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ABSTRACT

In this paper, we introduce a principled algorithmic approach for
Fourier ptychographic imaging of dynamic, time-varying targets. To
the best of our knowledge, this setting has not been explicitly ad-
dressed in the ptychography literature. We argue that such a setting
is very natural, and that our methods provide an important first step
towards helping reduce the sample complexity (and hence acquisi-
tion time) of imaging dynamic scenes to managaeble levels. With
significantly reduced acquisition times per image, it is conceivable
that dynamic ptychographic imaging of fast changing scenes indeeed
becomes practical in the near future.

Index Terms— Phase retrieval, ptychography, low rank

1. INTRODUCTION

1.1. Motivation

In recent years, the classical problem of phase retrieval has attracted
renewed interest in the signal and image processing community. The
phase retrieval problem involves reconstructing a length-n discrete-
time signal (or image) given noisy observations of the magnitudes
of its discrete Fourier transform (DFT) coefficients. A generalized
version of phase retrieval studies a similar reconstruction problem
where the DFT is replaced by a generic linear measurement opera-
tor. A series of recent breakthrough results [1, 2, 3, 24, 4] have intro-
duced principled and provably accurate algorithms for generalized
phase retrieval, provided the measurement operator is constructed
by sampling vectors from certain families of multivariate probability
distributions.

Phase retrieval algorithms enable a variety of imaging appli-
cations ranging from X-ray crystallography and biomedical imag-
ing [5, 6, 7]. A related imaging technique is known as Fourier
ptychography, which can be used for super-resolving images ob-
tained in microscopic imaging systems. The high level approach is to
capture multiple snapshots of a target scene using a programmable
coherent illumination source coupled with a system involving two
lenses, and reconstruct a high-resolution image of the target scene
via (generalized) phase retrieval. One way to engineer multiple snap-
shots of a scene is to fix the position of the illumination source, and
either let the camera aperture undergo spatial translations [8], or con-
struct an array of fixed cameras, each of which captures a specific
portion of the Fourier spectrum of the desired high-resolution im-
age. Zheng et al. [9] have demonstrated that using such a system,
one can image beyond the diffraction-limit of the objective lens in
a microscope. Recently, Holloway et al. have demonstrated similar,
very promising results in the context of long-distance sub-diffraction
imaging [10].

While the above results indicate the considerable promise of
Fourier ptychography, an algorithmic understanding of the image
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reconstruction problem is nascent, and several important questions
remain unanswered. Rigorous guarantees of correctness of the meth-
ods proposed in [8, 10] are not yet available. More worrisome is the
issue of sample complexity of image reconstruction, since a basic
requirement in all existing methods is that the number of measure-
ments must exceed the resolution of the image. However, this re-
quirement can be particularly challenging when imaging a dynamic
scene involving a moving target; for a video sequence with q images
each with resolution n, without using any structural prior assump-
tions, the number of observations must be at least Ω(nq), which can
quickly become prohibitive.

1.2. Our Contributions

In this paper, we introduce a principled algorithmic approach for
Fourier ptychographic imaging of dynamic, time-varying targets. To
the best of our knowledge, this setting has not been explicitly ad-
dressed in the ptychography literature. However, we argue that such
a setting is very natural, and that our methods provide an important
first step towards alleviating the aforementioned issues of sample
complexity that can arise in Fourier ptychography.

The high level idea is that if the dynamics of the scene are suf-
ficiently slow, then the underlying video signal can be well-modeled
by a low-rank matrix. This modeling assumption has been success-
fully employed in a variety of video acquisition, compression, and
enhancement applications [11, 12, 13, 14, 15]. Specifically, if we
reshape each image in the video sequence as a vector xk ∈ Rn and
stack up q consecutive frames into a matrix X ∈ Rn×q , then X is
(approximately) rank-r, with r � min(n, q).

