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Abstract

Generative Adversarial Networks (GANs), while widely suc-
cessful in modeling complex data distributions, have not yet
been sufficiently leveraged in scientific computing and de-
sign. Reasons for this include the lack of flexibility of GANs
to represent discrete-valued image data, as well as the lack
of control over physical properties of generated samples. We
propose a new conditional generative modeling approach (In-
vNet) that efficiently enables modeling discrete-valued im-
ages, while allowing control over their parameterized geo-
metric and statistical properties. We evaluate our approach on
several synthetic and real world problems: navigating man-
ifolds of geometric shapes with desired sizes; generation of
binary two-phase materials; and the (challenging) problem of
generating multi-orientation polycrystalline microstructures.

1 Introduction
Motivation. Generative Adversarial Networks (GANs) have
proven to be highly successful in synthesizing samples aris-
ing from complex distributions, including face images (Rad-
ford, Metz, and Chintala 2016), content generation (Jin et
al. 2017), image translation (Isola et al. 2017), style trans-
fer (Zhu et al. 2017), and many others. Our motivation
for this paper arises from computational engineering de-
sign, for which promising progress has been made in areas
such as drug discovery (Blaschke et al. 2018), molecule de-
sign (Sanchez-Lengeling and Aspuru-Guzik 2018), and 3D
modeling (Wu et al. 2016).

Computational design problems often are accompanied
by stringent geometric and statistical constraints that all
valid solutions are required to satisfy. These constraints are
generally informed by the physics of the problem, or by
manufacturing limitations. Additionally, the solution spaces
for several design problems are often discrete (integer) val-
ued, often combinatorially complex, and generally non-
differentiable, therefore disallowing the use of scalable tra-
ditional optimization tools. Machine learning methods such
as GANs show the promise of sidestepping some of these
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concerns. However, there remain several challenges that
must be overcome for realistic design problems.
Challenges. When standard GAN models are applied to
solve real-world design problems, several challenges arise.
It is well known that GANs incur dramatically high sam-
ple complexity. For example, BigGAN (Brock, Donahue,
and Simonyan 2019) requires 14 million (natural) images
trained over ∼24K TPU-hours, which is well beyond the
reach of normal computing environments. This cost is ex-
acerbated in scientific and engineering design problems that
rely on expensive simulations for training data generation.
A possible solution is to use a priori domain knowledge
about the physics of the design problem to reduce training
data requirements, but the standard GAN framework does
not leverage such knowledge.

Further, designers often require fine-grained input control
over specific parameters of the search space. For example,
in (computational) materials design, the designer may wish
to adjust material composition, grain sizes, or other material
property parameters on the fly. Conditional GANs (Odena,
Olah, and Shlens 2017; Mirza and Osindero 2014) do pro-
vide some amount of input control, but these are coarse: the
training data has to be carefully binned due to the categorical
conditioning involved.
Our contributions. We introduce InvNet, an architecture
that extends deep generative models (such as GANs) by
encoding user-specified geometric (discrete) and statistical
constraints. Our InvNet generative model has the dual ad-
vantage of being able to learn implicit features from train-
ing data, while also being able to explicit user-specified
invariances. Similar to GANs, we pose the InvNet train-
ing problem as a minimax game and propose a three-way
alternating-optimization style training algorithm. Our algo-
rithm requires minimal parameter tuning and gives stable re-
sults across a wide range of problem domains.

We showcase our framework in the context of two chal-
lenging problems in materials informatics. In both cases, the
physics governing the formation of such microstructures are
typically very complex and involve solving nonlinear high-
order partial differential equations (PDEs) that are compu-
tationally very intensive. In both problems, we show that
InvNet is successful in generating a large, diverse variety



of material microstructure samples that respect the specified
invariances, as well as enables flexible user navigation of the
design space.
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Figure 1: Examples from the manifold of images of two circles
(with user-specified positions and radii) synthesizes using various
generative models. The bar/whisker plots show the accuracy of
each model for respecting the specified invariances (center posi-
tions and radii for the ith circle are represented by (cix, c

i
y) and ri

respectively). WGAN provides no explicit control over the param-
eters of the generated circles, while cGAN and AC-GAN fail to
generate satisfactory images. Our proposed InvNet model not only
learns to reproduce correct shapes, but also provides effective user
control over the location and size of the shapes. The large standard
deviation for the properties show that the other approaches fail to
learn the associated invariances.

Our specific contributions are as follows:
1. We describe InvNet, a novel generative modeling frame-

work which respects user-defined geometric and/or statis-
tical invariances.

2. We present a rigorous experimental analysis for the syn-
thetic example of generating composite images of shapes
with user-controlled positions and sizes. We also show su-
perior performance over related modeling methods such
as conditional GANs.

3. We demonstrate the efficacy of InvNet for two challeng-
ing real-world applications in material discovery: (1) gen-
erating binary microstructures with specified statistical
properties; (2) poly-crystalline (metal alloy) microstruc-
tures with specified geometrical and statistical properties.

