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Abstract—Image articulation manifolds (IAMs) play a central
conceptual role in a host of computer vision and image un-
derstanding problems. The core premise is that we can view a
collection of images, each of which is indexed by a small number
of degrees of freedom (3D camera pose, motion/deformation, etc.),
as a low-dimensional nonlinear manifold. In order to perform
parameter estimation and navigation on an IAM, we require
a transport operator that traverses the manifold from image to
image. The two current approaches to manifold transport suffer
from major shortcomings that have limited the practical impact
of manifold methods. First, algebraic methods require that the
IAM possess an unrealistic algebraic structure. Second, locally
linear methods based on a tangent plane approximation cannot
cope with the non-differentiability of IAMs containing images
with sharp edges. In this paper, we demonstrate that the optical
flow between pairs of images on an IAM is a valid transport
operator with a number of attractive properties. In particular,
we establish that the optical flow forms a low-dimensional smooth
manifold. Several experiments involving novel-view synthesis, ge-
ometric clustering, and manifold charting validate that the optical
flow manifold approach both offers performance significantly
superior to current approaches and is practical for real-world
applications.

I. INTRODUCTION

A host of problems in vision, machine learning, and pat-
tern recognition involve the efficient analysis, modeling, and
processing of image ensembles. In this paper, we consider
image ensembles generated by varying a small number of
parameters, such as three-dimensional (3D) camera pose, or
motion/deformation of an object in a scene. The geometric
notion of an image articulation manifold (IAM) [1] provides
a powerful model for such ensembles: a collection of N -pixel
images, with each image indexed by K degrees of freedom,
can be modeled as a K-dimensional nonlinear manifold em-
bedded in RN .

Manifold models provide a powerful framework for an-
alyzing and processing parameterized images that naturally
accounts for the nonlinearity of image ensembles. For instance,
problems such as parameter estimation, supervised and semi-
supervised classification, and novel view synthesis can be
cast as navigating to appropriate points/regions on an IAM.
Navigation can often be achieved by first learning a “scaffold”
for the IAM of interest (e.g., from a sparse sampling) and then
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Fig. 1. Image articulation manifolds (IAMs) are non-differentiable; therefore,
locally linear models such as tangent spaces provide an inaccurate approxima-
tion to the manifold geometry. In contrast, the optical flow manifold (OFM)
associated with a point on the IAM accurately captures the intrinsic curved
geometric structure of the IAM.

constructing transport operators that traverse the totality of the
IAM.

Two families of methods for IAM transport have been
developed. First, algebraic methods for IAM transport ex-
ploit the precise geometric relationships between the images
comprising an IAM. Using analytic tools from differential
geometry, these methods support tasks such as classification,
recognition, and clustering [2]. However, these approaches are
limited to a small class of IAMs with a well-defined algebraic
structure (such as a Lie group structure); such structure occurs
only in some very special cases, such as affine articulations [3],
[4] and diffeomorphisms [5], [6]. For most practical situations,
including manifolds that characterize pose changes, algebraic
transport operators do not apply.

Second, locally linear methods for IAM transport rely on
the geometric notion of a tangent space to the manifold at a
given point (see Figure 1). Local linearity implicitly assumes
that over small neighborhoods the manifold can be modeled
as approximately planar. Unfortunately, this assumption is
seldom of much practical use for IAMs. The rub is that IAMs
containing images containing sharp edges and textures are
nowhere differentiable under the standard L2 metric [1], [7].
This makes locally linear models for IAMs both inaccurate
and fragile.

In this paper, we propose a new framework for modeling and



Input 
Image

Input 
Image

Local linear transport
Optical flow-based transport

Fig. 2. A comparison of locally linear transport (LLT) and optical flow-based
transport for synthesizing new images on an IAM. We aim to synthesize
images on the IAM that lie between two given input images. The non-
differentiability of IAMs cannot be accurately captured by locally linear
tangent spaces and transport; hence the corresponding synthesized images
exhibit severe blurring and cross-fading artifacts. In contrast, optical flow-
based transport results in sharp, realistic images.

navigating image manifolds. Our key observation is that the
optical flow [8] between a pair of images is a natural instance
of transport on an IAM. We argue that, for a large class of
IAMs, the set of optical flows with respect to a base (reference)
image forms a low-dimensional smooth manifold. Optical
flow transport inspires a new approach to high-dimensional
computational tools such as isometric manifold embedding,
Karcher mean estimation, and local charts that have immediate
applicability for image processing and vision tasks such as
pose-invariant object recognition, geometric clustering, and
novel-view synthesis. A cartoon illustration of our approach
is depicted in Figure 1.

