
Joint Manifolds for Data Fusion

Mark A. Davenport,Student Member, IEEE,Chinmay Hegde,Student Member, IEEE

Marco F. Duarte,Member, IEEE,and Richard G. Baraniuk,Fellow, IEEE

Abstract

The emergence of low-cost sensing architectures for diverse modalities has made it possible to deploy

sensor networks that capture a single event from a large number of vantage points and using multiple

modalities. In many scenarios, these networks acquire large amounts of very high-dimensional data. For

example, even a relatively small network of cameras can generate massive amounts of high-dimensional

image and video data. One way to cope with such a data deluge isto develop low-dimensional data

models. Manifold models provide a particularly powerful theoretical and algorithmic framework for

capturing the structure of data governed by a low-dimensional set of parameters, as is often the case

in a sensor network. However, these models do not typically take into account dependencies among

multiple sensors. We thus propose a newjoint manifoldframework for data ensembles that exploits such

dependencies. We show that joint manifold structure can lead to improved performance for a variety of

signal processing algorithms for applications including classification and manifold learning. Additionally,

recent results concerning random projections of manifoldsenable us to formulate a universal, network-

scalable dimensionality reduction scheme that efficientlyfuses the data from all sensors.

I. INTRODUCTION

The emergence of low-cost sensing devices has made it possible to deploy sensor networks that capture

a single event from a large number of vantage points and usingmultiple modalities. This can lead to a

veritable data deluge, fueling the need for efficient algorithms for processing and efficient protocols for

transmitting the data generated by such networks. In order to address these challenges, there is a clear

need for a theoretical framework for modeling the complex interdependencies among signals acquired by

these networks. This framework should support the development of efficient algorithms that can exploit

this structure and efficient protocols that can cope with themassive data volume.
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Consider, for example, a camera network consisting ofJ video acquisition devices each acquiring

N -pixel images of a scene simultaneously. Ideally, all cameras would send their raw recorded images

to a central processing unit, which could then holisticallyanalyze all the data produced by the network.

This naı̈ve approach would in general provide the best performance, since it exploits complete access

to all of the data. However, the amount of raw data generated by a camera network, on the order of

JN , becomes untenably large even for fairly small networks operating at moderate resolutions and frame

rates. In such settings, the amount of data can (and often does) overwhelm network resources such as

power and communication bandwidth. While the naı̈ve approach could easily be improved by requiring

each camera to first compress the images using a compression algorithm such as JPEG or MPEG, this

modification still fails to exploit any interdependencies between the cameras. Hence, the total power and

bandwidth requirements of the network will still grow linearly with J .

Alternatively, exploiting the fact that in many cases the end goal is to solve some kind of inference

problem, each camera could independently reach a decision or extract some relevant features, and then

relay the result to the central processing unit which would then combine the results to provide the solution.

Unfortunately, this approach also has disadvantages. First, the cameras must be “smart” in that they must

possess some degree of sophistication so that they can execute nonlinear inference tasks. Such technology

is expensive and can place severe demands on the available power resources. Perhaps more importantly,

the total power and bandwidth requirement will still scale linearly with J .

In order to cope with such high-dimensional data, a common strategy is to develop appropriate models

for the acquired images. A powerful model is the geometric notion of a low-dimensionalmanifold.

Informally, manifold models arise in cases where(i) aK-dimensional parameterθ can be identified that

carries the relevant information about a signal and(ii) the signalf(θ) ∈ R
N changes as a continuous

(typically nonlinear) function of these parameters. Typical examples include a one-dimensional (1-D)

signal translated by an unknown time delay (parameterized by the translation variable), a recording of

a speech signal (parameterized by the underlying phonemes spoken by the speaker), and an image of a

3-D object at an unknown location captured from an unknown viewing angle (parameterized by the three

spatial coordinates of the object as well as its roll, pitch,and yaw). In these and many other cases, the

geometry of the signal class forms a nonlinearK-dimensional manifold inRN ,

M = {f(θ) : θ ∈ Θ}, (1)

whereΘ is theK-dimensional parameter space. In recent years, researchers in image processing have
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become increasingly interested in manifold models due to the observation that a collection of images

obtained from different target locations/poses/illuminations and sensor viewpoints form such a man-

ifold [1]–[3]. As a result, manifold-based methods for image processing have attracted considerable

attention, particularly in the machine learning communityand can be applied to diverse applications

as data visualization, classification, estimation, detection, control, clustering, and learning [3]–[5]. Low-

dimensional manifolds have also been proposed as approximate models for a number of nonparametric

signal classes such as images of human faces and handwrittendigits [6]–[8].

In sensor networks, multiple observations of the same eventare often acquired simultaneously, resulting

in the acquisition of interdependent signals that share a common parameterization. Specifically, a camera

network might observe a single event from a variety of vantage points, where the underlying event is

described by a set of common global parameters (such as the location and orientation of an object of

interest). Similarly, when sensing a single phenomenon using multiple modalities, such as video and

audio, the underlying phenomenon may again be described by asingle parameterization that spans all

modalities (such as when analyzing a video and audio recording of a person speaking, where both are

parameterized by the phonemes being spoken). In both examples, all of the acquired signals are functions

of the same set of parameters, i.e., we can write each signal as fj(θ) whereθ ∈ Θ is the same for allj.

Our contention in this paper is that we can obtain a simple model that captures the correlation between

the sensor observations by matching the parameter values for the different manifolds observed by the

sensors. More precisely, we observe that by simply concatenating points that are indexed by the same pa-

rameter valueθ from the different component manifolds, i.e., by formingf(θ) = [f1(θ), f2(θ), . . . , fJ(θ)],

we obtain a new manifold, which we dub thejoint manifold, that encompasses all of the component

manifolds and shares the same parameterization. This structure captures the interdependencies between

the signals in a straightforward manner. We can then apply the same manifold-based processing techniques

that have been proposed for individual manifolds to the entire ensemble of component manifolds.

In this paper we conduct a careful examination of the topological and geometrical properties of joint

manifolds; in particular, we compare joint manifolds to their component manifolds to see how properties

like geodesic distances, curvature, branch separation, and condition number are affected. We then observe

that these properties lead to improved performance and noise-tolerance for a variety of signal processing

algorithms when they exploit the joint manifold structure.As a key advantage of our proposed model,

we illustrate how the joint manifold structure can be exploited via a simple and efficient data fusion

algorithm based onrandom projections.For the case ofJ cameras jointly acquiringN -pixel images of a
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common scene characterized byK parameters, we demonstrate that the total power and communication

bandwidth required by our scheme is linear in the dimensionK and onlylogarithmic in J andN . Recent

developments in the field of compressive sensing has made this data acquisition model practical in many

interesting applications [9]–[11].

Related prior work has studiedmanifold alignment, where the goal is to discover maps between datasets

that are governed by the same underlying low-dimensional structure. Lafon et al. proposed an algorithm

to obtain a one-to-one matching between data points from several manifold-modeled classes [12]. The

algorithm first applies dimensionality reduction using diffusion maps to obtain data representations that

encode the intrinsic geometry of the class. Then, an affine function that matches a set of landmark

points is computed and applied to the remainder of the datasets. This concept was extended by Wang

and Mahadevan, who applied Procrustes analysis on the dimensionality-reduced datasets to obtain an

alignment function between a pair of manifolds [13]. Since an alignment function is provided instead of

a data point matching, the mapping obtained is applicable for the entire manifold rather than for the set

of sampled points. In our setting, we assume that either(i) the manifold alignment is implicitly present,

for example, via synchronization between the different sensors, or(ii) the manifolds have been aligned

using one of these approaches. Our main focus is an analysis of the benefits provided by analyzing the

joint manifold versus solving the task of interest separately on each of the manifolds. For concreteness,

but without loss of generality, we couch our analysis in the language of camera networks, although much

of our theory is sufficiently generic so as to apply to a variety of other scenarios.