Paper outline. We discuss relevant literature for generative
models in general and for the specific case of computational
design in Sec. 2. We then describe our approach in detail
in section Sec. 3. Sec. 4 presents an illustrative example for
InvNet where we train a generative model to generate sim-
ple shapes with specified geometric constraints such as po-
sition and size. Subsequently, we present two real world ap-
plications in materials design and discovery; for two phase
and multi-orientation poly-crystalline materials respectively
in Sec. 5 and Sec. 6. Finally we conclude with a brief dis-
cussion in Sec. 7.

2 Related Work
Due to tight page-limit constraints, we defer a full discussion
of related work to the appendix.
Conditional GANs. Conditional GANs(cGANs) (Mirza
and Osindero 2014) and AC-GANs (Odena, Olah, and
Shlens 2017) condition the generator on categorical labels
to control the output class by modifying the discrimina-
tor architecture, while InfoGAN (Chen et al. 2016) per-
mits control over output parameters through an information-
maximization loss term. While the goal of our InvNet
model is thematically similar, InvNet is more flexible in
that we enable fine-grained (continuous) control of the out-
put. To achieve this, InvNet requires important architec-
tural choices: as opposed to cGANs where the discrimina-
tor is modified, we use a specific closed-form invariance
checker in addition to a standard GAN discriminator. This
two-pronged setup reflects building an associative mapping
for the invariance while also discriminatively learning other
features from training data. We elaborate in Sec. 3.

The approach of (Stinis et al. 2018) employs a noisy data-
training approach with mathematical constraints in order to
extrapolate the generator distribution. While they use the ap-
proach of weakening the discriminator with noisy inputs,
we use an alternating optimization scheme to encode invari-
ances. Additionally, our architecture is extensible to more
general geometric and discrete constraints. Finally, (Jiang et
al. 2019) use segmentation masks to enforce structural con-
straints; this resembles our geometric constraint modelling.
Materials design. An entire sub-field in computational
material science is devoted for the synthetic generation
of material microstructures (Ganapathysubramanian and
Zabaras 2008; 2007; Roberts 1997). Examples of syn-
thesis methods include Gaussian random fields (Roberts
1997), optimization-based methods (Yeong and Torquato
1998), and, multi-point statistics (Feng et al. 2018). Re-
cent advances also involve the generative modeling tech-
niques (Sanchez-Lengeling and Aspuru-Guzik 2018) that
largely rely on the massive training datasets. Most of these
methods involve large scale expensive physics simulations
to generate a massive number of candidate designs, followed
by rejection-sampling to choose the desired solutions. On
the other hand, InvNet is directly trained to enforce statis-
tical and geometric constraints while also permitting user-
defined exploration of the solution space.

3 The InvNet Model
Consider a data distribution Pdata defined over a set D ⊆
Rd, and a list of differentiable invariance functions Rd →
R : Ii(·), i = 1, 2, .., r. The aim of InvNet is to generate
new samples x from D that satisfy an invariance, Ii(x) =
0, ∀i = 1, 2, .., r. We define our generator to be a function
Gθ : Rk → Rd parameterized by θ. Let z represent a k-
dimensional latent input vector to the generator.

In the standard GAN setup (Goodfellow et al. 2014), the
generator is trained by posing a two-player game between
the generator (G) and the discriminator (D), where the dis-
criminator is a function Dψ : Rd → R parameterized by ψ.



Figure 2: Our proposed InvNet model introduces an invariance
function (I(·)) along with the traditional generator (G) and dis-
criminator (Dψ). While the discriminator learns the implicit fea-
tures of the image through simultaneous training of both D and
G, the invariance enforces a statistical/geometric constraint on the
generator (Gθ) through minimizing an invariance loss. InvNet han-
dles discrete (integer) valued invariances by relaxing the integer
valued data into a probabilistic space using pixelwise softmax acti-
vations.

The training objective of GANs is given by:

L(θ, ψ) = Ex∼Pdata [f(Dψ(x))]+Ez∼Pz
[f(−Dψ(Gθ(z)))] ,

(1)
for some monotonic function f : R → R and Pz being
a known distribution. We focus on Wasserstein GAN (Ar-
jovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017)
where f(t) = t.

In order to encode invariances, we propose solving the
following minimax game which will produce Invariance
Networks (InvNets):

min
θ

max
ψ

L(θ, ψ) + µLI(θ) (2)

where LI(θ) :=
∑n
i=1 Ez [Ii(Gθ(z))]

We solve the minimax game in a fashion similar to GAN
training; we alternately adjust the generator parameters θ
and the discriminator parameters ψ via gradient updates.
However, due to the presence of the additional invariance
term in L̄(θ, ψ), we find in practice that a three-way update
rule works well: a GAN-like update of θ via gradient steps
of L(θ, ψ) keeping ψ fixed; a GAN-like update of ψ via gra-
dient steps of L(θ, ψ) keeping θ fixed; and an update of θ
via gradient steps of LI . See Alg 1.
Role of the input vector. We define the generator input as
the concatenated vector [z, r]T with z referring to a random
vector sampled from a known distribution while r parame-
terizes the invariances. Specifically, r is a vector that corre-
sponds to tunable geometric or statistical parameters of the
generated data; thus allowing for user control. For e.g, for
the case of generating a set of circles on a plain background,
r would be a concatenated vector of radii and centers of the
respective circle.
Differences from Conditional GANs. While noting that
InvNet has a few similarities to conditional GAN mod-

Algorithm 1 Training InvNets
Require: Set learning rates, termination conditions; Training data:

x ∼ [c]d.
1: while LI large and θ has not converged do
2: for l← 1 to NG do
3: θ ← θ − ηG∇θL̄(Gθ(z, r)) . Generator update
4: end for
5: for m← 1 to ND do
6: ψ ← ψ + ηD∇ψL̄(x̄) . Discriminator update
7: end for
8: for n← 1 to NI do
9: θ ← θ − ηD∇θLI . Projection step

10: end for
11: end while

els such as cGANs (Mirza and Osindero 2014) and AC-
GANs (Odena, Olah, and Shlens 2017), we list the major
differences and advantages.