The crux of this paper is to demonstrate how we can effectively
leverage such low-rank structure in order to enable better image
reconstruction (specifically, one that surpasses the naı̈ve approach
of reconstructing each image frame by frame using an existing
method). To this end, we advocate a new Fourier ptychographic
approach that consists of two key ingredients:

1. We develop two novel “under-sampling” strategies that can con-
siderably reduce the sample complexity of video Fourier pty-
chography. Moreover, these strategies can be implemented in
common Fourier ptychographic imaging setups (such as [9, 10])
in a straightforward fashion.

2. We couple these under-sampling strategies with a new image re-
construction algorithm which fully exploits the underlying low-
rank structure of the target video sequence. Moreover, we con-
firm the advantages of this algorithm via a number of simulation
experiments.

Our algorithm builds upon those introduced in our recent previ-
ous work on low rank phase retrieval [16]. While that paper analyzes
a similar setup for leveraging low-rank structure for (generalized)
phase retrieval, we only considered special families of measurement
operators (i.i.d. Gaussian measurements [1] and coded-diffraction
patterns (CDP) [17]). We expand the utility of our previous work
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to the Fourier ptychographic measurement setup, hence demonstrat-
ing a real-world application of our approach for the first time.

Our reconstruction algorithm involves a non-convex, iterative
estimation procedure; hence, initializing the algorithm properly is
crucial. It turns out that the initialization procedure in [16] is not par-
ticularly effective (since they are specially tailored to the Gaussian
or the CDP case). Instead, we devise a novel initialization mech-
anism for our reconstruction algorithm, and justify it conceptually
as well as in experiments. We experimentally demonstrate that our
new modified reconstruction algorithm (that we call Low-Rank Pty-
chography, or LRPtych), compares very favorably in terms of sample
complexity when contrasted with existing “single-frame” methods,
such as the Iterative Error Reduction Algorithm (IERA) of [10].

This paper focuses on Fourier ptychographic acquisition of dy-
namic scenes that are well approximated as forming a low-rank ma-
trix. In a companion paper [18], we develop algorithms for Fourier
ptychography for static scenes that obey intra-frame modeling as-
sumptions such as sparsity and/or structured sparsity. While the un-
dersampling strategies in both cases are similar, the associated re-
construction algorithms are very different. See [18] for further de-
tails.

1.3. Prior Work

There exists a rich body of literature on phase retrieval, dating back
to the optical imaging work of [19, 20, 21, 22].

There is also a large (and newer) body of work on low-rank
models for video acquisition and analysis [11, 12, 13]. Our recent
work [16] is the first to leverage low-rank models for (generalized)
phase retrieval. However, the algorithms introduced in that work are
designed to succeed in the case of i.i.d. Gaussian measurements, and
the applicability of that technique to other families of measurements
has not been explored.

On the other hand, the literature on Fourier ptychography has
mainly focused on achieving improved resolution of the recon-
structed images [8, 9, 23], and relatively little attention has been
given to the issue of (potentially) large measurement complexity.
As discussed above, this issue is particularly acute in the case
of dynamic (video) imaging. Below, we discuss a ptychographic
reconstruction framework that integrates low-rank models to consid-
erably reduce measurement rates, at little or no reduction of image
reconstruction quality.

2. DATA ACQUISITION SETUP

2.1. Optical setup

We describe the standard Fourier ptychographic measurement pro-
cedure, following the setup of [10]. The illumination field emerging
from the object can be treated as a 2D signal (or image). Using
a Fraunhofer approximation, the field at the aperture plane can be
expressed as the Fourier transform of the spatial signal. The light
passes through a lens (having a limited-size aperture) and propagates
to the plane which is occupied by the image sensor. This propaga-
tion procedure can be modeled as an inverse Fourier transform. The
image sensor can only capture the magnitude of the light field at the
sensor plane, and discards its phase. To overcome the diffraction
limit, the authors of [10] advocate using an array of cameras placed
at different locations in the sensor plane. Optically, this corresponds
to measuring different (overlapping) regions of the Fourier domain
signal; typically, the camera locations are chosen as a square grid,
and their combined effect is to simulate a large synthetic aperture
which can potentially yield a high resolution image.

