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Abstract
We introduce a framework for sparsity structures
defined via graphs. Our approach is flexible
and generalizes several previously studied sparsity
models. Moreover, we provide efficient projec-
tion algorithms for our sparsity model that run in
nearly-linear time. In the context of sparse re-
covery, our framework achieves an information-
theoretically optimal sample complexity for a wide
range of parameters. We complement our theoreti-
cal analysis with experiments showing that our al-
gorithms also improve on prior work in practice.

1 Introduction
Over the past decade, sparsity has emerged as an impor-
tant tool in several fields including signal processing, statis-
tics, and machine learning. In compressive sensing, spar-
sity reduces the sample complexity of measuring a signal,
and statistics utilizes sparsity for high-dimensional inference
tasks. In many settings, sparsity is a useful ingredient be-
cause it enables us to model structure in high-dimensional
data while still remaining a mathematically tractable concept.
For instance, natural images are often sparse when repre-
sented in a wavelet basis, and objects in a classification task
usually belong to only a small number of classes.

Due to the success of sparsity, a natural question is how
we can refine the notion of sparsity in order to capture more
complex structures. There are many examples where such an
approach is applicable: (i) large wavelet coefficients of nat-
ural images tend to form connected trees, (ii) active genes
can be arranged in functional groups, and (iii) approximate
point sources in astronomical data often form clusters. In
such cases, exploiting this additional structure can lead to im-
proved compression ratio for images, better multi-label clas-
sification, or smaller sample complexity in compressive sens-
ing and statistics. Hence an important question is the fol-
lowing: how can we model such sparsity structures, and how
can we make effective use of this additional information in a
computationally efficient manner?

There has been a wide range of work addressing these
questions, e.g., [Yuan and Lin, 2006; Jacob et al., 2009;
He and Carin, 2009; Kim and Xing, 2010; Bi and Kwok,
2011; Huang et al., 2011; Duarte and Eldar, 2011; Bach

et al., 2012b; Rao et al., 2012; Negahban et al., 2012;
Simon et al., 2013; El Halabi and Cevher, 2015]. Usually,
the proposed solutions offer a trade-off between the follow-
ing conflicting goals:

Generality What range of sparsity structures does the ap-
proach apply to?

Statistical efficiency What statistical performance improve-
ments does the use of structure enable?

Computational efficiency How fast are the resulting algo-
rithms?

In this paper, we introduce a framework for sparsity mod-
els defined through graphs, and we show that it achieves a
compelling trade-off between the goals outlined above. At
a high level, our approach applies to data with an under-
lying graph structure in which the large coefficients form a
small number of connected components (optionally with ad-
ditional constraints on the edges). Our approach offers three
main features: (i) Generality: the framework encompasses
several previously studied sparsity models, e.g., tree sparsity
and cluster sparsity. (ii) Statistical efficiency: our sparsity
model leads to reduced sample complexity in sparse recovery
and achieves the information-theoretic optimum for a wide
range of parameters. (iii) Computational efficiency: we give
a nearly-linear time algorithm for our sparsity model, signifi-
cantly improving on prior work both in theory and in practice.
Due to the growing size of data sets encountered in science
and engineering, algorithms with (nearly-)linear running time
are becoming increasingly important.

We achieve these goals by connecting our sparsity model
to the prize collecting Steiner tree (PCST) problem, which
has been studied in combinatorial optimization and approx-
imation algorithms. To establish this connection, we intro-
duce a generalized version of the PCST problem and give a
nearly-linear time algorithm for our variant. We believe that
our sparsity model and the underlying algorithms are useful
beyond sparse recovery, and we have already obtained results
in this direction. To keep the presentation in this paper coher-
ent, we focus on our results for sparse recovery and briefly
mention further applications in Section 4.

We give an overview of our theoretical results in Section 2
and refer the reader to the full version of this paper for proofs
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and further details [Hegde et al., 2015b]. In Section 3, we
complement our theoretical results with an empirical evalua-
tion on both synthetic and real data (a background-subtracted
image, a cerebral angiogram, and an image of text).

Basic notation Let [d] be the set {1, 2, . . . , d}. We say that
a vector β ∈ Rd is s-sparse if at most s of its coefficients are
nonzero. The support of β contains the indices corresponding
to nonzero entries in β, i.e., supp(β) = {i ∈ [d] |βi 6= 0}.
Given a subset S ⊆ [d], we write βS for the restriction of β
to indices in S: we have (βS)i = βi for i ∈ S and (βS)i = 0

otherwise. The `2-norm of β is ‖β‖ =
√∑

i∈[d] β
2
i .

