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Abstract

Perception systems of self-driving vehicles require large
amounts of diverse data to be robust against adverse light-
ing and weather conditions. Collection and annotation of
such traffic data is resource-intensive and expensive. To cir-
cumvent this challenge, we introduce an approach where we
train attribute-based generative models conditioned on the
time-of-day labels to reconstruct semantically valid trans-
formed versions of the original data. We further show the
generalization capabilities of our model where they are able
to reconstruct full traffic scenes despite having only being
trained on constrained crops of the original images. Fi-
nally, we present a new dataset derived from an original
traffic scene dataset augmented with data generated by our
attribute-based conditional generative models.

1. Introduction
Autonomous vehicular systems rely on the use of real-

world data to train perception systems. This data generally
consists of color traffic images taken by cameras placed on
cars and are further annotated manually. Data collection
is an arduous and error-prone process. Additionally, such
datasets are generally imbalanced and do not span all pos-
sible environmental conditions.

Training perception systems on such imbalanced data
would result in undefined behaviour in rare, yet critical, en-
vironmental changes. Therefore, an approach to augment an
existing dataset with environmental transformations is nec-
essary. Existing approaches to this problem rely on the use
of 3D simulations [4, 16] to generate synthetic data. How-
ever, these approaches are often not realistic and perception
models trained on these augmentation methods are suscep-
tible to synthetic artifacts. On the other hand, a well-trained
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Figure 1. Semantically transformed images of cars with day or
night attributes. The first column contains the original images. The
second column and third column show images reconstructed by
the AttGAN under the original and flipped attributes. The trained
AttGAN successfully learns to decouple the ‘day/night’ attribute
from the underlying invariant data. Note the varying appearance
of taillights under the day and night attributes.

generative model captures the intricacies of natural images
while being able to generate natural, realistic transforma-
tions of input images. Additionally, generative adversarial
models allow for latent space interpolation. This allows for
generating data that may be expensive to obtain naturally
while also reducing redundancy in data acquisition.

We present a novel application of attribute conditioned
generative models to transform street and traffic images un-
der various attributes. The generative model, Attribute GAN
(AttGAN) [9] reconstructs an input image with various en-
vironmental attributes while allowing fine-grained control
over the intensity of the effect. We train an AttGAN condi-
tioned on the time-of-day attribute between Day and Night
using crops of objects of interest namely cars and roadside
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Figure 2. Block Diagram for interpolation on the time-of-the-day
attribute. By uniformly sampling θi over the attribute line segment
[0, 1], the autoencoder is used to generate semantically valid trans-
formations corresponding to times-of-day between day and night.

signs, from the Berkeley Deep-Drive Dataset (BDD) [23].
The trained model is then used to generate images with
flipped attributes which means that a daytime image is
transformed to a night-time image. Using this generative
model, we are able to interpolate over the input attribute
vectors to generate images for various times-of-day. We
also provide examples showing that the generative model
learns to capture semantic information about the image that
a style transformation or a graphics-based approach cannot
capture. We also present BDD++, a new dataset of im-
ages generated with day and night attributes from the BDD
dataset.
Outline. We first provide a brief literature survey of con-
ditional generative models and synthetic data augmenta-
tion methods for traffic data images. We then describe our
method for training the AttGAN with a modified version
of the BDD dataset in Section 3 followed by experiments
and results in Section 4. We finally analyze our results and
conclude in Section 5.

2. Related Work

The challenge of data augmentation for autonomous
driving has been addressed in several recent works. Driving
datasets generally are of two types: synthetically generated
traffic scenes and real-world data. Synthetic data generation
relies on the use of graphics engines [4, 18] and games [16].
CARLA [4] uses the UNITY game engine to simulate traf-
fic behaviour and generate high fidelity data. The Synthia
dataset [18] is another dataset built along the same lines
with rendered city scenes and corresponding segmentation
masks. Datasets such as KITTI [7], CamVID [5], Oxford
Robotcar Dataset [14] and Berkeley Deep Drive(BDD) [23]
present large scale real world data for semantic segmenta-
tion, scene recognition and motion propagation. Our ap-
proach enables augmentation of any of these datasets using
a generative model trained to transform input images under
various attributes.

DeepTest [21] introduces an automated testing frame-
work for DNNs used for autonomous driving by generat-
ing affine transformations of images under illumination and
weather conditions. DeepRoad [24] improves upon the re-
sults using GAN-generated images under snowy and rainy

conditions based on the framework of [13]. CyCADA [10]
and UNIT [25] ensure semantic constraints on the real and
generated images through cyclic consistency loss. Gatys et
al. [6] introduce a neural algorithm to combine style of one
image and the content of another and jointly optimize over
the style and content losses to generate a new image while
preserving the content of the former and style of the latter
image.