Ai : x F Pi◦ F−1 Mi ŷi

ŷi | · | yi

A>i : ŷi Mi F Pi◦ F−1 x̂i

Fig. 1. Sequence of operations defined byAi. Here the green box in-
dicates the extra sub-sampling step and i = [N ] denotes the camera
index.

2.2. Mathematical model

We now represent the optical setup mathematically. Consider a (high
resolution) spatial light field at time instant k, denoted by xk. We de-
fine the video matrix X , composed of frames xk for k ∈ [1, . . . , q]:

X := [x1,x2, . . . ,xq], X ∈ Rn×q.

We assume that the dynamics of the video are sufficiently slow,
and hence the rank of matrix is X is no greater than r, with r �
min(n, q). For each video frame xk, the ptychographic measure-
ments corresponding to the ith camera location takes the following
form:

yi,k = |Ai,k(xk)|.

Here, we introduce the operatorAi,k, where the index i ∈ [1, . . . , N ]
corresponds to different camera positions, and the index k =
1, 2, . . . , q indicates the time stamp. Collectively, all measurements
of a single frame xk can be expressed in terms of the cumulative
measurement vector yk, defined as follows:

yk =


|A1,k(xk)|
|A2,k(xk)|

...
|AN,k((xk)|

 .
In terms of various stages of the data acquisition process, the opera-
tor Ai,k can be expressed as:

Ai,k(·) =Mi,kF−1Pi ◦ F(·). (1)

where F and F−1 represent the Fourier and inverse Fourier trans-
forms, and Pi is a pupil mask corresponding to the ith camera. A
stage-wise illustration of this setup is shown in Fig. 1.

In addition, since our ultimate goal is to reduce the measurement
complexity of the overall procedure, we suppose that not all obser-
vations are recorded at the sensor plane. This can be modeled via an
“under-sampling” operatorMi,k which is applied subsequent to the
inverse Fourier transform. In the standard ptychographic setup, this
corresponds to an identity operation; however, we allow for more
general operatorsMi,k.

Under this premise, we can modify the conventional measure-
ment setup to benefit from the low-rank structure of the video to be
acquired. This can be in terms of utilizing a subset of all measure-
ments (hence, reducing the number of samples required for success-
ful recovery). This subset can be chosen in different ways, which we
will discuss in detail in Section 4.
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3. RECONSTRUCTION ALGORITHM: LR-PTYCH

We develop a reconstruction method that exploits the assumption
that a sequence of slowly changing images is often well approxi-
mated by a low rank matrix (with each column of the matrix being
one image arranged as a 1D vector). For real videos, this means that
the first few singular values of X contain most of the energy. Under
this assumption, the desired X will be the solution to the non-convex
optimization problem:

argmin
X

q∑
k=1

N∑
i=1

‖yi,k − |Ai,k(xk)|‖22 , (2)

s.t. rank(X) = r.

To solve (2), we adapt the low-rank phase retrieval (LRPR) al-
gorithm in [16]. Our algorithm relies on the fact that a rank-r matrix
X∗ can be written as X∗ = UB, where U is a matrix of size n× r
with mutually orthonormal columns, and B is a matrix of size r×q.

The original LRPR algorithm used a spectral initialization ap-
proach that was a modification of the ideas in [24, 2] to the low rank
set up. However directly borrowing the approach of LRPR does not
work for the current application. This is because the matrix M =

1
nNq

∑q
k=1

∑N
i=1 A

>
i,kdiag(y

2
i,k)Ai,k (with Ai,k = Ai,k(I)) de-

fined as suggested in [16], does not have a clear separation between
the r-th and the (r + 1)-th eigenvalues of M .