In particular, while cGANs (Mirza and Osindero 2014)
surrogate the conditional distribution, Px|y by passing both
the data and label to the discriminator, the discriminator in
InvNet learns to model the true data distribution, Px unbi-
ased by the constraints.

Conversely, AC-GAN modifies the discriminator to per-
form the simultaneous task of discrimination and classifica-
tion or regression. InvNets are essentially simplifications of
this idea. The invariance function, Ii(.) can be thought of as
a fixed auxiliary model, that is decoupled from the discrim-
ination task. This allows the discriminator to be less con-
strained in comparison, thus forcing the generator to learn
the true data distribution better. Additionally, due to the
closed form representation of the fixed auxiliary loss, the
data requirements in terms of variety is reduced.
Variations of alternating optimization. As mentioned
above, we optimize our multi-objective formulation by al-
ternately optimizing over the three sub-components of L̄, as
presented in Alg. 1. Our choice of using alternating opti-
mization is informed by insights in recent work (Mokhtari,
Ozdaglar, and Pattathil 2019) that show that regular gradi-
ent descent for minimax games diverges, while methods that
take intermediate gradient steps, such as extra-gradient de-
scent, converge to stable Nash equilibria.

4 Toy Example: Generating shapes with
geometric constraints

We start with the stylized problem of learning image mani-
folds, where the training data consists of simple shapes pa-
rameterized by geometrical quantities such as size and posi-
tion. Here, we aim to train an InvNet that generates shapes
with user-specified sizes and/or positions.

Consider the illustrative problem of generating two circles
of varying sizes and positions on a plain background. While
traditional GANs can generate such shapes by learning from
data, suppose that we additionally require independent con-
trol over the radius and position of each of these circles.

Let us first consider how this can be achieved for a single
circle. A binary image with a white circle satisfies two in-
variances: (1) the area occupied by the white pixels should
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Figure 3: Performance of InvNet in respecting target invariances.
The bar plots show the centroids (cix, c

i
y) and radii, ri for images

generated by InvNet for the two circle task. Note that InvNet suc-
cessfully generates images that respect the required target invari-
ance value (represented by the dashed horizontal line) with very
low error.

be π times the radius squared; and (2) the position of the cir-
cle center is the center of mass of a single, connected com-
ponent. The first invariance can be easily expressed in the
form of a continuous, differentiable loss function:

Larea
I (x, r) =

∣∣∣∣∣∑
i

xi − πr2
∣∣∣∣∣ (3)

where r is the target radius.

(a) (b)

(c) (d)

Figure 4: Generated sample with multiple shapes. (a) & (c) Orig-
inal datasets. The first dataset consists of images with two circles
while the second consists of images with a circle and a square. (b)
Generated images for the two-circle dataset. InvNet is successfully
trained to generate circles of target radii and position. (d) Similarly,
another example of generating simple shapes with a required area
and position. The invariance function forces the generator to learn
the mapping between the input condition and the target property
for each connected component. Refer appendix Fig. 11, Fig. 12 for
additional results.

The second invariance, encoding the centroid of the circle
requires the use of central moments, which is a well-known
mechanism in image processing to calculate the center of
mass of a connected component.

(cx, cy) =
(µ1,0(x)

µ0,0(x)
,
µ0,1(x)

µ0,0(x)

)
(4)

µm,n(x) =

w∑
k=1

h∑
l=1

kmlnxkh+l (5)

We use this to construct an invariance function that min-
imizes the `2-error between the target centroid and the cal-
culated centroid of the generated image.

Lpos
I (x, cx, cy) =

∥∥∥∥[µ1,0(x)/µ0,0(x)
µ0,1(x)/µ0,0(x)

]
−
[
cx
cy

]∥∥∥∥2
2

(6)

Using Eq. 3 and Eq. 6 as invariances, it is straightforward
to train InvNet to generate a single connected component
(such as a circle) while controlling the radii and positions
of the circle. The problem, however, becomes non-trivially
challenging when multiple such connected components are
involved, since the closed form expressions in Eq. 3 and
6 only provide meaningful information only when one ge-
ometrical figure exists in the image. We are not aware of
(differentiable) invariance functions which calculate similar
geometric quantities for the case of multiple connected com-
ponents.

To overcome this challenge, we use the following intu-
ition. The discrete constraint of having two connected com-
ponents can be treated as a coloring (or assignment) prob-
lem, where each pixel can be assigned to one of three pos-
sibilities: either of the connected components, or neither of
them (background). Therefore, this intuition motivates us to
relax the assignment constraint by training a generator with
three color channels, each corresponding to one of the as-
signment categories.