Dai et al. [3] introduces a novel method to add synthetic
fog of variable densities to real clear weather scenes us-
ing semi-supervised learning. Sakaridis et al. [19] augment
original Cityscapes dataset[2] with synthetic fog. Sakaridis
et al. [20] focuses on the problem of semantic segmentation
on nighttime images providing a novel pipeline to gradually
transfer daytime images to nighttime images.

Generative Adversarial Networks (GAN) [8] are popu-
larly used as a method to generate samples from real world
image distributions. Chen et al. [1] present InfoGAN where
stylistic factors of the output image are controlled using
specific dimensions of the input latent vector. Fader Net-
works [12] and Attribute GANs et al. [9] extend this to
generate facial images with specific attributes which are
provided as conditional inputs to autoencoders. The con-
cept of using generative models to create synthetic data for
autonomous driving tasks is not new. Uricár et al. [22]
presents a comprehensive survey of advanced data augmen-
tation techniques using GANs.

Our approach uses AttGANs, a specific attribute con-
trolled generative model to modify environmental attributes
of input data. Specifically, we change the time-of-day at-
tribute for traffic scenes using an AttGAN trained on a pro-
cessed version of the BDD dataset.

3. Attribute Interpolation with Conditional
Generative Models

3.1. Architecture

The Attribute GAN (AttGAN) [9] is an encoder-decoder
architecture which is be used for editing attributes by ma-
nipulating the encoded latent representation. An AttGAN
disentangles the semantic attributes from the underlying in-
variances of the data by considering both the original and
the flipped labels while training. This is achieved by train-
ing a latent discriminator and classifier pair to classify both
the original and the transformed image to ensure invari-
ance. The model is trained to jointly optimize over an at-
tribute classification loss, an adversarial loss and a recon-
struction loss to ensure proper switching of the desired at-
tributes while still maintaining the realness of the image and
preserving the attribute excluding details at the same time.
The architecture of the AttGAN ensures skip connections
between the decoder and encoder like a U-Net [17] to en-
sure high quality of reconstructed images in the application
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Figure 3. Examples of images from the BDD++ dataset. The
first row contains image crops generated with the daytime label.
The second row correspondingly shows images generated with the
night attribute. The samples show two objects of interest generated
by the trained attribute encoder: cars and traffic signs.

of image translation.
The AttGAN architecture additionally allows for at-

tribute style manipulation where one controls the style and
expression of the desired attribute in the reconstructed im-
age. This is achieved by maximizing the mutual informa-
tion through optimization of the encoder-decoder learning
by binding a set of style controllers and the generated output
images, thus making them highly correlated. He et al. [9]
show an example of such style intensity control. Thus keep-
ing the attribute style manipulation in mind as well as the at-
tribute preserving learning of the model, we select AttGAN
as our choice of conditional generative model which we
train on a comprehensive driving dataset explained in the
following sections.

3.2. Data

For our experiments, we create a modified version of the
Berkeley Deep Drive (BDD) Dataset [23] as our dataset for
both training and testing. We use the BDD dataset as it con-
tains comprehensive annotations of various driving scenes
taken at various time of the day and across different sea-
sons. The annotations include both global features of an
image such as drive-able area, the time of the day, the par-
ticular weather setting under which the scene has been taken
as well as abundant local features which include 2D bound-
ing boxes for object classes of importance, lane markings
and segmentation masks.

In the following sections we introduce a non-traditional
approach to train a conditional generative model to generate
traffic scenery with modifiable environmental attributes.

3.3. Preprocessing

We introduce a non-traditional approach in which we
choose a fair representation of the entire dataset and then
train an AttGAN [9] conditioned on the features of this sub-
set. Since the goal of our experiments is to reconstruct the
same image with flipped day and night attributes, we seg-
ment the dataset based on the time of the day label into two
classes: Day and Night. To tackle the data imbalance be-

tween the number of day and night images in the original
dataset, we decide to crop objects of important classes from
the original dataset conditioned on the two labels and cre-
ate a dataset of our own. We crop the images using the 2D
box annotations provided with the dataset and by constrain-
ing the aspect ratio of the image crops under an empirically
decided upper bound1. For the purposes of this work, we
only consider the crops of cars and traffic signs, though the
concept extends to all given classes in the dataset.

3.4. Training

AttGANs are trained in a supervised manner by train-
ing the generative auto-encoder to reconstruct input images
under the original and the flipped attribute. For our appli-
cation, we use our augmented cropped dataset along with
the corresponding attribute labels for training. The crop-
ping ensures that the model learns to reconstruct objects of
interest over redundant background.

