic map from, to M* as

p=v"(p1) == (1,2 (p2),---,%s(py))-

9



We also know that given any two manifolds linked by a diffeoptfosm<; : M; — M, each vector
v1 in the tangent spacg, (p;) of the manifoldM; at the pointp; is uniquelymapped to a tangent vector
vj == ¢;(v1) in the tangent spacg;(p,) of the manifold M at the pointp; = ;(p1) through the map
¢j =T o;(p1) , whereJ denotes the Jacobian operator.

Consider the application of this property to the diffeonacpmanifolds M; and M*. In this case,
the tangent vector; € Ti(p;) to the manifold M; can be uniquely identified with a tangent vector

v = ¢*(v1) € T*(p) to the manifoldM*. This mapping is expressed as

¢*(v1) = T o™ (p1) = (v1, T o ¥2(p1), ..., T o s(p1)),

since the Jacobian operates componentwise. Therefor¢éarigent vectow can be written as

v=0¢"(v1) = (v1,P2(v1),...,05(p1)).

In other words, a tangent vector to the joint manifold can beothposed into/ component vectors,
each of which are tangent to the corresponding componenifaidm

Using this fact, we now show that a vectgrthat is normal toM* can also be broken down into
sub-vectors that are normal to the component manifoldssidenp ¢ M*, and denotel™ (p)* as the
normal space gb. Suppose; € T*(p)+. Decompose eachy as a projection onto the component tangent

and normal spaces, i.e., fgr=1,...,J,
n=z;+y, x5 €Tips), yj € Tipy)™

such that(z;,y;) = 0 for eachj. Thenn = = + y, and sincez is tangent to the joint manifoloM*,
we have(n,z) = (z +y,z) = 0, and thus(y, z) = —||z|]>. But, (y,z) = 23'1:1 (yj,z;) = 0. Hence
x =0, i.e., eachy; is normal toM;.

Armed with this last fact, our goal now is to show thatrif< min;<;<;7; then the normal bundle
of radiusr is embedded iRY, or equivalently, for anyp, g € M*, thatp + n # q + v provided that
Imll, [lv]| < r. Indeed, supposgn|, [[v|| < r < mini<;<; 7. Since|ln;|| < |[nl| and v;|| < |[v|| for al
1 < j < J, we have that|n;||, ||vj|| < min;<;<s 7 < 7;. Since we have proved thaf, v; are vectors in
the normal bundle of\; and their magnitudes are less thgnthenp; +n; # g; + v; by the definition
of condition number. Thup + n # q + v and the result follows. |

This result states that for general manifolds, the most wesegy is that the condition number of the
joint manifold is guaranteed to be less than that of west manifold. However, in practice this is not

likely to happen. As an example, Fig. 2 illustrates the paintvhich the normal bundle intersects itself
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Fig. 2. Point at which the normal bundle for the helix manifold froig.FL(c) intersects itself. Note that the helix has

been slightly rotated.

for the case of the joint manifold from Fig. 1(c). In this case obtaint* = \/m > 1. Note that
the condition numbers for the manifoldsg(; and M, generatingM* are given byr; = co andm = 1.
Thus, while the condition number of the joint manifold is rast high as the best manifold, it is notably
larger than that of the worst manifold. In general, even &xample may be somewhat pessimistic and

it is possible that the joint manifold may be better condiéd than even the best manifold.

[11. JOINT MANIFOLDS: PRACTICE

As noted in the Introduction, a growing number of algorithemploit manifold models for tasks such as
pattern classification, estimation, detection, contrhisiering, and learning [3]-[5]. The performance of
these algorithms often depends on the geometric propetitte manifold model, such as its condition
number or geodesic distances along its surface. The themrglaped in Section Il suggests that the
joint manifold preserves or improves such properties. latiSes IV and V we consider two illustrative
applications and observe that when noise is added to thelyimigsignals, it can be extremely beneficial
to use algorithms specifically designed to exploit the joiginifold structure. However, before we address

these particular applications, we must first address someiactical concerns.

A. Acceptable deviations from theory

While manifolds are a natural way to model the structure okt images governed by a small
number of parameters, the results in Section Il make a nuwbassumptions concerning the structure
of the component manifolds. In the most general case, wenesshat the component manifolds are
homeomorphic to each other. This means that between anyopawmponent manifolds there should
exist a bijective mapping such that bothp and¢~—! are continuous. Such an assumption assures that
the joint manifold is indeed a topological manifold. Unfamately, this excludes some scenarios that can

occur in practice. For example this assumption might not fiy@i@able in a camera network featuring