Instead, we use a modification of the initialization idea sug-

gested in [10]. We use
√

1
N

∑N
i=1 y

2
i,k as the initial guess of im-

age frame xk, followed by computing a rank r approximation of
the resulting matrix and using its components to initialize U and B.
Please see the first five lines of Algorithm 1. This approach relies
on the following intuition. If the measurements were not phaseless,
then yi,k would contain random samples of a bandpass filtered ver-
sion of the signal (with different i’s corresponding to different ran-
dom samples of different bands). Hence summing (or averaging) all
the yi,k’s, would provide a good initial estimate of the xk. The same
would also be true if the operation before the step of taking phase-
less measurements returned a vector with all non-negative entries.
In our setting, neither is exactly true, however the same idea still re-
turns a good enough initial estimate. We believe the reason is that
the image itself is all non-negative and hence its low-pass filtered
measurements are definitely all non-negative as well. These likely
dominate in the summation, and because of this, the same approach
works even though we are often removing the sign of negative en-
tries as well (the higher frequency entries can be negative). Also,
experimentally we observe that, instead of averaging, taking the root
mean squared estimate gives a slightly better initial estimate. This is
better likely because the large (low pass) entries dominate even more
in this estimate than in a simple average. In ongoing work, we are
working on developing a formal proof of correctness that relies on
this intuition.

Once we obtain an initial estimate, we then refine it using a
procedure similar to the LRPR2 algorithm of [16], which is an
alternating-minimization algorithm that alternates between three
steps: estimating the phase of the measurements, and the compo-
nents U and B of the low rank matrix X . The complete algorithm
is summarized in Algorithm 1. For the least-squares step (step (b) of
Alg. 1), we use the conjugate gradient (CG) method to obtain a fast,
approximate solution, and thus avoid any need for explicit matrix
inversions.

Algorithm 1 Low Rank Ptychography (LR-Ptych)

1: for k = 1, 2, . . . , q do
2: x0

k ← 1
L

∑L
i=1 yi,k

3: end for
4: [U0,S0,V 0]← SV D((X0))
5: for k = 1, 2, . . . , q do
6: b0k ← (S0V 0>)k
7: end for
8: for t = 1, 2, . . . , T do
9: a) Ct

k ← diag(phase(Ak(U
t−1bt−1

k ))), k = 1, 2, . . . , q

10: b) U tmp ← argminŨ

∑
k

∥∥∥Ct
kyk −Ak(Ũbt−1

k )
∥∥∥2

11: c) U t ← QR(U tmp)

12: d) btk ← argminb̃k

∥∥∥Ct
kyk −Ak(U

tb̃k)
∥∥∥2, k =

1, 2, . . . , q
13: end for
14: Output x∗k = UT bTk

4. EXPERIMENTAL RESULTS

To compare recovery of different algorithms, two under-sampling
techniques are used which are explained here.

4.1. Uniform random undersampling

In our first setup, we apply an under-sampling maskMi on the mea-
surements. Here the under-sampling mask consists of 1s and 0s
sampled according to a Bernoulli distribution with probability of 1
equal to f . This operation zeros out randomly selected pixels of a
ech camera and this helps to save power?? CH correct this.

Thus for an input v ∈ Cn, the sub-sampling mask operates as

Mi,k(v)j =

{
0 ui

j > f,

vj ui
j < f.

(3)

where each ui
j is an independent uniform(0,1) random variable. We

compare the performance of the Low Rank Ptychograpy algorithm
with the Iterative Error Reduction Algorithm (IERA) [10] on several
real videos which are assumed to be approximately low rank at dif-
ferent under-sampling ratios.
In this experiment, eight different real videos, each resized to(180×
180× q) were used, q being number of frames. Other parameters of
the ptychographic measurement setup are as following: diameter of
aperture is 40, fraction of overlap between adjacent cameras is 0.48,
and the number of cameras in an array is 81 (9×9). Thus, if all mea-
surements are considered (f = 1), then nN = 180 × 180 × 81 =
2624400. We analyze the performance of all algorithms at different
sampling rates of f = 0.75, 0.5, 0.25, 0.05.
To compare the quality of recovery, we need a metric to describe the
difference between recovered video X∗ and the ground truth X . We
choose to use the Structural SIMilarity index (SSIM) for all compar-
isons as it relies on calculating cross-correlations instead of just a
distance measure[25]. However, SSIM can be only used on images
(in this case, individual frames of the video). For the whole video,
we use the average of the SSIMs corresponding to all the frames of
the video X∗.