In general, AttGANs are trained by simply flipping the
input attribute vector. We observe that in case of our cho-
sen attributes, the transition between night and day is not
abrupt. In addition, the primary motivation of our using
such attribute conditioned models is that we would like to
interpolate over attribute space to reconstruct examples un-
der various times of the day. Thus we train an AttGAN with
the attribute space multiplied with a truncated normal dis-
tribution. Intuitively, the truncated normal distribution is a
more natural prior as compared to an uniform distribution
in our case as the data is centered around the day and night
attributes. Multiplying a truncated normal distribution to
the actual attribute distribution ensures the final flipped at-
tributes are more uniformly distributed.

4. Experiments and Results
We train an AttGAN with 70% of the dataset as train-

ing data and 20% for validation. The remaining 10% of the
dataset is used for inference. The autoencoder architecture
contains five encoding and decoding layers. As mentioned
earlier in Section 3.1 the network ensures a U-Net architec-
ture with skip connections to ensure good quality images.
The non-linear activation functions for the encoder and the
discriminator are Leaky Relu and Rectified Linear Unit for
the decoder. We use the ADAM optimizer [11] to optimize
over the binary cross-entropy loss. We use the same co-
efficients for the reconstruction loss, attribute classification
loss and the adversarial loss as mentioned in [9]. We re-
size each crop to a size of 128 × 128 for training with a

1The images produced by cropping the dataset with the 2D box anno-
tations of cars and traffic signs are of varying shapes. We constrain each
image crop to be within an aspect ratio of 4:3. Resizing of crops with non-
standard aspect ratio induce unnatural sheer in either dimensions which
result in improper training of the AttGAN. Additionally we increase the
size of each image crop by 30 pixels on either sides than the provided 2D
box annotations to create the dataset with perceptible day/night effects.

3



Figure 4. Style manipulation of time of day attributes through a trained Attribute GAN with day and night labels. The first column shows
the original image. The next ten columns denote the gradual change in style which is the time of day in this case. The first two rows show
gradual change from night to day on images from the test set of crop images. The last two rows exhibit gradual change from night to day
on images from the original BDD dataset. This shows that the model trained on crop images from the original dataset generalizes on the
original uncropped BDD images. Note that the model learns intuitive transformations by dimming taillights or clearing the sky.

batch size of 32. All experiments were performed on a sin-
gle workstation equipped with an NVidia Titan Xp GPU in
PyTorch [15] v1.0.0.

4.1. Single Attribute flip

In these experiments, we input an attribute value indicat-
ing the intensity of attribute that we want to ensure in the
reconstructed images. This gives a certain degree of control
as to how much we enforce the day and night changes on the
input images. Given the label in the test dataset correspond-
ing to each image, the attribute will be flipped so that if the
initial label is daytime the image will be flipped to a night
image proportional to the flag we pass in. In Figure 1 we
can see that our trained model successfully flips the day im-
ages to night and vice versa. We augment BDD++ with the
images generated with the corresponding flipped attributes
of our test set so as to provide day-night pairs.

4.2. Style interpolation

In style interpolation the model reconstructs each image
corresponding to each interpolation value and gradually in-
creases this value to iterate over the entire range passed dur-
ing inference. The model starts interpolating from the least
value in the array and gradually increases this value which
reflects in the reconstructed output image. In Figure 4 we
can see that our trained model successfully changes the style
of the image from night to day. Apart from style interpola-
tion this method provides a degree of control over the time-
of-day attribute. This method allows for augmentation with
additional adverse condition data for autonomous driving
research.

Attributes Day Night

Original Generated Original Generated

Cars 54563 19178 19178 54563
Traffic Signs 7358 5003 5003 7358

Table 1. Dataset distribution for BDD++. The dataset contains
paired images with labels for the time-of-the-day attribute and if
they were synthetically generated.

5. Discussions and Conclusion

In this paper, we present a new approach to train a condi-
tional attribute model to reconstruct traffic scenes with day
and night labels. We successfully demonstrate the capabil-
ity of our trained model to flip and interpolate attributes to
change a day traffic scene into night and vice versa. Using
the trained attribute model, we create a new dataset, BDD++
which contains additional reconstructed day and night im-
ages. Figure 1 represents this as we see the contrasting ap-
pearance of car tail-lights under day and night conditions.
Additionally, the choice of using a truncated normal distri-
bution to smooth the attribute samples allows for smoother
interpolations as compared to using a simple uniform distri-
bution. We also emphasize that though our model is trained
on cropped images, it generalizes to generate full-scale im-
ages as seen in the last two rows of Figure 4.

Overall, our work shows that conditional attribute mod-
els such as AttGAN can be successfully trained to gen-
erate semantically valid traffic scenes to augment existing
datasets conditioned on various weather and day/night at-
tributes, thereby facilitating training and testing for safety-
critical autonomous driving research.
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