Our specific contributions are as follows. We first establish
that the space of optical flows F between images on a K-
dimensional IAM is itself a K-dimensional manifold. We
prove that the space F (which we call the optical flow manifold
(OFM)) is a differentiable manifold in the case of affine
and pose transformations; we also show empirical evidence
of OFM smoothness for a nonrigid deformations. We study
the geometrical structure of the OFMs of the translation and
pose IAMs in detail. By interpreting the OFM as a collection
of nonlinear “tangent spaces” that accurately capture the
intrinsic curved structure of the IAM, we develop analogies
to the concepts of the Log and Exp maps from differential
geometry. The maps enable new high-performance algorithms
for manifold learning, image synthesis, parameter estimation,
and charting. See Figure 2 for a image synthesis example.

II. BACKGROUND

We will view an N -pixel image I both as a vector in RN
and as a function defined over a rectangular lattice on R2.
In the latter case, I(x) denotes the pixel intensity at the 2D
spatial location x = (x, y).

A. Image articulation manifolds

In this paper, we are interested in image ensembles that are
generated by varying an articulation parameter θ ∈ Θ. If Θ is
a space of dimension K, then the ensemble of images forms a

K-dimensional image articulation manifold (IAM) I ⊂ RN :

I = {Iθ : θ ∈ Θ}. (1)

For certain IAMs, the mapping I : θ 7→ Iθ is locally
isometric, i.e., local distances along the manifold are equal
to the corresponding distances in the articulation space [1]:

dI(Iθ1 , Iθ0) := ‖Iθ1 − Iθ0‖2 = C‖θ1 − θ0‖2,

where C is a normalization constant. Many problems in com-
puter vision (including object recognition, image registration,
and pose estimation) can be cast as inference problems over
I.

A key focus of this paper is the study of transport operators
f : R2 7→ R2 that enable us to move on an IAM from one
image I0 to another I1 as follows:

I1(x) = I0(x + f(x)). (2)

Note carefully from (2) that, given I0, the transport operator f
serves as a generative model for images on the IAM. Existing
approaches to IAM-based transport can be broadly classified
into algebraic and locally linear methods.

B. Algebraic transport

For certain classes of articulations, it is possible to ana-
lytically compute transport operators that capture the curved
geometrical structure of an IAM. As an example, consider the
space of affine image articulations, where (2) takes the form

I(x) = I0(Ax + t). (3)

In this case, the transport operator f is of the form f(x) =
(A− I)x + t; this can be modeled as the group of 2D affine
transformations.

A rich body of work on algebraic transport operators
exists in the literature. Miao and Rao [9] have developed
a learning framework for affine algebraic transport operators
using a matrix exponential-based generative model and have
demonstrated improved performance over locally linear ap-
proximations. Culpepper and Olshausen [4] have extended
this framework using a more complex model on the transport
operator in order to model paths on arbitrary image manifolds.
In addition to the affine group, other common examples of
algebraic transport operators are the projective group (used to
model homographies and projective transformations), and the
diffeomorphism group (used to model 1D warping functions
and density functions) [2], [10], [11]. However, while alge-
braic transport methods are mathematically elegant, they are
applicable only to a very restrictive class of IAMs. Many IAMs
of practical interest, including the manifolds corresponding to
3D pose articulations and non-rigid deformations, possess no
analytical algebraic structure.

C. Locally linear transport

For most classes of articulations, an algebraic description of
transport on the manifold I is unavailable, and we only have
access to a discrete sampling of images from the manifold. In



such cases, there are few principled approaches for construct-
ing transport operators. One common heuristic is to use locally
linear models to approximate and traverse the manifold. A
locally linear transport (LLT) operator uses an approximation
of (2) to express an image I0 as a linear combination of its k-
nearest neighbors. LLT is geometrically equivalent to travers-
ing the linear tangent space at I0. Although they have not been
traditionally introduced this way, a variety of manifold-based
learning and processing techniques fall into this category. One
well-known technique is local linear embedding (LLE) for
manifold learning [12].