Sparsity models In some cases, we have more information
about a vector than only “standard” s-sparsity. A natural way
of encoding such additional structure is via sparsity models
[Baraniuk et al., 2010]: let M be a family of supports, i.e.,
M = {S1, S2, . . . , SL} where Si ⊆ [d]. Then the corre-
sponding sparsity modelM is the set of vectors supported on
one of the Si:

M = {β ∈ Rd | supp(β) ⊆ S for some S ∈M} . (1)

2 Our contributions
We state our main contributions in the context of sparse re-
covery (see Section 4 for further applications). Here, the goal
is to estimate an unknown s-sparse vector β ∈ Rd from ob-
servations of the form

y = Xβ + e , (2)

where X ∈ Rn×d is the design matrix, y ∈ Rn are the ob-
servations, and e ∈ Rn is an observation noise vector. By
imposing various assumptions on X and e, sparse recovery
encompasses problems such as sparse linear regression and
compressive sensing.

2.1 Weighted graph model (WGM)
The core of our framework for structured sparsity is a novel,
general sparsity model which we call the weighted graph
model. In the WGM, we use an underlying graphG = (V,E)
defined on the coefficients of the unknown vector β, i.e.,
V = [d]. Moreover, the graph is weighted and we denote
the edge weights with w : E → N. We identify supports
S ⊆ [d] with subgraphs in G that are forests (unions of in-
dividual trees). Intuitively, the WGM captures sparsity struc-
tures with a small number of connected components in G. In
order to control the sparsity patterns, the WGM offers three
parameters:

• s, the total sparsity of S.

• g, the maximum number of connected components
formed by the forest F corresponding to S.

• B, the bound on the total weight w(F ) of edges in the
forest F corresponding to S.

More formally, let γ(H) be the number of connected com-
ponents in a graph H . Then we can define the WGM:

(a) s-sparsity (b) Cluster sparsity

Figure 1: Two examples of the weighted graph model. (a) In
a complete graph, any s-sparse support can be mapped to a
single tree (g = 1). (b) Using a grid graph, we can model a
small number of clusters in an image by setting g accordingly.
For simplicity, we use unit edge weights and set B = s − g
in both examples.

Definition 1. The (G, s, g,B)-WGM is the set of supports

M = {S ⊆ [d] | |S| = s and there is a F ⊆ G
with VF = S, γ(F ) = g, and w(F ) ≤ B} . (3)

Fig. 1 shows how two sparsity structures can be encoded
with the WGM. Since our sparsity model applies to arbitrary
graphs G, it can describe a wide range of structures. In par-
ticular, the model generalizes several previously studied spar-
sity models, including 1D-clusters, (wavelet) tree hierarchies,
the Earth Mover Distance (EMD) model, and the unweighted
graph model (see the full paper [Hegde et al., 2015b] for a
detailed comparison).

2.2 Recovery of vectors in the WGM
We analyze the statistical efficiency of our framework in
the context of sparse recovery. In particular, we prove that
the sample complexity of recovering vectors in the WGM is
provably smaller than the sample complexity for “standard”
s-sparse vectors. To formally state this result, we first intro-
duce a key property of graphs.

Definition 2. Let G = (V,E) be a weighted graph with edge
weights w : E → N. Then the weight-degree ρ(v) of a node
v is the largest number of adjacent nodes connected by edges
with the same weight, i.e.,

ρ(v) = max
b∈N
|{(v′, v) ∈ E |w(v′, v) = b}| . (4)

We define the weight-degree of G to be the maximum weight-
degree of any v ∈ V .

Note that for graphs with uniform edge weights, the
weight-degree ofG is the same as the maximum node degree.
Intuitively, the (weight) degree of a graph is an important
property for quantifying the sample complexity of the WGM
because the degree determines how restrictive the bound on
the number of components g is. In the extreme case of a
complete graph, any support can be formed with only a sin-
gle connected component (see Figure 1). Using Definitions
1 and 2, we now state our sparse recovery result (see the full
version of this paper for a more general statement of this re-
sult [Hegde et al., 2015b]).