Formally, we describe the setup as follows. Consider a
dataset, x ∼ [c]d where each pixel can take a value in
{0, 1, . . . , c}. For the case described above, the pixel value
defines the class of that pixel; whether it lies in any of the c
circles, or the background. In order to train InvNet to gener-
ate such images while enforcing the area and the positional
invariance, we propose two modifications. The first is to en-
code the input (training) dataset into pixelwise one-hot rep-
resentation i.e. x̄ ∈ {0, 1}(c+1)×d. Secondly, the generator,
G(.) is now forced to generate (c + 1) channels in its final
layer. Consequently, in order to encode the assignment prob-
lem, we also add a pixelwise softmax activation to the final
layer; allowing us to relax the discrete generation problem
to a continuous bounded space, [0, 1](c+1)×d.

The problem now decomposes to that of generating a sin-
gle connected component in each channel, with the specified
invariances according to Eq. 3 and Eq. 6 defined indepen-
dently for each channel as follows:

LI(Gθ(z, r)) =

c∑
i=1

Larea
I (Gθ(z, r)i, ri) + L

pos
I (Gθ(z, r)i, ri)

(7)
where subscript refers to the index of the channel.

Following this approach, we train an InvNet with genera-
tor, G(z, r), that takes a tuple of the two radii and the cen-
troids respectively as input. The dataset consists of two non-
overlapping circles with varying radii, r ∈ {14, 15, . . . , 32}
and centroids, (cx, cy) ∈ {30, 31, . . . , 96}2 (a unit of pixel)
sampled uniformly to avoid bias. We discard any samples if
any two figures overlap each other to obtain datasets with
non-overlapping geometrical figures. Additionally, clusters
of pixels with label 1 and 2 form two different figures while



remaining pixels are assigned to label 3 as a background of
the image. The training data consists of 30k images of size
128× 128.

During training, x is one-hot encoded so that the genera-
tor generates a tensor of 128 × 128 × 3. The discriminator
attempts to the generated pixelwise softmax distribution to
the input. The generator, discriminator, and the invariance
objectives are then optimized using the three-way alternat-
ing optimization method described. An important point to
note here is that while the invariance losses explicitly en-
code geometric properties of size and position, the shape is
learnt from the underlying data. Examples of generated im-
ages can be seen in Fig. 4.

We also show that InvNet can also be used to learn other
shapes from data while still enforcing geometric constraints.
For the second example, we consider a dataset of a circle and
a square on a plain background. We subsequently modify
the invariance functions appropriately. Note, however that
in this case, we input the target area of each shape so as
to not bias the generator towards either shape. The InvNet
is successful in learning to generate the two shapes (refer
Fig. 4.). We refer the reader to the appendix (Fig. 11 and
Fig. 12) for additional results.

We also analyse the efficacy of the model in encoding
the target invariances. We generate 1000 images for each in-
stance for a varied set of target radii and positions for the two
circle generation problem. As the results in Fig. 3 suggest,
InvNet is able to generate a large variety of examples while
accurately respecting the invariances. Additional results can
be found in the appendix (Fig. 17).
Comparisons. While InvNet does show promising perfor-
mance as described above, a question may arise about the
use of an auxiliary loss as compared to using conditional
GANs (Mirza and Osindero 2014; Odena, Olah, and Shlens
2017) that use surrogate neural networks for similar tasks.
We, therefore, conduct a comparative study where we train
a WGAN, a cGAN and an ACGAN to generate multiple cir-
cles with a required target radius and position. For fair com-
parisons we train all models with the same generator and for
the same number of iterations.

We observe that InvNet successfully generates circles
with the required constraints. On the other hand, the cGAN
fails to capture the data distribution whereas the ACGAN
fails to generate images satisfying the required conditions.
Fig. 1 shows a detailed analysis for a single target orienta-
tion. Additionally, InvNet converges faster than AC-GANs
(∼ 3k iterations to ∼ 23k iterations) for generating ac-
ceptable circles. Additional analysis can be found in the ap-
pendix.

5 Example: Two-phase microstructures
In computational material science, material distribution is
represented by an image describing the arrangement of con-
stituents within a material, whose statistics govern the phys-
ical properties of the underlying material. Synthesizing mi-
crostructures adhering to specific statistical properties is,
therefore, a crucial component of material discovery.

We focus on binary microstructures (corresponding to
black/white images) corresponding to two fluid constituents.

(a)

(b)

(c)

Figure 5: Binary microstructures. (a) Original Dataset. (b) Gen-
erated microstructures. Each column is generated according to a
specific required volume fraction. (c) Bubble plot for 1000 images
for each input p1 value. The size represents the standard deviation.
Note that the error in volume fraction is less than 5% in all cases.

Generally, the first and second moments of the image are
useful statistical descriptions. Formally, we consider: (i) the
1st moment, p1, also called the volume fraction, and (ii) the
2nd moment, p2, also called the two-point correlation. The
former is a scalar, while the latter is a function. The statis-
tical moments are highly correlated with material properties
such as thermal conductivity and elastic behaviour.