An critical requirement for successful application of LLT
is that the IAM be smooth. However, it has been shown
that IAMs containing images with textures and sharp edges
are nowhere differentiable [1], [7]. Approximating the non-
differentiable structure of an IAM by local tangent planes
often leads to undesirable results (see Fig. 3). For instance,
given a training set of sample images from an IAM, LLE-
based synthesis of a novel image from its nearest neighbors in
the training set tends to yield highly blurred edges and strong
cross-fading artifacts (see Fig. 2).

D. Optical flow

Our key insight in this paper is that the space of optical flows
forms a natural set of transport operators for IAMs. Given two
images I0 and I1, the optical flow from I0 to I1 (if it exists) is
defined as the tuple (vx,vy), where vx ∈ RN and vy ∈ RN ,
such that

I(x, y) = I0(x+ vx(x, y), y + vy(x, y)). (4)

For N -pixel images, the optical flow field v defined over the
domain of the images consists of N ordered pairs; thus, we
may regard v as a point in R2×N . Since the pioneering work
of Horn and Schunck [8], significant progress has been made
on reliable optical flow estimation given a pair of images [13]–
[16].

A few remarks about the theory and practice of optical flow
are in order. The optical flow, as defined in (4), is not unique.
Optical flow estimation suffers for inherent ambiguities, such
as the aperture problem [8], as well as degeneracies due to
occlusions and boundary effects. In a theoretical setup, we
can avoid these degenerate cases by assuming that the optical
flow is the projection of a 3D motion flow, so that its existence
and uniqueness is axiomatically guaranteed. In practice, we
implicitly assume that (i) the images possess rich texture and
(ii) satisfy the brightness constancy assumption [8]. For the
rest of the paper, we will assume that we can robustly compute
the optical flow field given a pair of images.

III. OPTICAL FLOW MANIFOLDS: THEORY

The key goal of this paper is to construct new nonlinear
transport operators for IAMs using the optical flow machinery.
Towards this end, we begin by defining the space of optical
flows between image pairs on an IAM and then characterize
the geometric properties of this space.
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Fig. 3. The IAM and OFM associated with a textured object rotating
about a fixed axis. (Top) Images from the 1D rotation IAM. (Middle)
Image intensity plots for three different pixels as a function of the
rotation parameter θ. The colors of the plots correspond to the pixels
marked in middle image above. The intensity profiles are highly
irregular, which is evidence of the non-differentiability of the IAM.
Hence, local linear approximations are inaccurate even for very small
intervals. (Bottom) In contrast, the optical flow field at the three pixels
varies smoothly, and the OFM (in this case referenced to θ0 = 90)
can be well-modeled as locally linear. Images are from [17].

A. Definition

Consider an IAM I defined according to (1). Given a
reference image Iθ0 corresponding to an articulation parameter
θ0 ∈ Θ, define Fθ0 as the set of optical flows between the
images in a neighborhood of Iθ0 :

Fθ0 = {fθ0(θ) ∈ R2N , θ ∈ B(θ0)}, (5)

where fθ0(θ) = [vx vy] is the optical flow as defined in (4).
B(θ0) ⊂ Θ denotes a neighborhood of θ0 where the optical
flow can be computed reliably. Note that each f ∈ Fθ0 defines
an operator on Iθ0 such that

I(x) = Iθ0(x + f(x)).

We prove below that in many practical scenarios the set of
optical flows Fθ0 itself forms a low-dimensional manifold,
which we dub the optical flow manifold (OFM) at Iθ0 . We
will drop the subscript θ0 when the context is clear.

Thus, an OFM is the space of optical flow-based transport
operators associated with one point (image) on the IAM
(see Fig. 1). (Note that the OFM Fθ0 changes for each
reference image Iθ0 .) In many ways, the OFM is a nonlinear
analogue to the notion of the tangent space at a point on
a manifold. However, unlike linear tangent space transport,
which is valid only for infinitesimal transformations, nonlinear
OFM transport is valid for much larger neighborhoods, as
discussed in more detail below (see Fig. 3 for an example).

B. Example: Translation manifold

Consider the IAM I of images of an object undergoing
arbitrary 2D translations. Assume that the domain of each



image is infinite (hence, there are no image boundary artifacts).
Then, the space of articulations Θ = R2 consists of all possible
2D translations. Any pair of images Iθ1 , Iθ0 corresponding to
the articulation parameters θ0, θ1 ∈ Θ can be related by the
expression:

Iθ1(x) = Iθ0(x + θ1 − θ0).