11



non-overlapping fields of view. In such camera networksrelare cases in which only some cameras
are sensitive to small changes in the parameter valuegtl$tapeaking, our theory may not apply
in these cases, since the joint “manifold” as we have defihesl not necessarily even a topological
manifold. As a result, one might expect to see significanfoperance degradation when exploiting
techniques that heavily rely on this joint manifold struetuWe provide additional discussion of this
issues in Section V-B below, but for now we simply note thaBactions IV and V we conduct extensive
experiments using both synthetic and real-world datasetohserve that in practice joint manifold-based
processing techniques still exhibit significantly betterfprmance than techniques that operate on each
component manifold separately. While non-overlappingifiedf view do pose a challenge (especially in
the context of manifold learning), the fact that this resut non-homeomorphic manifolds seems to be
more of a technical violation of our theory than a practicaéo

In the context of manifold learning, we must actually assuima& the component manifolds are
isometric to each other. This is certainly not the case inraera network with non-overlapping fields
of view. Even with the restriction of a common field of viewjghmay seem an undue burden. In fact,
this requirement is fulfilled by manifolds that are isometo the parameter space that governs them—a
class of manifolds that has been studied in [2]. Many examfitam this class correspond to common

image articulations that occur in vision applications liigiing:

» articulations of radially symmetric images, which are paeterized by a 2-D offset;

« articulations of four-fold symmetric images with smoothubdaries, such as disd4, balls, etc.;

« pivoting of images containing smooth boundaries, whichgaeameterized by the pivoting angle;
« articulations of% discs over distinct non-overlapping regions, Wi{}l > 1, producing aK-

dimensional manifold.

These examples can be extended to objects with piecewisetsnb@undaries as well as to video
sequences of such articulations. In Section V we descrilbeidties for dealing with the problem of
non-overlapping fields of view and provide a number of experits that suggest that these heuristics
can overcome violations of the isometry assumption in joact

In our theoretical results concerning condition number,agsume that the component manifolds are
smooth, but the manifolds induced by the motion of an objewtne there are sharp edges or occlusions
are nowhere differentiable. This problem can be addresgedpplying a smoothing kernel to each
captured image, inducing a smooth manifold [3]. More gelhgrave note that if the cameras have

moderate computational capabilities, then it may be péssibperform simple preprocessing tasks such
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as segmentation, background subtraction, and illuminatiompensation that will make the manifold
assumption more rigorously supported in practice. This f@ynecessary in scenarios such as those

involving multiple objects or challenging imaging condits.

B. Efficient data fusion via joint manifolds using linear jactions

Observe that when the numbédr and ambient dimensiov of the manifolds become large, the
ambient dimension of the joint manifold/—may be so large that it becomes impossible to perform
any meaningful computations. Furthermore, it might apgkat in order to exploit the joint manifold
structure, we must collect all the data at a central locatwinich we earlier claimed was potentially
impossible. In order to address this problem, we must ekghe joint manifold structure to develop a
more efficient fusion scheme.

Specifically, given a network of cameras, let; € RY, denote the image acquired by camgravhich
is assumed to belong in a manifald(;, and leta denote the corresponding point in the joint manifold
M*. Rather than forming the vectar, one could potentially estimate/g-dimensional parameter vector
§j via the nonlinear mapping aof; corresponding to the manifold1;. By collecting the§j at a central
location, we would obtain a data representation of dimensi&. By simply concatenating eao@,
this approach essentially ignores the joint manifold dtreee present in the data, which is evident due
to the fact that in an ideal setting the sarieparameters will be obtained from each of theameras.
Moreover, given noisy estimates fé}, it is not obvious how to most effectively integrate @e’[o obtain
a single joint K-dimensional representation. Finally, while this apptoatiminates the dependence on
N, it still suffers from a linear dependence dn

To address this challenge, we observe that if we had accehs teectore, then we could exploit the
joint manifold structure to map it to a parameter vediaf length onlyK rather than/ K. Unfortunately,
this mapping will generally be nonlinear, and each elemérit oould potentially depend on the entire
vector z, preventing us from operating individually on eaech Thus, rather than directly extract the
features, we will instead restrict our focuslioear dimensionality reduction methods that, while acting
on the concatenated data can be implemented in a distributed fashion.

Specifically, we will aim to compute a dimensionally redugegresentation ok denotedy = ®x,
where® is a standard linear projection operator. Since the opeisatimear, we can takical projections
of the images acquired by each camera, and still calcul&eltbal projections ofz in a distributed

fashion. Let each camera calculate = ®;z;, with the matricesd; < RM*N 1 < 4 < J. Then, by
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Fig. 3. Distributed data fusion using linear projections in a caanmegtwork.

defining theM x JN matrix ® = [®; ®5 --- §j], the global projectiongy = ®a can be obtained by

y=®x=[0; & - Oyl 2l - 2T

=®1x1+ Pozo+ -+ Py

Thus, the final measurement vector can be obtained by sikbdjng independent projectior the
images acquired by the individual cameras. This gives ris¢hé compressive data fusioprotocol
illustrated in Fig. 3. Suppose the individual cameras asecated with the nodes of a binary tree of size
J, where the edges represent communication links betweessnaét the root of the tree denote the final
destination of the fused data (the central processing.uhitgn the fusion process can be represented
by the flow of data from the leaves to the root, with a binaryitoidl occurring at every parent node.
Recalling that the dimensionality of the data A¢ and the depth of the tree i = O(logJ), we
observe that théotal communication bandwidth requirement is given By M = O(M log J), i.e., the
communication burden grows only logarithmically Jn