This paper is organized as follows. Section II introduces and establishes some basic properties of

joint manifolds. Section III provides discussion of practical examples of joint manifolds in the camera

network setting and describes how to use random projectionsto exploit the joint manifold structure in such

a setting. Sections IV and V then consider the application ofjoint manifolds to the tasks of classification

and manifold learning, providing both a theoretical analysis as well as extensive simulations. Section VI

concludes with a brief discussion.

II. JOINT MANIFOLDS: THEORY

In this section we develop a theoretical framework for ensembles of manifolds that arejointly param-

eterized by a small number ofcommondegrees of freedom. Informally, we propose a data structurefor

jointly modeling such ensembles; this is obtained simply byconcatenating points from different ensembles

that are indexed by the same articulation parameter to obtain a single point in a higher-dimensional space.
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We begin by defining the joint manifold for the setting of general topological manifolds.1 In order to

simplify our notation, we will letM = M1×M2×· · ·×MJ denote theproduct manifold. Furthermore,

we will use the notationp = (p1, p2, . . . , pJ) to denote aJ-tuple of points, or concatenation ofJ points,

which lies in the Cartesian product ofJ sets (e.g.,M).

Definition 1. Let {Mj}J
j=1

be an ensemble ofJ topological manifolds of equal dimensionK. Suppose

that the manifolds are homeomorphic to each other, in which case there exists a homeomorphismψj

betweenM1 andMj for eachj. For a particular set of{ψj}J
j=2, we define thejoint manifold as

M∗ = {p ∈ M : pj = ψj(p1), 2 ≤ j ≤ J}.

Furthermore, we say that{Mj}J
j=1

are the correspondingcomponent manifolds.

Note thatM1 serves as a commonparameter spacefor all the component manifolds. Since the

component manifolds are homeomorphic to each other, this choice is ultimately arbitrary. In practice

it may be more natural to think of each component manifold as being homeomorphic to some fixed

K-dimensional parameter spaceΘ. However, in this case one could still defineM∗ as is done above by

definingψj as the composition of the homeomorphic mappings fromM1 to Θ and fromΘ to Mj.

As an example, consider the one-dimensional manifolds in Fig. 1. Figures 1(a) and (b) show two

isomorphic manifolds, whereM1 = (0, 2π) is an open interval, andM2 = {ψ2(θ) : θ ∈ M1} where

ψ2(θ) = (cos(θ), sin(θ)), i.e., M2 = S1\(1, 0) is a circle with one point removed (so that it remains

isomorphic to a line segment). In this case the joint manifold M∗ = {(θ, cos(θ), sin(θ)) : θ ∈ (0, 2π)},

illustrated in Fig. 1(c), is a helix. Notice that there existother possible homeomorphic mappings fromM1

to M2, and that the precise structure of the joint manifold as a submanifold of R
3 is heavily dependent

on the choice of this mapping.

Returning to the definition ofM∗, observe that although we have calledM∗ the joint manifold, we

have not shown that it actually forms a topological manifold. To prove thatM∗ is indeed a manifold,

we will make use of the fact that the joint manifold is a subsetof the product manifoldM. One can

show thatM forms aJK-dimensional manifold using the product topology [14]. By comparison, we

now show thatM∗ has dimension onlyK.

Proposition 1. M∗ is a K-dimensional submanifold ofM.

1We refer the reader to [14] for a comprehensive introductionto manifolds.
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(a) M1 ⊆ R: line segment (b)M2 ⊆ R
2: circle segment (c)M∗ ⊆ R

3: helix segment

Fig. 1. A pair of isomorphic manifoldsM1 andM2, and the resulting joint manifoldM∗.

Proof: We first observe that sinceM∗ ⊂ M, we automatically have thatM∗ is a second countable

Hausdorff topological space. Thus, all that remains is to show thatM∗ is locally homeomorphic toRK .

Supposep ∈ M∗. Sincep1 ∈ M1, we have a pair(U1, φ1) such thatU1 ⊂ M1 is an open set containing

p1 andφ1 : U1 → V is a homeomorphism whereV is an open set inRK . We now define for2 ≤ j ≤ J

Uj = ψj(U1) and φj = φ1 ◦ ψ−1

j : Uj → V . Note that for eachj, Uj is an open set andφj is a

homeomorphism (sinceψj is a homeomorphism).

Now setU = U1 × U2 × · · · × UJ and defineU∗ = U ∩ M∗. Observe thatU∗ is an open set and

that p ∈ U∗. Furthermore, letq be any element ofU∗. Thenφj(qj) = φ1 ◦ ψ−1

j (qj) = φ1(q1) for each

2 ≤ j ≤ J . Thus, since the image of eachqj ∈ Uj in V under their correspondingφj is the same, we

can form a single homeomorphismφ∗ : U∗ → V by assigningφ∗(q) = φ1(q1). This shows thatM∗ is

locally homeomorphic toRK as desired.

SinceM∗ is a submanifold ofM, it also inherits some desirable properties from{Mj}J
j=1

.

Proposition 2. Suppose that{Mj}J
j=1

are isomorphic topological manifolds andM∗ is defined as above.

1) If {Mj}J
j=1

are Riemannian, thenM∗ is Riemannian.

2) If {Mj}J
j=1

are compact, thenM∗ is compact.

Proof: The proofs of these facts are straightforward and follow from the fact that if the component

manifolds are Riemannian or compact, thenM will be as well.M∗ then inherits these properties as a

submanifold ofM [14].

Up to this point we have considered general topological manifolds. In particular, we havenot assumed

that the component manifolds are embedded in any particularspace. If each component manifoldMj

is embedded inRNj , the joint manifold is naturally embedded inRN∗

whereN∗ =
∑J

j=1
Nj . Hence,

the joint manifold can be viewed as a model for sets of data with varying ambient dimensionlinked
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by a common parametrization. In the sequel, we assume that each manifoldMj is embedded inRN ,

which implies thatM∗ ⊂ R
JN . Observe that while the intrinsic dimension of the joint manifold remains

constant atK, the ambient dimension increases by a factor ofJ . We now examine how a number of

geometric properties of the joint manifold compare to thoseof the component manifolds.

We begin with the following simple observation that Euclidean distances2 between points on the joint

manifold are larger than distances on the component manifolds. The result follows directly from the

definition of the Euclidean norm, so we omit the proof.

Proposition 3. Let p,q ∈ M∗ be given. Then

‖p − q‖ =

√√√√
J∑

j=1

‖pj − qj‖2.

While Euclidean distances are important (especially when noise is introduced), the natural measure of

distance between a pair of points on a Riemannian manifold isnot Euclidean distance, but rather the

geodesic distance. The geodesic distance between pointsp, q ∈ M is defined as

dM(p, q) = inf{L(γ) : γ(0) = p, γ(1) = q}, (2)

whereγ : [0, 1] → M is aC1-smooth curve joiningp andq, andL(γ) is the length ofγ as measured by

L(γ) =

∫
1

0

‖γ̇(t)‖dt. (3)

In order to see how geodesic distances onM∗ compare to geodesic distances on the component manifolds,

we will make use of the following lemma.

Lemma 1. Suppose that{Mj}J
j=1 are Riemannian manifolds, and letγ : [0, 1] → M∗ be a C1-

smooth curve on the joint manifold. Denote byγj the restriction ofγ to the ambient dimensions ofM∗

corresponding toMj . Then eachγj : [0, 1] → Mj is a C1-smooth curve onMj , and

1√
J

J∑

j=1

L(γj) ≤ L(γ) ≤
J∑

j=1

L(γj).