Hence, the optical flow between the two images is given in
closed form by [vx vy] = [(θ1−θ0)x1N , (θ1−θ0)y1N ], where
(θ1 − θ0)x represents displacement along the x-axis, (θ1 −
θ0)y represents displacement along the y-axis, and 1N ∈ RN
denotes the all-ones vector. Thus, the OFM at Iθ0 (5) can be
described by the closed form expression

Fθ0 = {(cx1N , cy1N ), cx, cy ∈ R} ≡ R2.

It easily follows that the OFM corresponding to every point
Iθ0 is equivalent to 2D Euclidean space. Consequently, the
OFM Fθ0 is both infinitely smooth as well as isometric to the
parameter space R2 . An identical argument extends this result
to the more general class of affine transformations, where pairs
of images are linked by a relation of the form (3) introduced
in Section II.

C. Example: Pose manifold

The pose manifold is the IAM corresponding to the rigid
body motion of a camera observing a static scene. It is well-
known that the articulation space is 6D, with 3 degrees of
camera rotation and 3 degrees of camera translation, i.e.,
Θ = SO(3)×R3. Without loss of generality, assume that the
optical flow is the (unique) 2D projection of the motion flow
of the scene induced due to the camera motion. Additionally,
assume the reference articulation as θ0 = (R0, t0) = (I,0) and
that the camera’s internal calibration is known and accounted
for. At the reference articulation θ0, denote the depth map of
the scene at pixel x by the function λ0(x). Under a different
articulation θ = (Rθ, tθ), the optical flow observed at the pixel
x is given by

f(θ)(x) = P

(
λ0(x)Rθ

[
x
1

]
+ t

)
− P

(
λ0(x)

[
x
1

])
,

(6)
where P is a projection operator such that P ((x, y, z)) =
(x/z, y/z).

We note that in (6), the optical flow {f(θ)(x), θ ∈ Θ}
depends on the depth value λ0(x). When λ0(x) 6= 0, there
exists a neighborhood of Iθ0 on the IAM such that the flow
f(θ)(x) is a smooth function of θ. This follows from the
fact that the projection operator P is a well-defined smooth
function provided z 6= 0. Denote this neighborhood by
B(x; θ0). Then, the size of B(x; θ0) is determined by the
maximum articulation required to move the scene point such
that it lies on the plane z = 0. Consequently, if all pixels
have depth values bounded away from zero, then it follows
that there exists a neighborhood B(θ0) =

⋂
xB(x; θ0) where

the variations in optical flow for all pixels in the image are
uniformly smooth. Converting this pixel-domain smoothness

into a high-dimensional smoothness condition, we arrive at
the following key result.

Proposition: Consider the pose manifold corresponding to a
scene such that at reference articulation θ0, λ0(x0) > λ. In the
absence of occlusion, there exists a neighborhood on the IAM
such that the OFM at this reference point is a 6D infinitely
smooth submanifold of R2N .

In addition to smoothness, the OFM associated with the
pose manifold can also be shown to be locally isometric
to Euclidean space. This has important practical implica-
tions, especially for the problem of manifold learning, which
seeks to develop a low-dimensional Euclidean embedding of
point samples from a manifold lying in a high-dimensional
ambient space. Typical manifold learning algorithms (e.g.,
ISOMAP [18]) implicitly rely on the assumption that the
underlying manifold exhibits local isometry, which is not true
for most IAMs. Learning the manifold structure not from the
point samples on the IAM but rather from the OFM computed
from the point samples can lead to a significant performance
boost. We reserve a detailed study of the local isometry of the
OFM for the extended version of this paper [19].

Surprisingly, the Proposition guarantees the smoothness of
the OFM without any assumption on the smoothness (or even
continuity) of the depth map λ0(x). Our only assumption is
that no occlusions occur, which is violated in many practical
scenarios of interest. While explicitly modeling occlusions
within the theoretical framework can be tricky, in practice we
can detect pixels that exhibit occlusions and apply appropriate
heuristics to handle such situations (see Section IV).