The main challenge in designing such a scheme is the choiaesoitable matrix®. Given a specific
joint manifold M*, there may be an optima that preserves the Euclidean and the geodesic structures
of M* while ensuring that\/ is comparable to the dimensidx of the joint manifold (and hence much
less than the ambient dimensidV). Unfortunately, the general problem of computing an optitimear
projection of a manifold remains unsolved and, in our conptirding this projection matrix would also
require full knowledge of the objects to be classified as wslthe position/orientation of each camera
in the network. Such information would typically not be dable within the network.

Fortunately, we can exploit recent results concermarglom projectiongo solve this problem without

any prior knowledge of the structure of the network or theeoty§ to be captured. Specifically, it
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has been shown that the essential structure &f-dimensional manifold with condition nhumbéy/r
residing inR” is approximately preserved under an orthogonal projedtiom a random subspace of
dimensionO(K log(N/1)) < N [16]. This result has been leveraged in the design of efficgorithms
for inference applications, such as classification usindtismale navigation [17], intrinsic dimension
estimation [18], and manifold learning [18]. In our contetktis result implies that if the joint manifold
has bounded condition number as given by Theorem 2, then w@rcgect the joint data into a random
subspace of dimension that is only logarithmic/imnd N and still approximately preserve the manifold

structure. This is formalized in the following theorem, aifollows directly from [16].

Theorem 3. Let M* be a compact, smooth, Riemannian joint manifold i/ &-dimensional space
with condition numbet /7*. Let @ denote an orthogonal linear mapping from* into a random/-
dimensional subspace B . Let M = O(K log(JN/7*)/¢2). Then, with high probability, the geodesic

and Euclidean distances between any pair of pointsidh are preserved up to distortion under ®.

Thus, we obtain a faithful embedding of the manifold via aespntation of dimension only(K log JN).
This represents a massive improvement over the origifédimensional representation, and for large
values of J it can be a significant improvement over thié<-dimensional representation obtained by
performing separate (nonlinear) dimensionality reducto each component manifold.

Recalling that the total communication bandwidth requii@dour compressive data fusion scheme is
O(M log J), we obtain that when using random projections the deperdefite required bandwidth on
J is O(log? .J); this offers a significant improvement from previous datsidn methods that necessarily
require the communication bandwidth to scale linearly \lith number of cameras. Joint manifold fusion
via linear projections integrates the network transmissiad data fusion steps in a fashion similar to
the protocols discussed in randomized gossiping [20] amdpcessive wireless sensing [21].

Joint manifold fusion via random projections, like compigs sensing [9]-[11], isiniversalin that
the measurement process is not dependent on the specifituserof the manifold. Thus, our sensing
techniques need not be replaced for these extensions; amlymderlying models (hypotheses) are
updated. We have not discussed complicating factors sudtsr, varying or unknown backgrounds, etc.

Promising progress in [22] suggests that such difficultes jgotentially be handled even after acquiring

3Note that if we were interested in compressing only a fixed emof imagesP, we could apply the Johnson-Lindenstrauss
lemma [19] to obtain thaf\/ = O(log P) would be sufficient to obtain the result in Theorem 3. Howgtkee value of M
required in Theorem 3 is independent of the number of imdgeasnd therefore provides scalability to extremely largeasets.
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the random projections. Furthermore, recent years hawgesalsn the development of devices capable of
directly acquiring arbitrary linear projections of the images [1[PJ3]. Our fusion scheme can directly
operate on the measurements provided by such devices.

IV. JOINT MANIFOLD CLASSIFICATION

We now examine the application of joint manifold-based mghes to some common inference
problems. In this section we will consider the problem ofdnin classification when the two classes
corresponds to different manifolds. As an example, we witisider the scenario where a camera network
acquires images of an unknown vehicle, and we wish to classfween two vehicle types. Since the
location of the vehicle is unknown, each class forms a distiow-dimensional manifold in the image
space. The performance of a classifier in this setting witleshel partially on topological quantities of the
joint manifold described in Section I, which in particulprovide the basis for the random projection-
based version of our algorithms. However, the most sigmifi¢actor determining the performance of
the joint manifold-based classifier is of a slightly diffatdlavor. Specifically, the probability of error is
determined by the distance between the manifolds. Thus,|seepaovide additional theoretical analysis

of how distances between the joint manifolds compare toethmtween the component manifolds.