Proof: We begin by observing that

L(γ) =

∫
1

0

‖γ̇(t)‖dt =

∫
1

0

√√√√
J∑

j=1

‖γ̇j(t)‖2 dt. (4)

2In the remainder of this paper, whenever we use the notation‖ · ‖ we mean‖ · ‖ℓ2 , i.e., theℓ2 (Euclidean) norm onRN .

When we wish to differentiate this from otherℓp norms, we will be explicit.
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For a fixedt, let xj = ‖γ̇j(t)‖, and observe thatx = (x1, x2, . . . , xJ) is a vector inR
J . Thus we may

apply the standard norm inequalities

1√
J
‖x‖ℓ1 ≤ ‖x‖ℓ2 ≤ ‖x‖ℓ1 (5)

to obtain

1√
J

J∑

j=1

‖γ̇j(t)‖ ≤

√√√√
J∑

j=1

‖γ̇j(t)‖2 ≤
J∑

j=1

‖γ̇j(t)‖. (6)

Combining the right-hand side of (6) with (4) we obtain

L(γ) ≤
∫

1

0

J∑

j=1

‖γ̇j(t)‖dt =

J∑

j=1

∫
1

0

‖γ̇j(t)‖dt =

J∑

j=1

L(γj).

Similarly, from the left-hand side of (6) we obtain

L(γ) ≥
∫

1

0

1√
J

J∑

j=1

‖γ̇j(t)‖dt =
1√
J

J∑

j=1

∫
1

0

‖γ̇j(t)‖dt =
1√
J

J∑

j=1

L(γj).

We are now in a position to compare geodesic distances onM∗ to those on the component manifold.

Theorem 1. Suppose that{Mj}J
j=1 are Riemannian manifolds. Letp,q ∈ M∗ be given. Then

dM∗(p,q) ≥ 1√
J

J∑

j=1

dMj
(pj , qj). (7)

If the mappingsψ2, ψ3, . . . , ψJ are isometries, i.e., dM1
(p1, q1) = dMj

(ψj(p1), ψj(q1)) for any j and

for any pair of points(p,q), then

dM∗(p,q) =
1√
J

J∑

j=1

dMj
(pj, qj) =

√
J · dM1

(p1, q1). (8)

Proof: If γ is a geodesic path betweenp andq, then from Lemma 1,

dM∗(p,q) = L(γ) ≥ 1√
J

J∑

j=1

L(γj).

By definitionL(γj) ≥ dMj
(pj , qj); hence, this establishes (7).

Now observe that lower bound in Lemma 1 is derived from the lower inequality of (5). This inequality

is attained with equality if and only if each term in the sum isequal, i.e.,L(γj) = L(γk) for all j and

k. This is precisely the case whenψ2, ψ3, . . . , ψJ are isometries. Thus we obtain

dM∗(p,q) = L(γ) =
1√
J

J∑

j=1

L(γj) =
√
JL(γ1).
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We now conclude thatL(γ1) = dM1
(p1, q1) since if we could obtain a shorter path̃γ1 from p1 to q1 this

would contradict the assumption thatγ is a geodesic onM∗, which establishes (8).

Next, we study local smoothness and global self avoidance properties of the joint manifold.

Definition 2. [15] Let M be a Riemannian submanifold ofR
N . Thecondition number is defined as

1/τ , whereτ is the largest number satisfying the following: the open normal bundle aboutM of radius

r is embedded inRN for all r < τ .

The condition number controls both local smoothness properties and global properties of the manifold;

as 1/τ becomes smaller, the manifold becomes smoother and more self-avoiding, as observed in [15].

We will informally refer to manifolds with largeτ as “good” manifolds.

Lemma 2. [15] SupposeM has condition number1/τ . Let p, q ∈ M be two distinct points onM,

and letγ(t) denote a unit speed parameterization of the geodesic path joining p and q. Then

max
t

‖γ̈(t)‖ ≤ 1

τ
.

Lemma 3. [15] SupposeM has condition number1/τ . Let p, q ∈ M be two points onM such that

‖p− q‖ = d. If d ≤ τ/2, then the geodesic distancedM(p, q) is bounded by

dM(p, q) ≤ τ(1 −
√

1 − 2d/τ ).

We wish to show that if the component manifolds are smooth andself avoiding, the joint manifold

is as well. It is not easy to prove this in the most general case, where the only assumption is that there

exists a homeomorphism (i.e., a continuous bijective mapψ) between every pair of manifolds. However,

suppose the manifolds arediffeomorphic, i.e., there exists a continuous bijective map between tangent

spaces at corresponding points on every pair of manifolds. In that case, we make the following assertion.

Theorem 2. Suppose that{Mj}J
j=1 are Riemannian submanifolds ofR

N , and let 1/τj denote the

condition number ofMj . Suppose also that the{ψj}J
j=2

that define the corresponding joint manifold

M∗ are diffeomorphisms. If1/τ∗ is the condition number ofM∗, then

1

τ∗
≤ max

1≤j≤J

1

τj
.

Proof: Let p ∈ M∗. Since the{ψj}J
j=2 are diffeomorphisms, we may viewM∗ as being diffeo-

morphic toM1; i.e., we can build a diffeomorphic map fromM1 to M∗ as

p = ψ∗(p1) := (p1, ψ2(p2), . . . , ψJ (pJ)).
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We also know that given any two manifolds linked by a diffeomorphismψj : M1 → Mj, each vector

v1 in the tangent spaceT1(p1) of the manifoldM1 at the pointp1 is uniquelymapped to a tangent vector

vj := φj(v1) in the tangent spaceTj(pj) of the manifoldMj at the pointpj = ψj(p1) through the map

φj := J ◦ ψj(p1) , whereJ denotes the Jacobian operator.

Consider the application of this property to the diffeomorphic manifoldsM1 andM∗. In this case,

the tangent vectorv1 ∈ T1(p1) to the manifoldM1 can be uniquely identified with a tangent vector

v = φ∗(v1) ∈ T ∗(p) to the manifoldM∗. This mapping is expressed as

φ∗(v1) = J ◦ ψ∗(p1) = (v1,J ◦ ψ2(p1), . . . ,J ◦ ψJ(p1)),

since the Jacobian operates componentwise. Therefore, thetangent vectorv can be written as

v = φ∗(v1) = (v1, φ2(v1), . . . , φJ(p1)).

In other words, a tangent vector to the joint manifold can be decomposed intoJ component vectors,

each of which are tangent to the corresponding component manifolds.

Using this fact, we now show that a vectorη that is normal toM∗ can also be broken down into

sub-vectors that are normal to the component manifolds. Considerp ∈ M∗, and denoteT ∗(p)⊥ as the

normal space atp. Supposeη ∈ T ∗(p)⊥. Decompose eachηj as a projection onto the component tangent

and normal spaces, i.e., forj = 1, . . . , J ,

ηj = xj + yj, xj ∈ Tj(pj), yj ∈ Tj(pj)
⊥.

such that〈xj , yj〉 = 0 for eachj. Thenη = x + y, and sincex is tangent to the joint manifoldM∗,

we have〈η,x〉 = 〈x + y,x〉 = 0, and thus〈y,x〉 = −‖x‖2. But, 〈y,x〉 =
∑J

j=1
〈yj, xj〉 = 0. Hence

x = 0, i.e., eachηj is normal toMj .

Armed with this last fact, our goal now is to show that ifr < min1≤j≤J τj then the normal bundle

of radiusr is embedded inRN , or equivalently, for anyp,q ∈ M∗, that p + η 6= q + ν provided that

‖η‖, ‖ν‖ ≤ r. Indeed, suppose‖η‖, ‖ν‖ ≤ r < min1≤j≤J τj. Since‖ηj‖ ≤ ‖η‖ and‖νj‖ ≤ ‖ν‖ for all

1 ≤ j ≤ J , we have that‖ηj‖, ‖νj‖ < min1≤i≤J τi ≤ τj. Since we have proved thatηj, νj are vectors in

the normal bundle ofMj and their magnitudes are less thanτj, thenpj + ηj 6= qj + νj by the definition

of condition number. Thusp + η 6= q + ν and the result follows.