The Proposition analytically demonstrates the global differ-
entiability/smoothness of the OFM for the pose (and hence
affine transformation) IAMs. Section V below empirically
demonstrates that the OFM is smooth for an even larger class
of IAMs, including images of an object undergoing non-rigid
deformations (see Fig. 6). We defer a full analytical treatment
of OFM smoothness for more general classes of IAMs for
future research; in the rest of the paper, we will restrict our
attention to IAMs with smooth OFMs.

IV. OPTICAL FLOW MANIFOLDS: PRACTICE

In the previous section, we showed that, at least for the
pose and affine transformation IAMs, the corresponding OFMs
are smooth. In this section, we leverage this smoothness to
construct new nonlinear transport operators for IAMs that first
transport linearly on the OFM and then map that transport to
the IAM via (4). In this section, develop a set of computational
tools and tricks that are useful for many practical applications.

A. IAM transport via the OFM

Consider an IAM I ⊂ RN and a point Iθ0 ∈ I. Our goal
is to develop a transport operator that can accurately navigate
from any point Iθ ∈ I to the points its neighborhood. As
discussed in Section I, the classical choice of transport uses
vectors from the IAM tangent space at Iθ0 ; however, this often
leads to undesirable results due to the non-differentiability of
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Fig. 4. Dimensionality reduction of an IAM vs. its OFM. The IAM is
generated by cropping 200 × 200 pixel patches at random from a larger
image, thereby generating a 2D translation manifold. (a) Sample images from
the IAM showing several images at various translations. (b) Sampling of the
parameter space. 2D embeddings obtained on (c) the IAM vs. (d) the OFM.
Note the near perfect isometry to the parameter space in (d).

I. We develop our new OFM-based transport operator in two
steps. Assume that the OFM F at Iθ0 is both smooth and
isometric.

Step 1: Given a set of images {Iθi , i = 1, . . . ,M} in a
neighborhood of the reference image Iθ0 , estimate the optical
flows fi = (vx,vy)i from Iθ0 to all of the images Iθi . Given
the set of optical flows {f1, . . . , fM} ∈ F , construct its low-
dimensional Euclidean embedding {e1, . . . , eM} ∈ E ≡ RK
using a dimensionality reduction tool such as (LLE [12],
ISOMAP [18], etc. If the OFM is smooth and locally isomet-
ric, then the embedding of the optical flows will be isometric
to the IAM’s parameter space. Figure 4 demonstrates that
the OFM is much more amenable to accurate dimensionality
reduction than its corresponding IAM.

Step 2: Using the low-dimensional embedding, we generate
the IAM transport operator from θ0 to a new point e′ ∈ E in
the parameter space as follows. Represent e′, using a convex
combination of its k-nearest neighbors:

e′ =
∑

j∈N (k,e′)

wjej ,
∑
j

wj = 1,

where N (k, e′) is the index set of the k-nearest neighbors of
e′. Then, the neighborhood on the OFM associated with e′

can be constructed by using the same coefficients to generate
the corresponding optical flow vectors in F :

f ′ =
∑

j∈N (k,e′)

wjfj ,

where both the neighborhood N and the weights {wj} are
inferred from e′ and its neighbors. Using the new optical flow
f ′, we can use (2) to navigate on the IAM to the correct image.

In summary, we transport nonlinearly on the IAM by
transporting linearly on the OFM and then applying (2).
The success of this approach depends critically on the twin

assumptions of local linearity and local isometry of the OFM
which, as we have shown, are valid for several classes of
interesting manifolds.

B. Connections to the exponential map

In the differential geometric treatment of analytical mani-
folds, it is often useful to define a one-to-one mapping from
the set of all vectors belonging to the tangent space at Iθ0 ∈ I
to the set of all points belonging to a neighborhood of Iθ0 .
This functional relation is dubbed the exponential (Exp) map;
the inverse function is called the logarithmic (Log) map [20].
Unfortunately, the non-differentiable structure of IAMs has
blocked the formal development and application of these tools
in practical applications.

We observed in Section III that the OFM at a point on
an IAM can be interpreted as the nonlinear analogue of the
tangent space to the IAM at that point. Therefore, using
the OFM-based navigation framework from above, we can
construct two new operators that are analogous to the ex-
ponential and logarithmic maps. We dub them the OFExp
and the OFLog operators. As discussed above in Section
IV-A, given a reference image Iθ0 and a sampling of images
{Iθi , i = 1, . . . , IM} ⊂ I, we can obtain the optical flows
{f1, . . . , fM} ⊂ F0 and compute their low-dimensional Eu-
clidean embeddings {e1, . . . , eM} ⊂ E ≡ RK . The space E
is analogous to the tangent space at the reference image Iθ0
and can be equipped with a suitable orthonormal basis B.