A. Theory

The problem of manifold-based classification is defined Hsvs: given manifoldsM and\V, suppose
we observe a signal = x +n € RN where eitherz € M or z € N andn is a noise vector, and we
wish to find a functionf : RV — {M, N} that attempts to determine which manifold “generatgd”

This problem has been explored in the context of automatgetarecognition (ATR) using high-
dimensional noisy data arising from a single manifold [2&5]; the authors of this body of work
adopt a fully Bayesian approach in deriving fundamentalngisuon the performance of certain types of
classification methods. A full analysis of our proposed fearrk for joint manifolds using this approach
is beyond the scope of this paper; we defer that to futurearebe Instead, we consider a classification
algorithm based on thgeneralized maximum likelihoddamework described in [26]. The approach is to
classify by computing the distance from the observed sigrtal each manifold, and then classify based

on which of these distances is smallest; i.e., our class#ier

f(y) = argmin [d(y, M), d(y, N)], ©)
whered(y, M) = inf.cr ||y — z||. We will measure the performance of this algorithm by coesity

the probability of misclassifying a point from\1 as belonging toV, which we denoteP .
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To analyze this problem, we employ three common notions pésdion in metric spaces:

o The minimum separatiomlistance between two manifoldst and \, defined as
) = inf d .
(M, N) Jnf (p,N)
« The maximum separatiodistance between manifoldst and.\/, defined as

A(M,N) = sup sup ||z — y||.
zeMyeN

« The Hausdorff distancdrom M to N/, defined as

D(M,N) = sup d(p,N).
peEM

Note that whiley(M,N) = §(N, M) andA(M,N) = AN, M), ingeneralD(M,N) # DN, M).
As one might expectPys is controlled by the separation distances. For examplgagthat: € M;
if the noise vectom is bounded and satisfigs:|| < 6(M,N)/2, then we have thad(y, M) < ||n| <
d(M,N)/2 and hence

S(IM,N) = inf —qll= inf —yty—
(M, N) pequeNHp qll pqueNllp y+y—dq|

< peﬂiﬁgeNHp —yll + lly — gl = d(y, M) + d(y, N') < §(M,N)/2 + d(y,N).

Thus we are guaranteed théty, N') > §(M, N)/2. Therefored(y, M) < d(y,N') and the classifier
defined by (9) satisfiefyny = 0. We can refine this result in two possible ways. A first possibl
refinement is to note that the amount of noise that we canata@levithout making an error depends on
x. Specifically, for a giverr € M, provided that|n| < d(z,N')/2 we still have thatPyy = 0. Thus,
for a givenz € M we can tolerate noise bounded &z, N)/2 € [§(M,N)/2, D(M,N)/2].

A second possible refinement is to ignore this dependence while extending our noise model to

the case wherén| > 6(M,N')/2 with non-zero probability. We can still bounélv(y, since
Py < P(|lnfl > 6(M, N)/2). (10)

Thus, we now provide lower bounds on these separation dissaihe corresponding upper bounds are
available in [27]. In the interest of space, the proof of thigl subsequent theorems are omitted and can
be found in [27].
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Theorem 4. Consider the joint manifoldd4* ¢ M and N* C N. Then, the following bounds hold:

J
(M NT) =>4 (My,N), (11)
7j=1
AYMNT) = max, (AWM@ + ;azww\fj)) : (12)
J
D*(M*,N*) > max <D2(M/<:,Nk) + ;52(/\4;',/\@)) - (13)
J

As an example, if we consider the case where the separatitendes are constant for gll then the
joint minimum separation distance satisfiggdd(My, N7) < §(M*, N*), and using the upper bound for
S(M* N*) from [27], we obtain

5(./\/[*,./\/*) < \/52(M1,N1) + (J— 1)A2(M1,N1) < 5(M1,N1) +VJ - 1A(M1,N1).

In the case wher&( My, N7) < A(Mj,N7), we observe that(M*, N'*) can be considerably larger than
V. J§(My,N7). This means that we can potentially tolerate much more neliske ensuringP -~ = 0.
To see this, letn denote a noise vector and recall that we reqiiite|| < e = §(M;,N;)/2 to ensure

that Pyg,a;, = 0. Thus, if we require thaP,n;, = 0 for all j, then we have that

J
Inll = | Y lInjll? < VJe = VI5(My, A7) /2.
j=1

However, if we instead only require th#tv-a~ = 0, then we only needn| < é(M*,N*)/2, which
can be a significantly less stringent requirement.

The benefit of classification using the joint manifold is mapparent when we extend our noise model
to the case where we allofn,|| > §(M;,N;)/2 with non-zero probability and apply (10). To bound
the probability in (10), we will make use of the following giation of Hoeffding’s inequality [28].

Lemma 4. Suppose that; € RY is a random vector that satisfigs;[|? < ¢, for j = 1,2,...,J.
Suppose also that the; are independent and identically distributed (i.i.d.) wilt||n;||*] = o2. Then if

n = (ny,n9,...,ny) € RN, we have that for any > 0,

2J)\2
P (||'n||2 > J(o% + )\)) < exp <— 2 > .