This result states that for general manifolds, the most we can say is that the condition number of the

joint manifold is guaranteed to be less than that of theworst manifold. However, in practice this is not

likely to happen. As an example, Fig. 2 illustrates the pointat which the normal bundle intersects itself
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Fig. 2. Point at which the normal bundle for the helix manifold from Fig. 1(c) intersects itself. Note that the helix has

been slightly rotated.

for the case of the joint manifold from Fig. 1(c). In this casewe obtainτ∗ =
√
π2/2 + 1 > 1. Note that

the condition numbers for the manifoldsM1 andM2 generatingM∗ are given byτ1 = ∞ andτ2 = 1.

Thus, while the condition number of the joint manifold is notas high as the best manifold, it is notably

larger than that of the worst manifold. In general, even thisexample may be somewhat pessimistic and

it is possible that the joint manifold may be better conditioned than even the best manifold.

III. JOINT MANIFOLDS: PRACTICE

As noted in the Introduction, a growing number of algorithmsexploit manifold models for tasks such as

pattern classification, estimation, detection, control, clustering, and learning [3]–[5]. The performance of

these algorithms often depends on the geometric propertiesof the manifold model, such as its condition

number or geodesic distances along its surface. The theory developed in Section II suggests that the

joint manifold preserves or improves such properties. In Sections IV and V we consider two illustrative

applications and observe that when noise is added to the underlying signals, it can be extremely beneficial

to use algorithms specifically designed to exploit the jointmanifold structure. However, before we address

these particular applications, we must first address some key practical concerns.

A. Acceptable deviations from theory

While manifolds are a natural way to model the structure of a set of images governed by a small

number of parameters, the results in Section II make a numberof assumptions concerning the structure

of the component manifolds. In the most general case, we assume that the component manifolds are

homeomorphic to each other. This means that between any pairof component manifolds there should

exist a bijective mappingφ such that bothφ andφ−1 are continuous. Such an assumption assures that

the joint manifold is indeed a topological manifold. Unfortunately, this excludes some scenarios that can

occur in practice. For example this assumption might not be applicable in a camera network featuring
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non-overlapping fields of view. In such camera networks, there are cases in which only some cameras

are sensitive to small changes in the parameter values. Strictly speaking, our theory may not apply

in these cases, since the joint “manifold” as we have defined it is not necessarily even a topological

manifold. As a result, one might expect to see significant performance degradation when exploiting

techniques that heavily rely on this joint manifold structure. We provide additional discussion of this

issues in Section V-B below, but for now we simply note that inSections IV and V we conduct extensive

experiments using both synthetic and real-world datasets and observe that in practice joint manifold-based

processing techniques still exhibit significantly better performance than techniques that operate on each

component manifold separately. While non-overlapping fields of view do pose a challenge (especially in

the context of manifold learning), the fact that this results in non-homeomorphic manifolds seems to be

more of a technical violation of our theory than a practical one.

In the context of manifold learning, we must actually assumethat the component manifolds are

isometric to each other. This is certainly not the case in a camera network with non-overlapping fields

of view. Even with the restriction of a common field of view, this may seem an undue burden. In fact,

this requirement is fulfilled by manifolds that are isometric to the parameter space that governs them—a

class of manifolds that has been studied in [2]. Many examples from this class correspond to common

image articulations that occur in vision applications, including:

• articulations of radially symmetric images, which are parameterized by a 2-D offset;

• articulations of four-fold symmetric images with smooth boundaries, such as discs,ℓp balls, etc.;

• pivoting of images containing smooth boundaries, which areparameterized by the pivoting angle;

• articulations of K
2

discs over distinct non-overlapping regions, withK
2
> 1, producing aK-

dimensional manifold.

These examples can be extended to objects with piecewise smooth boundaries as well as to video

sequences of such articulations. In Section V we describe heuristics for dealing with the problem of

non-overlapping fields of view and provide a number of experiments that suggest that these heuristics

can overcome violations of the isometry assumption in practice.

In our theoretical results concerning condition number, weassume that the component manifolds are

smooth, but the manifolds induced by the motion of an object where there are sharp edges or occlusions

are nowhere differentiable. This problem can be addressed by applying a smoothing kernel to each

captured image, inducing a smooth manifold [3]. More generally, we note that if the cameras have

moderate computational capabilities, then it may be possible to perform simple preprocessing tasks such
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as segmentation, background subtraction, and illumination compensation that will make the manifold

assumption more rigorously supported in practice. This maybe necessary in scenarios such as those

involving multiple objects or challenging imaging conditions.

B. Efficient data fusion via joint manifolds using linear projections

Observe that when the numberJ and ambient dimensionN of the manifolds become large, the

ambient dimension of the joint manifold—JN—may be so large that it becomes impossible to perform

any meaningful computations. Furthermore, it might appearthat in order to exploit the joint manifold

structure, we must collect all the data at a central location, which we earlier claimed was potentially

impossible. In order to address this problem, we must exploit the joint manifold structure to develop a

more efficient fusion scheme.

Specifically, given a network ofJ cameras, letxj ∈ R
N , denote the image acquired by cameraj, which

is assumed to belong in a manifoldMj , and letx denote the corresponding point in the joint manifold

M∗. Rather than forming the vectorx, one could potentially estimate aK-dimensional parameter vector

θ̂j via the nonlinear mapping ofxj corresponding to the manifoldMj . By collecting theθ̂j at a central

location, we would obtain a data representation of dimension JK. By simply concatenating eacĥθj,

this approach essentially ignores the joint manifold structure present in the data, which is evident due

to the fact that in an ideal setting the sameK parameters will be obtained from each of theJ cameras.

Moreover, given noisy estimates forθ̂j, it is not obvious how to most effectively integrate theθ̂j to obtain

a single jointK-dimensional representation. Finally, while this approach eliminates the dependence on

N , it still suffers from a linear dependence onJ .

To address this challenge, we observe that if we had access tothe vectorx, then we could exploit the

joint manifold structure to map it to a parameter vectorθ̂ of length onlyK rather thanJK. Unfortunately,

this mapping will generally be nonlinear, and each element of θ̂ could potentially depend on the entire

vector x, preventing us from operating individually on eachxj . Thus, rather than directly extract the

features, we will instead restrict our focus tolinear dimensionality reduction methods that, while acting

on the concatenated datax, can be implemented in a distributed fashion.

Specifically, we will aim to compute a dimensionally reducedrepresentation ofx denotedy = Φx,

whereΦ is a standard linear projection operator. Since the operator is linear, we can takelocal projections

of the images acquired by each camera, and still calculate the global projections ofx in a distributed

fashion. Let each camera calculateyj = Φjxj , with the matricesΦj ∈ R
M×N , 1 ≤ j ≤ J . Then, by
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Fig. 3. Distributed data fusion using linear projections in a camera network.

defining theM × JN matrix Φ = [Φ1 Φ2 · · · ΦJ ], the global projectionsy = Φx can be obtained by

y = Φx = [Φ1 Φ2 · · · ΦJ ][xT
1 xT

2 · · · xT
J ]T

= Φ1x1 + Φ2x2 + · · · + ΦJxJ .

Thus, the final measurement vector can be obtained by simplyadding independent projectionsof the

images acquired by the individual cameras. This gives rise to the compressive data fusionprotocol

illustrated in Fig. 3. Suppose the individual cameras are associated with the nodes of a binary tree of size

J , where the edges represent communication links between nodes. Let the root of the tree denote the final

destination of the fused data (the central processing unit). Then the fusion process can be represented

by the flow of data from the leaves to the root, with a binary addition occurring at every parent node.