A total of 8 videos were used for this experiment which we call
“Fish”, “Fish1”, “Dog”, “Dog1”, and ”Mouse”. For all videos we
assumed that the rank r = 20. We verified that this was indeed
a valid approximation for most vidoes; also it results in manageable
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Original LRPtych,f=.5 LRPtych,f=.05 IERA,f=.5 IERA,f=.05

Fig. 2. Comparison of frame 66 of different videos under different
algorithms and different sampling rates. Time taken in seconds for
“Dog1” video is ’8543’, ’8607’ for LRPRtych, and ’181’, ’188’, for
IERA, respectively with f = 0.5, and f = 0.25.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

undersampling rate f

SS
IM

Fish, IERA
Fish, LRPtych
Fish1, IERA

Fish1, LRPtych
Dog, IERA

Dog, LRPtych
Dog1, IERA

Dog1, LRPtych
Mouse, IERA

Mouse, LRPtych

Fig. 3. SSIM of four different slow changing videos and one without
slow changing, at different sampling rates.

f = 0.05 f = 0.25 f = 0.5 f = 0.75 f = 1

Fig. 4. Visual comparison for random pixel undersampling of frame
number 66. First row shows the results for LRPR1, and the second
row shows results for the proposed method.

LRPtych,f=0.25 IERA, f=0.25 LRPtych, f=0.05 IERA, f=0.05

Fig. 5. Visual comparison for random camera undersampling for
frame number 66.

speed of the resulting algorithm. In Figure 3, we plot the SSIM com-
puted for all these videos as a function of the under-sampling rate
f . We also show the visual comparisons for one frame of “Fish1”,

0 0.2 0.4 0.6 0.8 1

0

0.5

under sampling rate f

SS
IM Fish, IERA

Fish, LRPtych
Dog1, IERA

Dog1, LRPtych
Dog3, IERA

Dog3, LRPtych

Fig. 6. Results of using random camera under-sampling pattern.

“Dog1”, and “Fish“ videos in Fig. 2, respectively from top. As
can be seen from both figures, when fewer samples are used (f is
smaller), the proposed algorithm (LR-Ptych) significantly outper-
forms IERA. The reason is of course that LR-Ptych exploits the ap-
proximately low rank structure inherent in all these vidoes

In another experiment we compared the results of our refinement
process with that of LRPR1 in [16]. As it can be seen from the Fig.
4, low rank alternating minimization works better. Both algorithms
are using the initialization step of 1, under different rates of under-
sampling for “Dog1” video.

4.2. Under sampling using uniform random camera pattern

In this version, we select some cameras of the camera array at ran-
dom while not using the others. The sub-sampling matrix in this
approach can be written as

Mi,k(v) =

{
0 ui > f,

v ui < f.

where ui is independent standard uniform random variables.
Figure 6 shows results for this under-sampling strategy for

videos of “Fish“, “Dog1“. As can be seen, our algorithm again out-
performs IERA, although the gain over IERA is not as much in this
setting. The reason is that we have less diversity of measurements
here. A visual example for this experiment is shown in Figure 5,
which is frame number 66 of “Dog1” video. It can be observed that
our algorithm is capable of recovering more details, in comparison
to IERA.

5. CONCLUSIONS AND FUTURE WORK

In conclusion, we demonstrate that we can acquire slowly changing
low-rank videos from a pytchographic setup, using much fewer sam-
ples, as compared to conventional imaging techniques. The quality
of such reconstruction has been shown to be much superior and also
translates to lower operational costs and imaging time.

In future work, we aim to (i) design a more concrete initializa-
tion strategy, (ii) establish a formal bound on the sample complexity
of low-rank phase retrieval algorithms for pytchography and coher-
ent camera array imaging, and (iii) speed up the algorithm.
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