Note that this lemma holds for any distribution on the nofsa is bounded. For Gaussian noise it is

possible to establish a very similar result (differing oilythe constant inside the exponent) by using
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standard tail bounds. Using this lemma we can relax the gasomone so that we only require that it is
finite, and instead make the weaker assumption Bjah ||?] = Jo? < §2(M, N')/4 for a particular pair
of manifolds M, N. This assumption ensures that= 62(M,N)/4 — o2 > 0, so that we can combine
Lemma 4 with (10) to obtain a bound aPy(x. Note that if this condition does not hold, then this is
a very difficult classification problem since tl&pectechorm of the noise is large enough to push us
closer to the other manifold, in which case the simple classjiven by (9) makes little sense.

We now illustrate how Lemma 4 can be be used to compare ertordsobetween classification using

a joint manifold versus using a pair of component manifoldse proof can be found in [27].

Theorem 5. Suppose that we obserye= x + n wherex € M* andn is a random vector such that

|n||? < for j =1,2,...,J, and that then; are i.i.d. with E[||n;||?] = 02 < §2(My, N})/4. Define
cx = 6% (My, Ny) /4 — o2 and ¢ = (M N*) /4 — o,
S(M*,N™)

\/j )

and we classify the observatignaccording to (9) therr* > ¢, and

0\ 2 2
Pri-pn- < exp (—2 <C—> ) and Py, < exp <—2 (C—k> > . (15)
€ €

This result can be weakened slightly to obtain the followaagollary [27].

d( My, Ni) < (14)

Corollary 1. Suppose that we obserye= x + n wherex € M* andn is a random vector such that
[nj||* <e for j =1,2,...,J and that then; are i.i.d. with E[||n;||?] = 02 < §2(My, Ny)/4. If

2 Jj#k J J

and we classify according to (9), then (15) holds with the samnstants as in Theorem 5.

(16)

Corollary 1 shows that we can expect a classifier based orothiemanifold to outperform a classifier
based thet-th component manifold whenever the squared separatidandis for thek-th component
manifolds is comparable to the average squared separatencde among the remaining component
manifolds. Thus, we can expect the joint classifier to odigger most of the individual classifiers, but it
is still possible that some individual classifiers will dottee Of course, if one knew in advance which

classifiers were best, then one would only use data from teedbessifiers. We expect that more typical
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Fig. 4. Sample images of 2 different trucks from multiple cameravgiand SNR vs. probability of error for individual
cameras, the joint manifold, and majority voting. The nundi@ixels in each camera imagé = 240 x 360 = 76800.

Joint manifold-based classification outperforms majordiing and performs nearly as well as the best camera.

situations include the case where the best classifier clsamggr time or where the separation distances

are nearly equal for all component manifolds, in which cdmedondition in (16) is true for alk.

B. Experiments

In this section, we apply the random projection-based fusigorithm to perform binary classification.
Suppose a number of synthetic cameras, each with resoltjosbserve the motion of a truck along a
straight road. This forms a 1-D manifold in the image spaRé’ pertaining to each camera; the joint
manifold is also a 1-D manifold ifR’". Suppose now that we wish to classify between two types of
trucks. Example images from three camera views for the taesds are shown in Fig. 4. The resolution
of each image iSV = 240 x 320 = 76800 pixels. In our experiment, we convert the images to gragscal
and sumM = 200 random projections for the three camera views. The sampteiviews suggest
that some views make it easier to distinguish between tresetathan others. For instance, the head-on
view of the two trucks is very similar for most shift paranrstewhile the side view is more appropriate
for discerning between the two classes of trucks.

The probability of error, which in this case is given W’M/\/ + %PNM, for different manifold-based

40ur synthetic images were generated using POVRHtYp(//www.povray.orjy an open-source ray tracing software package.
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classification approaches as a function of the signal-teenmtio (SNR) is shown in Fig. 4. It is clear
that the joint manifold approach performs better than nitgjaoting and is comparable in performance
to the best camera. While one might hope to be able to do ever Itlean the best camera, Theorem 5
suggests that in general this is only possible when no caisesgnificantly better than the average
camera. Moreover, in the absence of prior information réiggrhow well each camera truly performs,
the best strategy for the central processor would be to issdata fromall cameras. Thus, joint manifold
fusion proves to be more effective than high-level fusiagoathms like majority voting.