Recalling that the dimensionality of the data isM and the depth of the tree isR = O(log J), we

observe that thetotal communication bandwidth requirement is given byR×M = O(M log J), i.e., the

communication burden grows only logarithmically inJ .

The main challenge in designing such a scheme is the choice ofa suitable matrixΦ. Given a specific

joint manifoldM∗, there may be an optimalΦ that preserves the Euclidean and the geodesic structures

of M∗ while ensuring thatM is comparable to the dimensionK of the joint manifold (and hence much

less than the ambient dimensionJN ). Unfortunately, the general problem of computing an optimal linear

projection of a manifold remains unsolved and, in our context, finding this projection matrix would also

require full knowledge of the objects to be classified as wellas the position/orientation of each camera

in the network. Such information would typically not be available within the network.

Fortunately, we can exploit recent results concerningrandom projectionsto solve this problem without

any prior knowledge of the structure of the network or the objects to be captured. Specifically, it
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has been shown that the essential structure of aK-dimensional manifold with condition number1/τ

residing inR
N is approximately preserved under an orthogonal projectioninto a random subspace of

dimensionO(K log(N/τ)) ≪ N [16]. This result has been leveraged in the design of efficient algorithms

for inference applications, such as classification using multiscale navigation [17], intrinsic dimension

estimation [18], and manifold learning [18]. In our context, this result implies that if the joint manifold

has bounded condition number as given by Theorem 2, then we can project the joint data into a random

subspace of dimension that is only logarithmic inJ andN and still approximately preserve the manifold

structure. This is formalized in the following theorem, which follows directly from [16].

Theorem 3. Let M∗ be a compact, smooth, Riemannian joint manifold in aJN -dimensional space

with condition number1/τ∗. Let Φ denote an orthogonal linear mapping fromM∗ into a randomM -

dimensional subspace ofR
JN . LetM = O(K log(JN/τ∗)/ǫ2). Then, with high probability, the geodesic

and Euclidean distances between any pair of points onM∗ are preserved up to distortionǫ underΦ.

Thus, we obtain a faithful embedding of the manifold via a representation of dimension onlyO(K log JN).

This represents a massive improvement over the originalJN -dimensional representation, and for large

values ofJ it can be a significant improvement over theJK-dimensional representation obtained by

performing separate (nonlinear) dimensionality reduction on each component manifold.3

Recalling that the total communication bandwidth requiredfor our compressive data fusion scheme is

O(M log J), we obtain that when using random projections the dependence of the required bandwidth on

J is O(log2 J); this offers a significant improvement from previous data fusion methods that necessarily

require the communication bandwidth to scale linearly withthe number of cameras. Joint manifold fusion

via linear projections integrates the network transmission and data fusion steps in a fashion similar to

the protocols discussed in randomized gossiping [20] and compressive wireless sensing [21].

Joint manifold fusion via random projections, like compressive sensing [9]–[11], isuniversal in that

the measurement process is not dependent on the specific structure of the manifold. Thus, our sensing

techniques need not be replaced for these extensions; only our underlying models (hypotheses) are

updated. We have not discussed complicating factors such asclutter, varying or unknown backgrounds, etc.

Promising progress in [22] suggests that such difficulties can potentially be handled even after acquiring

3Note that if we were interested in compressing only a fixed number of imagesP , we could apply the Johnson-Lindenstrauss

lemma [19] to obtain thatM = O(log P ) would be sufficient to obtain the result in Theorem 3. However, the value ofM

required in Theorem 3 is independent of the number of imagesP , and therefore provides scalability to extremely large datasets.
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the random projections. Furthermore, recent years have also seen the development of devices capable of

directly acquiring arbitrary linear projections of the images [11],[23]. Our fusion scheme can directly

operate on the measurements provided by such devices.

IV. JOINT MANIFOLD CLASSIFICATION

We now examine the application of joint manifold-based techniques to some common inference

problems. In this section we will consider the problem of binary classification when the two classes

corresponds to different manifolds. As an example, we will consider the scenario where a camera network

acquires images of an unknown vehicle, and we wish to classify between two vehicle types. Since the

location of the vehicle is unknown, each class forms a distinct low-dimensional manifold in the image

space. The performance of a classifier in this setting will depend partially on topological quantities of the

joint manifold described in Section II, which in particularprovide the basis for the random projection-

based version of our algorithms. However, the most significant factor determining the performance of

the joint manifold-based classifier is of a slightly different flavor. Specifically, the probability of error is

determined by the distance between the manifolds. Thus, we also provide additional theoretical analysis

of how distances between the joint manifolds compare to those between the component manifolds.

A. Theory

The problem of manifold-based classification is defined as follows: given manifoldsM andN , suppose

we observe a signaly = x + n ∈ R
N where eitherx ∈ M or x ∈ N andn is a noise vector, and we

wish to find a functionf : R
N → {M,N} that attempts to determine which manifold “generated”y.

This problem has been explored in the context of automatic target recognition (ATR) using high-

dimensional noisy data arising from a single manifold [24],[25]; the authors of this body of work

adopt a fully Bayesian approach in deriving fundamental bounds on the performance of certain types of

classification methods. A full analysis of our proposed framework for joint manifolds using this approach

is beyond the scope of this paper; we defer that to future research. Instead, we consider a classification

algorithm based on thegeneralized maximum likelihoodframework described in [26]. The approach is to

classify by computing the distance from the observed signaly to each manifold, and then classify based

on which of these distances is smallest; i.e., our classifieris

f(y) = arg min [d(y,M), d(y,N )] , (9)

whered(y,M) = infz∈M ‖y − x‖. We will measure the performance of this algorithm by considering

the probability of misclassifying a point fromM as belonging toN , which we denotePMN .
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To analyze this problem, we employ three common notions of separation in metric spaces:

• The minimum separationdistance between two manifoldsM andN , defined as

δ(M,N ) = inf
p∈M

d(p,N ).

• The maximum separationdistance between manifoldsM andN , defined as

∆(M,N ) = sup
x∈M

sup
y∈N

‖x− y‖.

• The Hausdorff distancefrom M to N , defined as

D(M,N ) = sup
p∈M

d(p,N ).

Note that whileδ(M,N ) = δ(N ,M) and∆(M,N ) = ∆(N ,M), in generalD(M,N ) 6= D(N ,M).

As one might expect,PMN is controlled by the separation distances. For example, suppose thatx ∈ M;

if the noise vectorn is bounded and satisfies‖n‖ < δ(M,N )/2, then we have thatd(y,M) ≤ ‖n‖ <
δ(M,N )/2 and hence

δ(M,N ) = inf
p∈M,q∈N

‖p− q‖ = inf
p∈M,q∈N

‖p− y + y − q‖

≤ inf
p∈M,q∈N

‖p− y‖ + ‖y − q‖ = d(y,M) + d(y,N ) < δ(M,N )/2 + d(y,N ).

Thus we are guaranteed thatd(y,N ) > δ(M,N )/2. Therefore,d(y,M) < d(y,N ) and the classifier

defined by (9) satisfiesPMN = 0. We can refine this result in two possible ways. A first possible

refinement is to note that the amount of noise that we can tolerate without making an error depends on

x. Specifically, for a givenx ∈ M, provided that‖n‖ ≤ d(x,N )/2 we still have thatPMN = 0. Thus,

for a givenx ∈ M we can tolerate noise bounded byd(x,N )/2 ∈ [δ(M,N )/2,D(M,N )/2].