Formally, the OFExp and OFLog operators are defined as
follows. Given a query image Iθ, the OFLog operator applied
to Iθ is defined as the vector in E obtained by computing
the optical flow from Iθ0 to Iθ and then projecting it onto the
orthornormal basis B. Thus, the OFLog operator is a mapping
from the IAM to the low-dimensional embedding E of the
smooth OFM F .

Given a query optical flow vector e′ ∈ E , the OFExp
operator applied to (e′) is obtained by expressing e′ as a linear
combination of the basis vectors B to obtain the optical flow
vector f ′. Once f ′ is obtained, we apply (4) to the reference
image Iθ0 to obtain a image I ′ = f ′(I0). Thus, the OFExp
operator is a mapping from the embedded OFM representation
E to the IAM I.

For analytic manifolds, the Exp and Log maps enable
extremely useful computational tools for geodesic generation,
Karcher means, and other quantities. In Section V, we demon-
strate that our OFExp and OFLog enable analogous tools for
non-differentiable IAMs.

C. Occlusions and boundary effects

Occlusions and boundary effects are invariably encountered
in practice imagery. They can lead to undefined and/or incon-
sistent optical flow estimates at various pixels in the image. In
practice, a small amount of occlusion between the reference
and query image can be tolerated by not using the part of the
image that becomes occluded. A formal theoretical treatment
of occlusion phenomena in the optical flow framework is
beyond the scope of the paper; rather, we will mitigate these



undesirable effects using a simple heuristic to detect and
discard bad optical flow estimates.

Suppose we are given a pair of images I1 and I2. We use (4)
to compute the flow f from I1 to I2, and the flow f ′ from I1
to I2. Then, we add these flow vectors to obtain the composite
flow f ′′, and apply this flow to I1 using (4) to obtain a new
image I ′1. Ideally, I1 = I ′1; however, the images might be
mis-aligned. We identify pixels where the drift is more than
1 pixel. Such pixels are discarded and the flow values at the
pixel are not used in subsequent computations.

Finally, it should be intuitively clear that a clever choice of
reference image Iθ0 can alleviate occlusion problems. Given
an unorganized database of images sampled from an IAM,
picking the “best” reference image is a nontrivial problem.
However, in Section V, we describe an algorithm for Karcher
mean estimation based on the OFExp operator that often yields
a good choice of reference.

V. APPLICATIONS AND EXPERIMENTS

We now present the results of a number of numerical
experiments that illustrate the utility and applicability of our
proposed OFM-based manifold modeling framework. We used
the Brox and Malik toolbox [15] for estimating the optical
flows between pairs of images with the default parameter
settings. The results do not change significantly when we use
other optical flow estimation algorithms, such as [14], [16].

A. Generating geodesics

Geodesics (informally, shortest manifold paths) are useful
for defining meaningful relations between images on an IAM.
However, Donoho and Grimes [1] have argued that the non-
differentiable nature of most IAMs renders moot the study
of their geodesics; indeed, for IAMs containing images with
sharp edges, the length of any geodesic is shown to be infinite.

However, shortest paths in the parameter space Θ can
be well-defined, particularly when Θ can be identified with
Euclidean space. Since in many cases the OFM is isometric
to the parameter space, we can induce a geodesic on the IAM
by first generating the geodesic in the space of optical flows
and then applying (2) to obtain a path on the IAM.

Formally, given a reference image Iθ0 , the associated OFM
F and its low dimensional embedding E , the geodesic path
between two images I1 and I2 within a neighborhood Iθ0
can be analytically generated as follows. First, compute
e1 = OFLog(I1) and e2 = OFLog(I2) as defined in
Section IV. Then, the geodesic on the IAM between I1
and I2 is given by Γ = {γ(t) | 0 ≤ t ≤ 1}, where
γ(t) = OFExp((1−t)e1+te2). Figure 2 shows experimental
results for geodesic generation on a pose IAM of a scene
containing some household objects. It is visually evident
that our proposed OFM-based synthesis approach outperforms
LLT-based methods, yielding crisp images with sharp edges.