This example highlights two scenarios when our proposedoagh should prove useful. First, our
method acts as a simple scheme for data fusion in the case whsincameras do not yield particularly
reliable data (and thus decision fusion algorithms likearigj voting are ineffective.) Second, due to the
high dimensionality of the data, transmitting the imageslddye expensive in terms of communication
bandwidth. Our method ensures that the communication sostduced to be proportional only to the

number of degrees of freedom of the signal.
V. JOINT MANIFOLD LEARNING

In contrast to the classification scenario described abavehich we knew the manifold structume
priori, we now considemanifold learningalgorithms that attempt to learn the manifold structurenfro
a set of samples of a manifold. This is accomplished by coasirg a (possibly nonlinear) embedding
of the data into a subset @~, whereL < N. If the dimensionk of the manifold is known, therL
is typically set toK. Such algorithms provide a powerful framework for navigafivisualization and
interpolation of high-dimensional data. For instance, ificdoh learning can be employed in the inference
of articulation parameters (e.g., 3-D pose) from a set ofgesaof a moving object. In this section
we demonstrate that in a variety of settings, the joint nwdifs significantly easier to learn than the
individual component manifolds. This improvement is duebth the kind of increased robustness to
noise noted in Section IV and to the fact that, as was shownhaoflem 2, the joint manifold can
be significantly better-conditioned than the componentifolts, meaning that it is easier to learn the

structure of the joint manifold from a finite sampling of ptEn

A. Theory

Several algorithms for manifold learning have been progosach giving rise to a nonlinear map
with its own special properties and advantages (e.g., Ipd2@], Locally Linear Embedding (LLE) [30],

Hessian Eigenmaps [31], etc.) Of these approaches, we edeypacial attention here to the Isomap
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algorithm, which assumes that the point cloud consists ofpdas from a data manifold that is (at least
approximately) isometric to a convex subset of Euclideaacspln this case, there exists an isometric
mappingf from a parameter spa¢@ C RX to the manifoldM such thatd,(f(61), f(02)) = ||61 — 62 ]|

for all 61,0, € ©. In essence, Isomap attempts to discover the inverse magpih: M — O.

Isomap works in three stages:

1) Construct a grapldi: that contains a vertex for each data point; an edge connsotvertices if
the Euclidean distance between the corresponding dataspsitelow a specified threshold.

2) Weight each edge in the graghby computing the Euclidean distance between the corre$pgnd
data points. We then estimate the geodesic distance bewasdnpair of vertices as the length of
the shortest path between the corresponding vertices igriqeh G.

3) Embed the points iRX using multidimensional scaling (MDS), which attempts tobeah the

points so that their Euclidean distance approximates tlima®d geodesic distances.

A crucial component of the MDS algorithm is a suitable lineansformation of the matrix of squared
geodesic distances; the rafk-approximation of this new matrix yields the best possikilalimensional
coordinate structure of the input sample points in a mearusgl sense. Further results on the performance
of Isomap in terms of geometric properties of the underlyimgnifold can be found in [32].

We examine the performance of Isomap for learning the joianifold as compared to learning the
isometric component manifolds separately. We assume thadtave noiseless samples fro[n\/lj}f:l.
In order to judge the quality of the embedding learned by kpmve will observe that for any pair of
samples, ¢ from a manifold M whose vertices are linked within the graph we have that

lp— qll
< WZAN 17

for somep € [0, 1] that will depend on the samples aft and the grapl. Isomap will perform well if

the largest value ob that satisfies (17) for any pair of samples that are conndxtexh edge in the graph
G is close tol. Using this fact, we can compare the performance of manifddning using Isomap on
samples from the joint manifold* to using Isomap on samples from a particular component lanif

M. The proof of this theorem can again be found in [27].

Theorem 6. Let M* be a joint manifold fromJ isometric component manifolds. Lptq € M* and

suppose that we are given a graghthat contains one vertex for each sample obtained froth. For
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eachk =1,...,J, definep; as the largest value such that

Ip; — 4l
py < IR —4ill
7= dm, (pj,q5)

for all pairs of points connected by an edge@h Then we have that

IS/ p—adl
=10 < _ < 1. 19
J T dum-(p,q) ~ (19)

From Theorem 6 we see that, in many cases, the joint maniftichates of the geodesic distances will

<1 (18)

be more accurate than the estimates obtained using one ebthponent manifolds. If for a particular

component manifold\;, we observe thap, < 1/ #, then we know that the joint manifold leads to
better estimates. Essentially, we may expect that the joanifold will lead to estimates that are better
than the average case across the component manifolds.

We now consider the case where we have a dense sampling ofahéotds so that the; ~ 1,
and examine the case where we obtain noisy samples. We \gillnas that the noise is i.i.d. and
demonstrate that any distance calculation performedvtinserves as a better estimator of the pairwise
(and consequently, geodesic) distances between any twispwiand g than that performed on any

component manifold using the points andg;. Again, the proof of this theorem can be found in [27].