A second possible refinement is to ignore this dependence onx while extending our noise model to

the case where‖n‖ > δ(M,N )/2 with non-zero probability. We can still boundPMN , since

PMN ≤ P (‖n‖ > δ(M,N )/2). (10)

Thus, we now provide lower bounds on these separation distances. The corresponding upper bounds are

available in [27]. In the interest of space, the proof of thisand subsequent theorems are omitted and can

be found in [27].
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Theorem 4. Consider the joint manifoldsM∗ ⊂ M andN ∗ ⊂ N . Then, the following bounds hold:

δ2(M∗,N ∗) ≥
J∑

j=1

δ2(Mj ,Nj), (11)

∆2(M∗,N ∗) ≥ max
1≤k≤J


∆2(Mk,Nk) +

∑

j 6=k

δ2(Mj ,Nj)


 , (12)

D2(M∗,N ∗) ≥ max
1≤k≤J


D2(Mk,Nk) +

∑

j 6=k

δ2(Mj ,Nj)


 . (13)

As an example, if we consider the case where the separation distances are constant for allj, then the

joint minimum separation distance satisfies
√
Jδ(M1,N1) ≤ δ(M∗,N ∗), and using the upper bound for

δ(M∗,N ∗) from [27], we obtain

δ(M∗,N ∗) ≤
√
δ2(M1,N1) + (J − 1)∆2(M1,N1) ≤ δ(M1,N1) +

√
J − 1∆(M1,N1).

In the case whereδ(M1,N1) ≪ ∆(M1,N1), we observe thatδ(M∗,N ∗) can be considerably larger than
√
Jδ(M1,N1). This means that we can potentially tolerate much more noisewhile ensuringPM∗N ∗ = 0.

To see this, letn denote a noise vector and recall that we require‖nj‖ < ǫ = δ(Mj ,Nj)/2 to ensure

thatPMjNj
= 0. Thus, if we require thatPMjNj

= 0 for all j, then we have that

‖n‖ =

√√√√
J∑

j=1

‖nj‖2 <
√
Jǫ =

√
Jδ(M1,N1)/2.

However, if we instead only require thatPM∗N ∗ = 0, then we only need‖n‖ < δ(M∗,N ∗)/2, which

can be a significantly less stringent requirement.

The benefit of classification using the joint manifold is moreapparent when we extend our noise model

to the case where we allow‖nj‖ > δ(Mj ,Nj)/2 with non-zero probability and apply (10). To bound

the probability in (10), we will make use of the following adaptation of Hoeffding’s inequality [28].

Lemma 4. Suppose thatnj ∈ R
N is a random vector that satisfies‖nj‖2 ≤ ǫ, for j = 1, 2, . . . , J .

Suppose also that thenj are independent and identically distributed (i.i.d.) withE[‖nj‖2] = σ2. Then if

n = (n1, n2, . . . , nJ) ∈ R
JN , we have that for anyλ > 0,

P
(
‖n‖2 > J(σ2 + λ)

)
≤ exp

(
−2Jλ2

ǫ2

)
.

Note that this lemma holds for any distribution on the noise that is bounded. For Gaussian noise it is

possible to establish a very similar result (differing onlyin the constant inside the exponent) by using
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standard tail bounds. Using this lemma we can relax the assumption onǫ so that we only require that it is

finite, and instead make the weaker assumption thatE[‖n‖2] = Jσ2 ≤ δ2(M,N )/4 for a particular pair

of manifoldsM, N . This assumption ensures thatλ = δ2(M,N )/4 − σ2 > 0, so that we can combine

Lemma 4 with (10) to obtain a bound onPMN . Note that if this condition does not hold, then this is

a very difficult classification problem since theexpectednorm of the noise is large enough to push us

closer to the other manifold, in which case the simple classifier given by (9) makes little sense.

We now illustrate how Lemma 4 can be be used to compare error bounds between classification using

a joint manifold versus using a pair of component manifolds.The proof can be found in [27].

Theorem 5. Suppose that we observey = x + n wherex ∈ M∗ and n is a random vector such that

‖nj‖2 ≤ ǫ, for j = 1, 2, . . . , J , and that thenj are i.i.d. withE[‖nj‖2] = σ2 ≤ δ2(Mk,Nk)/4. Define

ck = δ2(Mk,Nk)/4 − σ2 and c∗ = δ2(M∗,N ∗)/4 − σ2.

If

δ(Mk,Nk) ≤
δ(M∗,N ∗)√

J
, (14)

and we classify the observationy according to (9) thenc∗ > ck and

PM∗N ∗ ≤ exp

(
−2

(
c∗

ǫ

)2
)

and PMkNk
≤ exp

(
−2
(ck
ǫ

)2
)
. (15)

This result can be weakened slightly to obtain the followingcorollary [27].

Corollary 1. Suppose that we observey = x + n wherex ∈ M∗ and n is a random vector such that

‖nj‖2 ≤ ǫ, for j = 1, 2, . . . , J and that thenj are i.i.d. withE[‖nj‖2] = σ2 ≤ δ2(Mk,Nk)/4. If

δ2(Mk,Nk) ≤
∑

j 6=k δ
2(Mj ,Nj)

J − 1
, (16)

and we classify according to (9), then (15) holds with the same constants as in Theorem 5.

Corollary 1 shows that we can expect a classifier based on the joint manifold to outperform a classifier

based thek-th component manifold whenever the squared separation distance for thek-th component

manifolds is comparable to the average squared separation distance among the remaining component

manifolds. Thus, we can expect the joint classifier to outperform most of the individual classifiers, but it

is still possible that some individual classifiers will do better. Of course, if one knew in advance which

classifiers were best, then one would only use data from the best classifiers. We expect that more typical
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Fig. 4. Sample images of 2 different trucks from multiple camera views and SNR vs. probability of error for individual

cameras, the joint manifold, and majority voting. The number of pixels in each camera imageN = 240×360 = 76800.

Joint manifold-based classification outperforms majorityvoting and performs nearly as well as the best camera.

situations include the case where the best classifier changes over time or where the separation distances

are nearly equal for all component manifolds, in which case the condition in (16) is true for allk.

B. Experiments

In this section, we apply the random projection-based fusion algorithm to perform binary classification.

Suppose a number of synthetic cameras, each with resolutionN , observe the motion of a truck along a

straight road.4 This forms a 1-D manifold in the image spaceR
N pertaining to each camera; the joint

manifold is also a 1-D manifold inRJN . Suppose now that we wish to classify between two types of

trucks. Example images from three camera views for the two classes are shown in Fig. 4. The resolution

of each image isN = 240× 320 = 76800 pixels. In our experiment, we convert the images to grayscale

and sumM = 200 random projections for the three camera views. The sample camera views suggest

that some views make it easier to distinguish between the classes than others. For instance, the head-on

view of the two trucks is very similar for most shift parameters, while the side view is more appropriate

for discerning between the two classes of trucks.

The probability of error, which in this case is given by1

2
PMN + 1

2
PNM, for different manifold-based

4Our synthetic images were generated using POVRAY (http://www.povray.org), an open-source ray tracing software package.
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classification approaches as a function of the signal-to-noise ratio (SNR) is shown in Fig. 4. It is clear

that the joint manifold approach performs better than majority voting and is comparable in performance

to the best camera. While one might hope to be able to do even better than the best camera, Theorem 5

suggests that in general this is only possible when no camerais significantly better than the average

camera. Moreover, in the absence of prior information regarding how well each camera truly performs,

the best strategy for the central processor would be to fuse the data fromall cameras. Thus, joint manifold

fusion proves to be more effective than high-level fusion algorithms like majority voting.

This example highlights two scenarios when our proposed approach should prove useful. First, our

method acts as a simple scheme for data fusion in the case whenmost cameras do not yield particularly

reliable data (and thus decision fusion algorithms like majority voting are ineffective.) Second, due to the

high dimensionality of the data, transmitting the images could be expensive in terms of communication

bandwidth. Our method ensures that the communication cost is reduced to be proportional only to the

number of degrees of freedom of the signal.