B. Karcher mean estimation

The Karcher mean of a set of points on a manifold is
defined as the point IKM ∈ I such that the sum of geodesic

Sampling of 10 images from an IAM

Gr. Truth OFM LLT on IAM

OFM-based Karcher Mean estimation

Initialization ConvergedIntermediate points

Fig. 5. OFM-based Karcher mean estimation for 10 images from the
COIL dataset [21]. The top and bottom rows correspond to two trials with
widely different initialization points chosen from the image samples. In both
cases, the converged Karcher mean estimates are identical. The Karcher mean
estimates are also vastly superior to those obtained using LLT on the IAM.

distances from IKM to each point in the set is minimized [22].
In principle, the Karcher mean corresponds to a point on the
manifold that is most representative of a given point set. This
can be invaluable in applications ranging from robust statistical
inference and model-building to data visualization. To date,
since geodesics for IAMs are hard to estimate, the study of
Karcher means for image data has been limited.

We can modify a simple Karcher mean estimation algorithm
[22] to use the OFExp operator defined in Section IV. Given
a finite set of images {Ii, i = 1, . . . ,M}, we initialize by
randomly choosing a base (reference) image Iθ from the
set and then computing the set of optical flows {fi, i =
1, . . . ,M} and their low-dimensional Euclidean embedding
{ei, 1, . . . ,M}. The OFExp map applied to the sample mean
e′ = (1/M)

∑
i ei gives a new reference image Iθ′ . Note

that this new, intermediate reference image need not coincide
with any element in the given set of images. Using this new
reference image, we again perform the computation of optical
flows, their Euclidean embedding, the mean estimation, and
the exponential map. This procedure is repeated until conver-
gence. While convergence to the true Karcher mean is not
guaranteed, we have empirically observed in our experiments
that the algorithm always converged to a solution that can be
interpreted as a “mean” image.

Figures 5 and 6 display the results of our new OFM-based
Karcher mean estimation algorithm on different standardized
datasets [21], [23]. Figure 6, in particular, demonstrates the
stability of the method with respect to the choice of the
initial reference image. The images in Fig. 6 come from a
highly nonlinear IAM generated by extracting image frames
from a video sequence of an object undergoing a non-rigid
deformation. Despite initializing the estimation algorithm with
very different starting reference images, the output Karcher
mean estimates are identical; consequently, our algorithm can
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Fig. 7. OFM-based charting of a 1D IAM of a cuboid rotating about an axis using (top) optimal and (bottom) greedy methods. Each reference image charts
a neighborhood (marked with braces) of the IAM. While the optimal chart provides maximum parsimony in representation (in this case, 4 base images),
the computation time of the algorithm is prohibitive. In contrast, the greedy algorithm returns more reference points (in this case, 7 base images) but in a
computationally efficient manner. Images are from the COIL dataset [21].

Initialization ConvergedIntermediate points

Fig. 6. OFM-based Karcher mean estimation for images from video of a
non-rigidly deforming object [23]. The top and bottom rows correspond to
two trials with widely different initialization points (the first and last frames
of the video) chosen from the image samples. In both cases, the converged
Karcher mean estimates are identical.

be interpreted as being robust with respect to the starting
reference point. Finally, to pick up the thread begun in
Section III, Fig. 6 demonstrates empirically that the OFM
concept and toolset is applicable beyond the class of manifolds
(pose, affine transformation) that we can currently prove to
have smooth OFMs.

C. Charting IAMs

OFMs enable us to build a concise analytic description
for a given IAM using the concept of a transport operator
from a reference image. In practice a single reference point
Iθ0 , together with the associated OFM Fθ0 at that point,
rarely suffices to specify an entire IAM. This is due to
phenomena such as occlusions (see Section IV-C) as well as
the appearance of novel, unseen image features as we traverse
from one neighborhood to another neighborhood on the IAM.
We can overcome this issue using the technique of charting
an IAM by inferring a “good” set of reference points and
then constructing the OFMs at these reference points [24].
Then, the complete IAM can be concisely described using this
collection of reference points (or landmarks) and the OFM (or
map) associated with each of the landmarks.