Theorem 7. Let M* be a joint manifold fromJ isometric component manifolds. Lptq € M* and
assume that|p; — ¢;|| = d for all j. Assume that we acquire noisy observatiens= p + n and

r = q+n’', wheren andn’ are independent noise vectors wi||n;[|*] = E[||n}[|*] = o2, ||In,]|* <,

and |n)||* <eforj=1,...,J. Then,

Is —r|?
Pl1-6<
< = lp —ql* +2J0?
2
_ 2 [ d*+207
wherec = exp (25 (d\/E+s) >

We observe that the estimate of the true distance sufferm #oconstant small bias; this can be

§1+5> >1—27,

handled using a simple debiasing stepheorem 7 indicates that the probability of large deviagiam
the estimated distance decreasgponentiallyin the number of component manifolds thus we should

observe significant “denoising” even in the case whers relatively small.

SManifold learning algorithms such as Isomap deal with hiasstimates of distances by “centering” the matrix of sodiare

distances, i.e., removing the mean of each row/column freenyeelement.
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B. Practice

The theoretical results derived above assume that theraedodata arises frond isometric component
manifolds. As noted in Section IlI-A, barring controlledymthetic scenarios, this is very rarely the case.
In practice, the isometric assumption breaks down due toréasons(i) the cameras may be at different
distances from the scene, nonidentical cameras may pogsissnt dynamic ranges, or the cameras
may be of different modalities (such as visual versus iefilatameras or even visual plus audio data), and
thus the component manifolds may be scaled differerily;due to occlusions or partially-overlapping
fields of view, certain regions of some component manifoldsy iipe ill-conditioned.

In order to handle such non-idealities, we make two modifioat to the Isomap algorithm while
performing joint manifold learning. Recall that that in erdo find the nearest-neighbor gra@hlsomap
must first calculate the matrix of squared pairwise Eucliddistances. We denote this matiix for the
joint manifold M* and D; for the component manifold ;. Note thatD = Z}'le D;. Thus, if a particular
component manifold is scaled differently than the otheyswhich we mean thadx, (f;(01), f;(62)) =
C;]|01 — 022 with C; # 1, then all the entries of the correspondifly will be reweighted byC?, so
that D; will have a disproportionate impact d@. This corresponds to the first non-ideality described
above, and can be alleviated bprmalizingeachD; by its Frobenius norm, which can be interpreted
as scaling each manifold so that an Eulerian path througltdhgplete graph has unit length.

The second non-ideality can be partially addressed by ptteghto adaptively detect and correct
for occlusion events. Consider the case of large-scaleusicels, in which we make the simplifying
assumption that for each camera the object of interest ereintirely within the camera’s view or
entirely occluded. In this case, the non-occluded compomamifolds are still locally isometric to each
other, i.e., there exists a neighborhd@dsuch thatd, (f;(61), f;(62)) = [|01 — 62]|2 for all 61,0, € U
and for allj corresponding to the non-occluded component manifoldas;Tii we knew which cameras
were occluded for a pair of points, say™ and =", then we could simply ignore those cameras in
computingD,,, ,, and rescaleD,,, ,, so that it is comparable with the case when no cameras exhibit
occlusions. More specifically, we let denote the index set for non-occluded component manifatds a
setD, ., = (|J]/|J]) > e 7l —a7|3. To do this automatically, wéhreshold|z7" — 73 to zero when
it is below a certain value, i.e., we sét= {; : (e —x?”% > ¢} for some paramete, since this for the
component manifolds in which the object of interest is odeldl this distance will be relatively small.
The parametet can be reasonably inferred from the ddiais used by subsequent steps in Isomap to

learn an improved low-dimensional embedding of the highatisional acquired data. Note that while
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this approach does not rigorously handle boundary caseeevdigects are only partially occluded, our

experimental results below indicate that the algorithnesrabust to such cases.

C. Experiments

We provide a variety of results using both simulated and desaid that demonstrate the significant
gains obtained by using the joint manifold model, both witld avithout the use of random projections.
The manifold learning results have been generated usingdpd29]. For ease of presentation, all of
our experiments are performed on 2-D image manifolds isphiorto a closed rectangular subsetRo.
Thus, ideally the 2-D embedding of the data should resembdetangular grid of points that correspond
to the samples of the joint manifold in high dimensional gpac

1) Manifolds isometric to Euclidean spacés a first example, we consider three different manifolds
formed by N = 64 x 64 = 4096 pixel images of an ellipse with major axignd minor axis translating
in a 2-D plane, for(a,b) = (7,7), (7,6) and(7,5); an example point is shown in Fig. 5. The eccentricity
of the ellipse directly affects the condition numbegt- of the image articulation manifold; in fact, it can
be shown that manifolds associated with more eccentripsel§ exhibit higher values for the condition
number. Consequently, we expect that it is “harder” to learoh manifolds. Figure 5 shows that this is
indeed the case. We add a small amount of i.i.d. Gaussiae tmisach image and apply Isomap to both
the individual datasets as well as the concatenated daWsatbserve that the 2-D rectangular embedding
is poorly learnt for each of the component manifolds but iowes visibly for the joint manifold.