V. JOINT MANIFOLD LEARNING

In contrast to the classification scenario described above,in which we knew the manifold structurea

priori , we now considermanifold learningalgorithms that attempt to learn the manifold structure from

a set of samples of a manifold. This is accomplished by constructing a (possibly nonlinear) embedding

of the data into a subset ofRL, whereL < N . If the dimensionK of the manifold is known, thenL

is typically set toK. Such algorithms provide a powerful framework for navigation, visualization and

interpolation of high-dimensional data. For instance, manifold learning can be employed in the inference

of articulation parameters (e.g., 3-D pose) from a set of images of a moving object. In this section

we demonstrate that in a variety of settings, the joint manifold is significantly easier to learn than the

individual component manifolds. This improvement is due toboth the kind of increased robustness to

noise noted in Section IV and to the fact that, as was shown in Theorem 2, the joint manifold can

be significantly better-conditioned than the component manifolds, meaning that it is easier to learn the

structure of the joint manifold from a finite sampling of points.

A. Theory

Several algorithms for manifold learning have been proposed, each giving rise to a nonlinear map

with its own special properties and advantages (e.g., Isomap [29], Locally Linear Embedding (LLE) [30],

Hessian Eigenmaps [31], etc.) Of these approaches, we devote special attention here to the Isomap
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algorithm, which assumes that the point cloud consists of samples from a data manifold that is (at least

approximately) isometric to a convex subset of Euclidean space. In this case, there exists an isometric

mappingf from a parameter spaceΘ ⊆ R
K to the manifoldM such thatdM(f(θ1), f(θ2)) = ‖θ1−θ2‖2

for all θ1, θ2 ∈ Θ. In essence, Isomap attempts to discover the inverse mapping f−1 : M → Θ.

Isomap works in three stages:

1) Construct a graphG that contains a vertex for each data point; an edge connects two vertices if

the Euclidean distance between the corresponding data points is below a specified threshold.

2) Weight each edge in the graphG by computing the Euclidean distance between the corresponding

data points. We then estimate the geodesic distance betweeneach pair of vertices as the length of

the shortest path between the corresponding vertices in thegraphG.

3) Embed the points inRK using multidimensional scaling (MDS), which attempts to embed the

points so that their Euclidean distance approximates the estimated geodesic distances.

A crucial component of the MDS algorithm is a suitable lineartransformation of the matrix of squared

geodesic distances; the rank-K approximation of this new matrix yields the best possibleK-dimensional

coordinate structure of the input sample points in a mean-squared sense. Further results on the performance

of Isomap in terms of geometric properties of the underlyingmanifold can be found in [32].

We examine the performance of Isomap for learning the joint manifold as compared to learning theJ

isometric component manifolds separately. We assume that we have noiseless samples from{Mj}J
j=1.

In order to judge the quality of the embedding learned by Isomap, we will observe that for any pair of

samplesp, q from a manifoldM whose vertices are linked within the graphG, we have that

ρ ≤ ‖p− q‖
dM(p, q)

≤ 1 (17)

for someρ ∈ [0, 1] that will depend on the samples ofM and the graphG. Isomap will perform well if

the largest value ofρ that satisfies (17) for any pair of samples that are connectedby an edge in the graph

G is close to1. Using this fact, we can compare the performance of manifoldlearning using Isomap on

samples from the joint manifoldM∗ to using Isomap on samples from a particular component manifold

Mk. The proof of this theorem can again be found in [27].

Theorem 6. Let M∗ be a joint manifold fromJ isometric component manifolds. Letp,q ∈ M∗ and

suppose that we are given a graphG that contains one vertex for each sample obtained fromM∗. For
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eachk = 1, . . . , J , defineρj as the largest value such that

ρj ≤
‖pj − qj‖
dMj

(pj , qj)
≤ 1 (18)

for all pairs of points connected by an edge inG. Then we have that
√∑J

j=1
ρ2

j

J
≤ ‖p − q‖
dM∗(p,q)

≤ 1. (19)

From Theorem 6 we see that, in many cases, the joint manifold estimates of the geodesic distances will

be more accurate than the estimates obtained using one of thecomponent manifolds. If for a particular

component manifoldMk we observe thatρk ≤
√

P

J

j=1
ρ2

j

J
, then we know that the joint manifold leads to

better estimates. Essentially, we may expect that the jointmanifold will lead to estimates that are better

than the average case across the component manifolds.

We now consider the case where we have a dense sampling of the manifolds so that theρj ≈ 1,

and examine the case where we obtain noisy samples. We will assume that the noise is i.i.d. and

demonstrate that any distance calculation performed onM∗ serves as a better estimator of the pairwise

(and consequently, geodesic) distances between any two points p and q than that performed on any

component manifold using the pointspj andqj. Again, the proof of this theorem can be found in [27].

Theorem 7. Let M∗ be a joint manifold fromJ isometric component manifolds. Letp,q ∈ M∗ and

assume that‖pj − qj‖ = d for all j. Assume that we acquire noisy observationss = p + n and

r = q + n′, wheren and n′ are independent noise vectors withE[‖nj‖2] = E[‖n′j‖2] = σ2, ‖nj‖2 ≤ ǫ,

and ‖n′j‖2 ≤ ǫ for j = 1, . . . , J . Then,

P

(
1 − δ ≤ ‖s − r‖2

‖p − q‖2 + 2Jσ2
≤ 1 + δ

)
≥ 1 − 2c−J2

,

wherec = exp

(
2δ2

(
d2+2σ2

d
√

ǫ+ǫ

)2
)

.

We observe that the estimate of the true distance suffers from a constant small bias; this can be

handled using a simple debiasing step.5 Theorem 7 indicates that the probability of large deviations in

the estimated distance decreasesexponentiallyin the number of component manifoldsJ ; thus we should

observe significant “denoising” even in the case whereJ is relatively small.

5Manifold learning algorithms such as Isomap deal with biased estimates of distances by “centering” the matrix of squared

distances, i.e., removing the mean of each row/column from every element.
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B. Practice

The theoretical results derived above assume that the acquired data arises fromJ isometric component

manifolds. As noted in Section III-A, barring controlled orsynthetic scenarios, this is very rarely the case.

In practice, the isometric assumption breaks down due to tworeasons:(i) the cameras may be at different

distances from the scene, nonidentical cameras may possessdifferent dynamic ranges, or the cameras

may be of different modalities (such as visual versus infrared cameras or even visual plus audio data), and

thus the component manifolds may be scaled differently;(ii) due to occlusions or partially-overlapping

fields of view, certain regions of some component manifolds may be ill-conditioned.

In order to handle such non-idealities, we make two modifications to the Isomap algorithm while

performing joint manifold learning. Recall that that in order to find the nearest-neighbor graphG, Isomap

must first calculate the matrix of squared pairwise Euclidean distances. We denote this matrixD for the

joint manifoldM∗ andDj for the component manifoldMj . Note thatD =
∑J

j=1
Dj. Thus, if a particular

component manifold is scaled differently than the others, by which we mean thatdMj
(fj(θ1), fj(θ2)) =

Cj‖θ1 − θ2‖2 with Cj 6= 1, then all the entries of the correspondingDj will be reweighted byC2
j , so

thatDj will have a disproportionate impact onD. This corresponds to the first non-ideality described

above, and can be alleviated bynormalizingeachDj by its Frobenius norm, which can be interpreted

as scaling each manifold so that an Eulerian path through thecomplete graph has unit length.