The dynamics of binary microstructures exhibiting phase
separation are governed via the well-known Cahn-Hilliard
(CH) equation (Cahn and Hilliard 1958). This is a fourth-
order nonlinear PDE, and its solution requires a significant
amount of simulation time (see Table 1). Therefore, synthe-
sizing two-phase binary microstructures is computationally
very challenging. We remedy this by training an InvNet to
generate microstructures adhering to desired statistical prop-
erties. We consider two specific modes in this case; (1) gen-
erating microstructures with a required volume fraction, (2)
generating microstructures with a required; p2 correlation
curve. Each of the two statistical parameters inform various
material properties which can then be further analysed.

For generating microstructures with specific statistical
properties, the generator G(.) takes as input the latent vec-
tor, z ∼ N(0, I) and the corresponding parameters; r (either
p1 or p2). Since the first and second moments are differen-
tiable functions, we encode the desired statistical properties
into the InvNet formulation using the invariances:

LI = ‖Ipr (Gθ(z, pr))− pr‖22 (8)



where Ipr represent the functional forms of the moments,
and pr are the two moments appropriately.

For training the InvNet, we use a publicly available
dataset of 2D binary microstructures containing ∼ 34k im-
ages across the wide range of statistical moments (Pokuri et
al. 2019) (refer appendix for details). We train the InvNet
using Alg. 1.

The results in Fig. 5 show the generated images adher-
ing to target invariances. In order to analyse the efficacy of
InvNet, we generate 500 images for specific values of mo-
ments; and calculate the mean and standard deviation of the
properties of the generated images. Fig. 5(c) show the distri-
bution of the generated moments for a range of values. Ob-
serve that InvNet is able to successfully generate microstruc-
tures with very low error in terms of p1. We present addi-
tional results for p2 in the appendix Fig. 13.
Comparisons with other methods We also compare with
the approach proposed by Stinis et al. that enforces physi-
cally valid constraints by training the discriminator on data
and the corresponding residual of the constraints. To ensure
fair comparison, we extend the same concept to WGAN-GP.
For real data, the value of the invariance function (Eq. 8)
goes to 0. The discriminator subsequently, is input the tu-
ple, (x, LI(x)) for both the real and fake data during train-
ing. We observe that while InvNet successfully learns to
generate examples similar to the training data that satisfies
the required invariance, the GAN trained as above fails to
converge with the discriminator loss exploding to a high
(∼ −107) value (Refer Fig. 6).

Figure 6: Discriminator loss for the approach presented in Stinis
et al.. Note that the discriminator loss explodes to very high values
within a few iterations.

In order to motivate the advantages of InvNet over tradi-
tional methods, we compare the time required to generate
microstructures for our approach and the state of the art nu-
merical method (Wodo and Ganapathysubramanian 2012).
We note that the training time incurred by InvNet is amor-
tized over the generation time required to simulate many
microstructures; to generate 100,000 microstructures InvNet
already obtains speedups over existing numerical solutions.
The results of the comparison are presented in Table. 1. This
computational advantage will scale with the number of can-
didate images required.

Table 1: (Left) InvNet generated microstructures for fixed 1st and
2nd moments. (Right) Comparison with simulation times for gen-
erating 105 microstructure images using numerical methods (Wodo
and Ganapathysubramanian 2012).

Model type Time (s)

Numerical solution (Wodo and Ganapathysubramanian 2012)

Generating 1 microstructure† 1.84s
Total time for 100000 images† 184000s
InvNet (our approach)

Training time× 57600s
Generating 1 microstructure× 0.0110s
Total time for 100000 images× 58700s
† Uses Intel 4-core CPU with 32 GB RAM.
× Uses 1 NVIDIA Tesla V100 GPU, 32 GB GDDR5 on TensorFlow GPU version 1.4.

6 Example: Polycrystalline Microstructures
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Figure 7: Grain distribution for generated polycrystalline data.
The plots represent the mean volume fractions of 100 images for
each required distribution. The horizontal dashed lines denote the
target volume fraction for the orientation. Observe that InvNet is
successful at generating polycrystalline images for a large variety
of grain distributions. Also note that several of the target distribu-
tions are not present in the training dataset.

We now consider the challenging problem of generat-
ing microstructure images of polycrystalline materials, such
as metal alloys. Polycrystalline materials consist of several
small non-overlapping regions called grains. The orientation
of atoms is necessarily different for adjoining grains. An ex-
ample microstructure can be seen in Fig. 8 where each orien-
tation is represented by a different color. The distribution of
these regions correlates with mechanical and physical prop-
erties.

There are two difficulties in synthesizing polycrystalline
microstructure images: (1) every grain in the image must be
assigned to a specified orientation and, (2) each orientation
must constitute a specific volume fraction. The volume frac-



tion is a statistical invariance, whereas the orientation con-
straint can be construed as a geometric invariance.

(a) (b)

Figure 8: (a) Example microstructures from the polycrystalline
dataset. Different orientations are represented by different colors.
(b) Generated microstructures. Each column is generated according
to a specific required volume fraction. InvNet is successfully able
to learn to generate images corresponding to various target volume
fractions.