2) Gaussian noise in realistic image¥®ve demonstrate how using joint manifolds can help amekorat
imaging artifacts such as Gaussian noise in a more reatistting. We test our proposed joint manifold
learning approach on a set of synthetic truck images. The canprises a set of 540 views of a truck
on a highway from 3 vantage points. Each image is of gize= 90 x 120 = 10800. The images are
parametrized by the 2-D location of the truck on the roadstheach of the image data sets can be
modeled by a 2-D manifold. Sample views are shown in Fig. Al experiment, we only use images
from Class 2. We convert the images to grayscale, so thatrtti@eat dimension of the data from each
camera lies inR%% Next, we add i.i.d. Gaussian noise to each image and attenjetarn the 2-D
manifold. The noise level is quite high (PSNR = 3.5dB), aslenced by the sample images in Fig. 6. It
is visually clear from the 2-D embedding results that thereg performance improves markedly when

the data is modeled using a joint manifold, thus providinghetical evidence for Theorem 7.
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Fig. 5. (top) Articulation manifolds sharing a common 2-D paramspaced. Images simulate viewing a translating

disc fromJ = 3 viewing angles. (bottom) 2-D embedding of individual anithfenanifolds learned via Isomap.
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Fig. 6. (top) Noisy captured images. SNR 3.5 dB ; (bottom) 2-D embeddings learned via Isomap from noisy

images. The joint manifold model helps ameliorate the ¢ffe€noise.

3) Real data experiment—Ilearning with occlusioNge now test our methods on data from a camera
network; the images are obtained from a network of four UxiibFire-T OEM Firewire board cameras.

Each camera has resolution = 320 x 240 = 76800 pixels. The data comprisés= 4 different views of
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Fig. 7. (top) Sample images of 2 koalas moving along individual 1dthp, yielding a 2-D manifold; (middle) 2-D
embeddings of the dataset learned via Isomap fom 76800 pixel images; (bottom) 2-D embeddings of the dataset
learned from\I = 2400 random projections. Learning the joint manifold ygeddmuch improved 2-D embedding.

the independent motions of 2 toy koalas along individual pelhs, yielding a 2-D combined parameter
space. This data suffers from real-world artifacts such astufations in illumination conditions and
variations in the pose of the koalas; further, the koalasuglecone another in certain views or are absent
from certain views depending on the particular vantagetp&ample images and 2-D embedding results
are displayed in Fig. 7. We observe that the best embeddingtaned by using the modified version
of Isomap for learning the joint manifold. To test the effeebess of the data fusion method described
in Section 1lI-B, we computeV/ = 2400 random projections of each image and sum them to obtain a
randomly projected version of the joint data and repeat bwvea experiment. The dimensionality of the
projected data is 3.125% of the original data; yet, we seg littie degradation in performance, thus
displaying the effectiveness of random projection-basesibh.

4) Real data experiment—unsupervised target trackihga practical application of manifold learning,
we consider a situation where we are given a set of training censisting of images of a target moving
through a region along with a set of test images of the targetimy along a particular trajectory. We do

not explicitly incorporate any known information regarglithe locations of the cameras or the parameter
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space describing the target’s motion. The training imagespeise.J = 4 views of a coffee mug placed
at different positions on an irregular rectangular gridaiple images from each camera are shown in
Fig. 8. For the test data, we translate the coffee mug so that-D path traces out the shape of the
letter “R”. We aim to recover this shape using both the testtaaining data. To solve this problem, we
attempt to learn a 2-D embedding of the joint manifold usimg modified version of Isomap detailed in
Section V-B. The learned embedding for each camera is showigi 8. As is visually evident, learning
the data using any one camera yields very poor results; remearning the joint manifold helps discern
the 2-D structure to a much better degree. In particular,“Rietrajectory in the test data is correctly
recovered only by learning the joint manifold. Finally, wepeat the above procedure usihf= 4800
random projections of each image, and fuse the data by sugnthé measurement vectors. While the
recovered trajectory of the anomalous (test) data suffemsesdegradation in visual quality, we observe
comparable 2-D embedding results for the individual andtjohanifolds as with the original data set.
Since the dimensionality of the projected data is mereljp% 2hat of the original data set, this would

translate to significant savings in communication costs iead-world camera network.
VI. DISCUSSION

Joint manifolds naturally capture the structure presenthi data produced by camera networks.
We have studied topological and geometric properties aftjonanifolds, and have provided some
basic examples that illustrate how they can improve theopewince of common signal processing
algorithms. We have also introduced a simple framework &ta dusion for camera networks that employs
independent random projections of each image, which am dlseumulated to obtain an accurate low-
dimensional representation of the joint manifold. Our dmsscheme can be directly applied to the data
acquired by such devices. Furthermore, while we have fatpsinarily on camera networks in this
paper, our framework can be used for the fusion of signalsiieed| by many generic sensor networks,

as well as multimodal and joint audio/video data.
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