It is intuitively clear that there is no one unique way to
build a chart for an IAM. Indeed, a fundamental tradeoff

exists between the number of reference points in the chart
and the sizes of the maps in the chart. This tradeoff results
in differences in computational considerations. If we desire
maximum parsimony (i.e., the minimum number of reference
points), then the resulting algorithm to find the optimal chart
is computationally demanding, since it requires optical flow
estimation between all pairs of images from the dataset. For
M images on the IAM, this algorithm has computational
complexity O(M2). Alternatively, we can greedily build chart-
based representations in O(M) time using a simple modifica-
tion of the algorithm described in Section V-B to encompass
the well-known concept of k-means. Figure 7 demonstrates an
optimal (parsimonious) and a greedily-constructed chart over
an 1D pose IAM of a rotating household object.

VI. DISCUSSION

In this paper, we have advocated for and developed a new
transport operator-based viewpoint for the analysis, modeling,
and processing of IAMs. Our key result is that the space
of optical flow-based transport operators forms a smooth
manifold for a large class of interesting IAMs. Working on
the space of optical flows provides a much better match to the
curved geometry of an IAM than traditional methods based
on LLT. We have proved that our optical flow-based approach
is exact for the IAMs generated by affine articulations and
camera pose changes and a good approximation for several
other IAMs of interest. It is our hope that the OFM concept and
its associated toolset can deliver state-of-the-art performance
in image processing and vision problems where IAMs have
come up short.

Related work: The approach described in this paper follows
a general principle in image understanding that proceeds by
modeling image deformations, as opposed to modeling image
intensities. [2], [25]–[27]. Indeed, the notion of transport
operator is the same as a deformation (or a diffeomorphism,
when it is invertible). However, our ideas should be interpreted
as a specialization to the case of manifold-valued data. A key
distinction is our characterization of the space of transport



operators as a K-dimensional manifold, whereas diffeomor-
phisms as a group [2] are an infinite-dimensional construct.
Here, the reduced dimensionality is important, as it leads to a
concise model underlying the image ensemble.

Morphlets [27] are also closely related to the ideas espoused
in this paper. Morphlets are motivated by the idea that en-
sembles of image deformations are smoother and easier to
model and analyze than ensembles of raw images. The ideas
in this paper rely on this same general premise. However, while
morphlets provide tools to represent image deformations and
to interpolate across image deformations, the treatment of [27]
is limited to image pairs. In contrast, the ideas in this paper
apply to image ensembles consisting of a potentially large
number of images.

In the context of image ensembles, Beymer and Poggio
[25] argue for the use of motion-based representations for
learning problems. However, their goal is image synthesis,
and their method offers no insights into the geometric nature
of manifold-valued data. In contrast, our approach naturally
leads to tools such as OFExp and OFLog; to the best of our
knowledge these are completely novel.

Jojic et al. [26] use a layered representation to represent
videos by separating the appearance of moving objects from
their motion and then representing each using subspace and
manifold models. This enables a simple, yet powerful, repre-
sentation that is capable of modeling and synthesizing complex
scenes using simpler primitives such as subspaces and transla-
tion manifolds. Our goal is to study the properties of transport
operators/deformations associated with image ensembles; in
this regard, we go beyond this simple manifolds induced by
translations and affine transformations.

Beyond optical flow: The use of optical flow as a transport
operator is meaningful only when the pixel brightness is
constant across the images in the ensemble and when the
articulation manifests itself as a projection of the motion field.
When either condition is violated, our approach needs to be
appropriately modified. An extreme example is the case of
IAMs formed by varying illumination; we defer a discussion
of the necessary modifications to future research.

Depending on the application at hand, it is possible to
construct transport operators other than optical flow. For exam-
ple, we can build a similar theory for sparse correspondences
as opposed to dense optical flow for applications such as
detection and recognition rather than synthesis. Sparse corre-
spondences can be estimated more efficiently and reliably than
dense flow. The success of the SIFT [28], for example, cannot
be overstated. Given that sparse point correspondences form
the basis of the current state-of-the-art algorithms for object
detection and recognition, the allure of constructing transport
operators from such correspondences is considerable.

Finally, much of the work on unsupervised manifold learn-
ing is insensitive to the modality of the data. While our
development of transport operators is strongly tied to the fact
that we are analyzing image ensembles generated by imaging
objects, the ideas in this paper can potentially be extended

to non-image modalities given an appropriate definition of
transport operator.
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