Dataset. For this specific example, we consider a dataset
of microstructure images of a metal alloy generated using
Dream3D (Groeber and Jackson 2014). Each image in the
dataset consists of a distribution of five orientations. For the
purposes of training, each orientation is mapped to a scalar
integer value from {1, · · · , 5}. Due to computational limita-
tions, we scale the images down from the original 400×400
domain size to 128× 128.

Given that the polycrystalline microstructure manifold is
integer valued, optimization of the InvNet objective would
not be feasible. Therefore, we use the approach defined in
Sec. 4 to relax the integer valued assignment problem to a
continuous valued probability space. For training, we en-
code the discrete microstructure map from the given dataset,
x ∈ [c]d; c ∈ [1, 5] into pixelwise one-hot tensors. The re-
laxation effectively decomposes the problem of generating
a target grain distribution to the easier problem of enforcing
the volume fraction for each orientation.

The input latent vector, z ∼ N(0, I) allows for explo-
ration of the manifold of poly-crystalline microstructures,
while r ∈ [0, 1]5 is a vector consisting of volume frac-
tions of each of the five orientations. In order to ensure that
the geometric constraint of adjoining grains being assigned
different orientations while satisfying the statistical invari-
ances; we use a similar technique as defined in sec. 4. The
final layer ofGθ is a convolutional layer that outputs a tensor
with the same number of channels as that of the orientations.
We also use a softmax activation to ensure that each pixel is
assigned to only a single orientation. We train InvNet with
the alternating optimization technique with an additional sta-

tistical invariance applied channelwise;

LI(θ) = E(z,r)‖fv(G(z, r))− r‖ (9)

where fv(x) =

d∑
i=0

xi/d ; x ∈ Rd

During inference, we use the argmax operation to con-
vert the generated 3D tensors back to the original 2D poly-
cyrstalline maps. Our experimental results in Fig. 8 show
that InvNet successfully generate the microstructures satis-
fying the requisite grain distribution (volume fraction) ac-
curately. We note that the invariance function(Eq. 10) only
captures the relative volume fractions of each orientation.
However, the grain shape and the appropriate placement of
each grain are implicit features that InvNet learns from data.
InvNet, therefore proves to be a useful technique to explore
data spaces that have partially modelled dynamics.

Fig. 8 shows generated examples for different instances
of required volume fractions. We observe that our model is
able to generalize for a large class of grain distributions.
We also analyse the performance of our model in repro-
ducing images with a required target distribution. As evi-
denced by Fig. 7, InvNet is successful in generating poly-
crystalline microstructures with a required grain distribution
for a large variety of cases. Interestingly, InvNet is able to
generate images for distributions that are not found in the
training dataset- for e.g. the highly skewed distributions in
Fig. 7. Some examples of microstructure images generated
for such cases have been presented in Fig. 8. Additional re-
sults showing generalization are also presented in the ap-
pendix (Fig. 15).

7 Discussion and Conclusion
We have proposed InvNets, a natural extension of GANs
that enables specifying additional structural/statistical in-
variances in generated samples.

Our approach relies on representing the invariance as an
additional loss term that we alternately optimize in addition
to the standard adversarial training in GANs. We also show
a number of stylized and real-world applications. Addition-
ally, we present examples of InvNets enforcing constraints
for integer valued solution spaces. Since InvNets also gen-
eralize to problems which have discrete solution spaces, we
posit that our approach can be extended to a large class of
ill-posed discrete optimization problems.

An important potential research direction would be to ex-
tend InvNets to 3D spaces for which GANs are currently in-
feasible. InvNets can also be extended to enforce other kinds
of domain informed invariances; for e.g. PDEs governing the
dynamics of a system. InvNets for structured domains such
as graphs woudl further prove to be useful tools for more
general problems.

Finally, the theoretical analysis of the equilibrium (for
both limiting and non-limiting cases) and stability of train-
ing for the modified three-way game is an open question;
especially for nonlinear discrete invariances.
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Appendix
Notation. We represent vectors in lowercase boldface, v
whereas matrices are uppercase boldface, V. Given an im-
age, U, we represent the spatial derivative with respect to
axis, x as Ux. Additionally, the gradient of a scalar, L with
respect to a vector, a is represented as ∇aL. I represents
identity matrix.

A Detailed Related Work
Generative Adversarial Networks. GANs (Goodfellow et
al. 2014) are a popular approach for modelling real world
data distributions. The standard adversarial training ap-
proach involves optimizing a mini-max game between a
generator and a discriminator defined by an approximate
Jensen-Shannon divergence. This necessarily leads to unsta-
ble training and requires careful tuning of relevant hyperpa-
rameters. Mao et al.solve the problem of vanishing gradients
by optimizing the discriminator with least squares instead of
cross-entropy. Arjovsky et al. (Arjovsky, Chintala, and Bot-
tou 2017) and Gulrajani et al. (Gulrajani et al. 2017) propose
a more stable version of GAN by modifying the discrimina-
tor loss to estimate the Wasserstein-1 distance between the
data distribution and the generator output. A major disad-
vantage for such models is that the inability to control the
generator output in any way. Zhao et al. (Zhao et al. 2018)
study the generalization in GANs.