The second non-ideality can be partially addressed by attempting to adaptively detect and correct

for occlusion events. Consider the case of large-scale occlusions, in which we make the simplifying

assumption that for each camera the object of interest is either entirely within the camera’s view or

entirely occluded. In this case, the non-occluded component manifolds are still locally isometric to each

other, i.e., there exists a neighborhoodU such thatdMj
(fj(θ1), fj(θ2)) = ‖θ1 − θ2‖2 for all θ1, θ2 ∈ U

and for allj corresponding to the non-occluded component manifolds. Thus, if we knew which cameras

were occluded for a pair of points, sayxm and xn, then we could simply ignore those cameras in

computingDm,n and rescaleDm,n so that it is comparable with the case when no cameras exhibit

occlusions. More specifically, we let̃J denote the index set for non-occluded component manifolds and

setDm,n = (|J |/|J̃ |)∑
j∈ eJ

‖xm
j −xn

j ‖2
2. To do this automatically, wethreshold‖xm

j −xn
j ‖2

2 to zero when

it is below a certain value, i.e., we set̃J = {j : ‖xm
j −xn

j ‖2
2 ≥ ǫ} for some parameterǫ, since this for the

component manifolds in which the object of interest is occluded this distance will be relatively small.

The parameterǫ can be reasonably inferred from the data.D is used by subsequent steps in Isomap to

learn an improved low-dimensional embedding of the high-dimensional acquired data. Note that while
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this approach does not rigorously handle boundary cases where objects are only partially occluded, our

experimental results below indicate that the algorithms are robust to such cases.

C. Experiments

We provide a variety of results using both simulated and realdata that demonstrate the significant

gains obtained by using the joint manifold model, both with and without the use of random projections.

The manifold learning results have been generated using Isomap [29]. For ease of presentation, all of

our experiments are performed on 2-D image manifolds isomorphic to a closed rectangular subset ofR
2.

Thus, ideally the 2-D embedding of the data should resemble arectangular grid of points that correspond

to the samples of the joint manifold in high dimensional space.

1) Manifolds isometric to Euclidean space:As a first example, we consider three different manifolds

formed byN = 64×64 = 4096 pixel images of an ellipse with major axisa and minor axisb translating

in a 2-D plane, for(a, b) = (7, 7), (7, 6) and(7, 5); an example point is shown in Fig. 5. The eccentricity

of the ellipse directly affects the condition number1/τ of the image articulation manifold; in fact, it can

be shown that manifolds associated with more eccentric ellipses exhibit higher values for the condition

number. Consequently, we expect that it is “harder” to learnsuch manifolds. Figure 5 shows that this is

indeed the case. We add a small amount of i.i.d. Gaussian noise to each image and apply Isomap to both

the individual datasets as well as the concatenated dataset. We observe that the 2-D rectangular embedding

is poorly learnt for each of the component manifolds but improves visibly for the joint manifold.

2) Gaussian noise in realistic images:We demonstrate how using joint manifolds can help ameliorate

imaging artifacts such as Gaussian noise in a more realisticsetting. We test our proposed joint manifold

learning approach on a set of synthetic truck images. The data comprises a set of 540 views of a truck

on a highway from 3 vantage points. Each image is of sizeN = 90 × 120 = 10800. The images are

parametrized by the 2-D location of the truck on the road; thus, each of the image data sets can be

modeled by a 2-D manifold. Sample views are shown in Fig. 4; for this experiment, we only use images

from Class 2. We convert the images to grayscale, so that the ambient dimension of the data from each

camera lies inR10800. Next, we add i.i.d. Gaussian noise to each image and attemptto learn the 2-D

manifold. The noise level is quite high (PSNR = 3.5dB), as evidenced by the sample images in Fig. 6. It

is visually clear from the 2-D embedding results that the learning performance improves markedly when

the data is modeled using a joint manifold, thus providing numerical evidence for Theorem 7.
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Manifold 1 Manifold 2 Manifold 3 Joint manifold

Fig. 5. (top) Articulation manifolds sharing a common 2-D parameter spaceΘ. Images simulate viewing a translating

disc fromJ = 3 viewing angles. (bottom) 2-D embedding of individual and joint manifolds learned via Isomap.

Camera 1 Camera 2 Camera 3 Joint manifold

Fig. 6. (top) Noisy captured images. SNR≈ 3.5 dB ; (bottom) 2-D embeddings learned via Isomap from noisy

images. The joint manifold model helps ameliorate the effects of noise.

3) Real data experiment—learning with occlusions:We now test our methods on data from a camera

network; the images are obtained from a network of four Unibrain Fire-iTM OEM Firewire board cameras.

Each camera has resolutionN = 320×240 = 76800 pixels. The data comprisesJ = 4 different views of
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Fig. 7. (top) Sample images of 2 koalas moving along individual 1-D paths, yielding a 2-D manifold; (middle) 2-D

embeddings of the dataset learned via Isomap fromN = 76800 pixel images; (bottom) 2-D embeddings of the dataset

learned fromM = 2400 random projections. Learning the joint manifold yields a much improved 2-D embedding.

the independent motions of 2 toy koalas along individual 1-Dpaths, yielding a 2-D combined parameter

space. This data suffers from real-world artifacts such as fluctuations in illumination conditions and

variations in the pose of the koalas; further, the koalas occlude one another in certain views or are absent

from certain views depending on the particular vantage point. Sample images and 2-D embedding results

are displayed in Fig. 7. We observe that the best embedding isobtained by using the modified version

of Isomap for learning the joint manifold. To test the effectiveness of the data fusion method described

in Section III-B, we computeM = 2400 random projections of each image and sum them to obtain a

randomly projected version of the joint data and repeat the above experiment. The dimensionality of the

projected data is 3.125% of the original data; yet, we see very little degradation in performance, thus

displaying the effectiveness of random projection-based fusion.

4) Real data experiment—unsupervised target tracking:As a practical application of manifold learning,

we consider a situation where we are given a set of training data consisting of images of a target moving

through a region along with a set of test images of the target moving along a particular trajectory. We do

not explicitly incorporate any known information regarding the locations of the cameras or the parameter
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space describing the target’s motion. The training images compriseJ = 4 views of a coffee mug placed

at different positions on an irregular rectangular grid. Example images from each camera are shown in

Fig. 8. For the test data, we translate the coffee mug so that its 2-D path traces out the shape of the

letter “R”. We aim to recover this shape using both the test and training data. To solve this problem, we

attempt to learn a 2-D embedding of the joint manifold using the modified version of Isomap detailed in

Section V-B. The learned embedding for each camera is shown in Fig. 8. As is visually evident, learning

the data using any one camera yields very poor results; however learning the joint manifold helps discern

the 2-D structure to a much better degree. In particular, the“R” trajectory in the test data is correctly

recovered only by learning the joint manifold. Finally, we repeat the above procedure usingM = 4800

random projections of each image, and fuse the data by summing the measurement vectors. While the

recovered trajectory of the anomalous (test) data suffers some degradation in visual quality, we observe

comparable 2-D embedding results for the individual and joint manifolds as with the original data set.

Since the dimensionality of the projected data is merely 6.25% that of the original data set, this would

translate to significant savings in communication costs in areal-world camera network.

VI. D ISCUSSION

Joint manifolds naturally capture the structure present inthe data produced by camera networks.

We have studied topological and geometric properties of joint manifolds, and have provided some

basic examples that illustrate how they can improve the performance of common signal processing

algorithms. We have also introduced a simple framework for data fusion for camera networks that employs

independent random projections of each image, which are then accumulated to obtain an accurate low-

dimensional representation of the joint manifold. Our fusion scheme can be directly applied to the data

acquired by such devices. Furthermore, while we have focused primarily on camera networks in this

paper, our framework can be used for the fusion of signals acquired by many generic sensor networks,

as well as multimodal and joint audio/video data.
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