Conditional GANs (Mirza and Osindero 2014) provide a
solution by conditioning the generator on categorical labels
so as to control the class of outputs that are generated. Chen
et al. (Chen et al. 2016) extend this to allow control over
specific semantic parameters such as stroke width in the case
of handwritten digits.

Such generative models therefore offer a mechanism to
accurately represent complex data spaces without knowing
the entire topology. Consequently, GANs are often used as
representations of solution spaces to complex physical and
dynamical systems.

Invariance in generative models. The problem of train-
ing a generative model to generate samples from a specific
distribution is often solved through the use of data. This ap-
proach is extremely useful when the data can not be modeled
mathematically. However, for many applications, there ex-
ist at least partial mathematical definitions for training data.
These mathematical definitions act in place of data, acting
as constraints to define the support of the generator distribu-
tion.

Stinis et al. (Stinis et al. 2018) employ a noisy data train-
ing approach with mathematical constraints in order to in-
terpolate and extrapolate on the generator distribution. Con-
trary to their approach of weakening the discriminator train-
ing with noisy inputs, we use an alternating minimization
scheme to force the discriminator to respect the invariances.
Jiang et al.(Jiang et al. 2019) use segmentation masks as
constraints to enforce structural conditions to generate face
images. Svyatoslav (Korneev et al. 2018), on the other hand,
enforce a PDE as a constraint by using a binary neural net-
work as a PDE solver using decision processes. Their ap-
proach is restricted to the special case of generating binary

images, whereas our algorithm is more general and can en-
force any continuous and differentiable invariance.

Microstructure generation. An entire sub-field in com-
putational material science is devoted to the development
of methods for the simulation of microstructures (Ganap-
athysubramanian and Zabaras 2008; 2007; Roberts 1997)
and subsequent quantification (Ganapathysubramanian and
Zabaras 2008; 2007). Here, microstructure realizations are
synthesized that satisfy certain target statistical properties
of the material distribution. Several strategies were de-
veloped for microstructure generation using both analyt-
ical approaches and optimization approaches. Examples
of such methods include Gaussian random fields (Roberts
1997), optimization-based methods (Yeong and Torquato
1998), multi-point statistics (Feng et al. 2018), and layer-by-
layer reconstruction (Tahmasebi, Hezarkhani, and Sahimi
2012).These statistical properties could be scalars (such
like total volume fraction of a material) or more com-
plex functions (like 2-point correlations and other material
statistics) (Torquato 2013). Recent advances also involve
the generative modeling techniques (Sanchez-Lengeling and
Aspuru-Guzik 2018), however, those largely rely on the
availability of training datasets.

For our experiments in generating microstructures, we use
the Binary 2D microstructures dataset (Pokuri et al. 2019)
based on Cahn-Hilliard equation (Cahn and Hilliard 1958)
for training and testing.

B Microstructures Generation using InvNet:
Additional Details

Motivation
An overarching theme of materials research is the de-
sign of material distributions (also called microstructure)
so that the ensuing material exhibits tailored properties. In
microstructure-sensitive design, quantifying the effect of mi-
crostructure features on performance is critical for the effi-
cient design of application-tailored devices. Microstructures
are represented as binary images indicating the arrangement
of constituent materials within the mixture. The statistical
properties of such microstructural images are useful in pre-
dicting the physical and chemical properties of the mixture
material - thus aiding into faster material discovery. To ob-
tain a material with desired property, a microstructure hav-
ing the corresponding statistical property need to be gener-
ated. We feed in such statistical properties as the invariances
in our framework, and come up with a generative model that
can sample from the set of all microstructures adhering to
desired statistical properties. We propose both a data-driven
and data-free generative network for synthetic microstruc-
tures adhering the invariances for the training.

Preliminaries
In the context of microstructure generation problem, we
consider the underlying material to be a two-phase homo-
geneous, isotropic material. Our setup for statistical char-
acterization of microstructure follows with Torquato et
al. (Torquato 2013). Consider an instance of the two-phase



homogeneous isotropic material within d-dimensional Eu-
clidean space Rd (where d ∈ {2, 3}). A phase function φ(·)
is used to characterize this two-phase system, defined as:

φ(1)(r) =

{
1, r ∈ V1,
0, r ∈ V2,

(10)

where V1 ∈ Rd is the region occupied by phase 1 and V2 ∈
Rd is the region occupied by phase 2.

Given this microstructure defined by the phase function,
φ, statistical characteristics can be evaluated. These include
the n−moments, (n-point correlation functions) for n =
1, 2, 3, .... For homogeneous and isotropic media, These de-
pend neither on the absolute positions of n−points, nor on
the rotation of these spatial co-ordinates; instead, they de-
pend only on relative displacements. The 1st-moment, p1,
commonly known as volume fraction, is constant through-
out the material. The volume fraction of phase 1, p(1)1 , is
defined as:

p
(1)
1 = Erφ

(1)(r).

The 2nd−moment is a function of r and is defined as:

p
(1)
2 (r12) = Er1,r2

[
φ(1)(r1)φ(1)(r2)

]
.

The 2nd moment (known as 2−point correlation as well)
is one of the most important statistical descriptors of mi-
crostructures. An alternate interpretation of 2nd moment is
the probability that two randomly chosen points r1 and r2 a
certain distance apart both share the same phase.

Henceforth we omit the superscript representing the phase
and subscripts representing the spatial points for simplic-
ity, and refer to volume fraction as p1, and 2-point corre-
lation as p2. It can be shown that p2(r = 0) = p1 and
limr→∞ p2(r) = p21.

In the training step, we use the above statistical properties
as invariances for training the InvNet. The invariance loss
LI(·) can be defined as l2− loss:

LI = λ1‖fp1(Gθ(z,p
∗
2))−p∗1‖22+λ2‖fp2(Gθ(z,p

∗
2))−p∗2‖22

(11)
where fpi represent the functional forms of the moments;
p∗1,p

∗
2 are target values of the moments. The coefficients, λi

are appropriately chosen for the tasks to be solved.
Dataset. We use the Binary 2D microstructures
dataset (Pokuri et al. 2019) based on Cahn-Hilliard
equation (Cahn and Hilliard 1958) for training and testing.
The dataset contains ∼ 34k binary microstructures of size
101 × 101 obtained by sampling the evolving solutions
across time. The dataset contains images with diverse
values of 1st and 2nd moments, and implicitly exhibit
higher moments too. For training, we resize the images to
64× 64.

C Additional Results.
Comparison with Stinis et al.. We use ideas from Stinis et
al. (ECF) and modify a simple WGAN-Gp to enforce the
1st moment constraint. This involves two steps: (1) Mod-
ify the discriminator architecture to take as input the data
and the corresponding residual of the p1 invariance loss, (2)

Add noise to the real data residual to ensure stability. Since
teh authors have not shared the code, we implement the ap-
proach for comparison.

We observe that for our application; the ECF algorithm
fails to converge. In fact, the discriminator and the generator
loss explode to very high values. We hypothesize that this
may be a consequence of the model failing to model the joint
distribution due to large residual values in teh intiial steps.

Generating shapes with conditional GANs. For compar-
ison, we train a cGAN with our dataset of circles. As a mod-
ification of the original vanilla cGAN, we feed the centroids
and radii of both circles from real data sample instead of the
labels. Additionally, we train with the WGAN-GP objective
for smoother training.

The generator takes the same input as the InvNet by
[z, r]T while the discrimator is fed the generated or true im-
ages; stacked with r; a vector consisting of the target cen-
troids and radii. We observe that cGAN completely fails to
learn the distribution of the dataset as shown in Fig 9. Ad-
ditionally, Fig. 1 shows that cGAN fails to generate images
obeying the target invariance and in fact learns the training
data distribution instead.

Figure 9: Training results from cGAN. The discriminator loss
shows the failure of the model for the toy dataset. Apart from
the geometrical invariance, we also observe from generated images
that cGAN model collapse t with two circles dataset.

Comparison with AC-GANs. Similar to the experiment
above, we train an AC-GAN for the same task. For fair com-
parison, we use the WGAN objective and the softmax gen-
erator with equal number of parameters as InvNet. Addition-
ally, as per the original AC-GAN paper (Odena, Olah, and
Shlens 2017), we modify the discriminator architecture to
take in the true or generated data along with the encoded tar-
get vector. The AC-GAN is trained with ADAM (learning
rate=0.001) for ∼ 23k.

While the AC-GAN successfully learns the input data
distribution, it fails to capture the association between the
input target properties and those of the generated images.
Additionally, the convergence of the AC-GAN model is far
slower than that of InvNet.



Figure 10: Comparison of the discriminator loss curves for AC-
GAN and InvNet. Note the smoother training curve for InvNet.



Figure 11: Additional results for the toy dataset with two circles. Each row corresponds to the specific geometrical constraints.



Figure 12: Additional results for the toy dataset with a circle and a square. Each row corresponds to the specific geometrical constraints.



Figure 13: Additional results for binary microstructure generation using the volume fraction control parameter. Each row
corresponds to a specific volume fraction (p1) value ranging from 0.3 to 0.8.



Figure 14: Results for InvNet trained to generate binary microstructures given target p2 curves. The plot displayes the target and the mean
curve for 64 generated images. The corresponding images have been generated for the target p2 on the left for varying latent random latent
vector, z.



Figure 15: Additional results for polycrystalline microstructure generation using the volume fraction control parameter. Each row corre-
sponds to a specific vol. frac. value of a fourth orientation ranging from 0.15 to 0.65. Note that the range of the fourth orientation from
the dataset is in 0.18 to 0.50. Last three rows (with volume fraction (p1) corresponding to 0.55, 0.60, 0.65) generated from the interpolated
distribution from its data distribution.
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Figure 16: Grain distribution for generated polycrystalline data. The plots represent the mean volume fractions of 100 images for each
required distribution. The horizontal dashed lines denote the target volume fraction for the orientation. Observe that InvNet is successful at
generating polycrystalline images for a large variety of grain distributions. Also note that several of the target distributions are not present in
the training dataset.
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Figure 17: Performance of InvNet in respecting target invariances. The bar plots show the centroids (cix, c
i
y) and radii,ri for images generated

by InvNet for the two circle task. Note that InvNet successfully generates images that respect the required target invariance value (represented
by the dashed horizontal line) with very low error.