Theorem 3. Let β ∈ Rd be in the (G, s, g,B)-WGM. Then

n = O

(
s

(
log ρ(G) + log

B

s

)
+ g log

d

g

)
(5)

i.i.d. Gaussian observations suffice to estimate β. More pre-
cisely, let e ∈ Rn be an arbitrary noise vector and let y ∈ Rn

be defined as in Eq. 2 where X is an i.i.d. Gaussian matrix.
Then we can efficiently find an estimate β̂ such that∥∥β − β̂∥∥ ≤ C‖e‖ , (6)

where C is a constant independent of all variables above.

Note that in the noiseless case (e = 0), we are guaran-
teed to recover β exactly. Moreover, our estimate β̂ is in a
slightly enlarged WGM for any amount of noise. Our bound
(5) can be instantiated to recover previous sample complex-
ity results, e.g., the n = O(s log d

s ) bound for “standard”
sparse recovery, which is tight [Do Ba et al., 2010]. For the
image grid graph example in Figure 1, Equation (5) becomes
n = O(s+g log d

g ), which matches the information-theoretic
optimum n = O(s) as long as the number of clusters is not
too large, i.e., g = O(s/ log d).

2.3 Efficient projection into the WGM
The algorithmic core of our sparsity framework is a compu-
tationally efficient procedure for projecting arbitrary vectors
into the WGM. More precisely, the model-projection problem
is the following: given a vector b ∈ Rd and a WGMM, find
the best approximation to b inM, i.e.,

PM(b) = argmin
b′∈M

‖b− b′‖ . (7)

If such a model-projection algorithm is available, one can in-
stantiate the framework of [Baraniuk et al., 2010] in order to
get an algorithm for sparse recovery with the respective spar-
sity model. However, solving Problem (7) exactly is NP-hard
for the WGM due to a reduction from the classical Steiner
tree problem. To circumvent this hardness result, we use the
approximation-tolerant framework of [Hegde et al., 2015a].
Instead of solving (7) exactly, the framework requires two al-
gorithms with the following complementary approximation
guarantees.
Tail approximation: Find an S ∈M such that

‖b− bS‖ ≤ cT · min
S′∈M
‖b− bS′‖ . (8)

Head approximation: Find an S ∈M such that

‖bS‖ ≥ cH · max
S′∈M
‖bS′‖ . (9)

Here, cT > 1 and cH < 1 are arbitrary, fixed constants. Note
that a head approximation guarantee does not imply a tail
guarantee (and vice versa). In fact, stable recovery is not pos-
sible with only one type of approximate projection guarantee
[Hegde et al., 2015a]. We provide two algorithms for solv-
ing (8) and (9) (one per guarantee) which both run in nearly-
linear time.

Our model-projection algorithms are based on a connection
to the prize-collecting Steiner tree problem (PCST), which is

a generalization of the classical Steiner tree problem. Instead
of finding the cheapest way to connect all terminal nodes in
a given weighted graph, we can instead omit some terminals
from the solution and pay a specific price for each omitted
node. The goal is to find a subtree with the optimal trade-off
between the cost paid for edges used to connect a subset of the
nodes and the price of the remaining, unconnected nodes (see
[Goemans and Williamson, 1995] for a formal definition).

We make the following three main algorithmic contribu-
tions. Due to the wide applicability of the PCST problem, we
believe that these algorithms can be of independent interest
(see Section 4).
• We introduce a variant of the PCST problem in which

the goal is to find a set of g trees instead of a single tree.
We call this variant the prize-collecting Steiner forest
(PCSF) problem and adapt the algorithm of [Goemans
and Williamson, 1995] for this variant.

• We reduce the projection problems (8) and (9) to a small
set of adaptively constructed PCSF instances.

• We give a nearly-linear time algorithm for the PCSF
problem and hence also the model projection problem.

2.4 Comparison to related work
In addition to “point-solutions” for individual sparsity mod-
els, there has been a wide range of work on general frame-
works for utilizing structure in sparse recovery. The approach
most similar to ours is [Baraniuk et al., 2010], which gives
a framework underlying several recovery algorithms for in-
dividual sparsity models. However, the framework has one
important drawback: it does not come with a full recovery
algorithm. Instead, the authors only give a recovery scheme
that assumes the existence of a model-projection algorithm
satisfying (7). Such an algorithm must be constructed from
scratch for each model, and the techniques that have been
used for various models so far are quite different. Our contri-
bution can be seen as complementing the framework of [Bara-
niuk et al., 2010] with a nearly-linear time projection algo-
rithm that is applicable to a wide range of sparsity structures.
This answers a question raised by the authors of [Huang et
al., 2011], who also give a framework for structured spar-
sity with a universal and complete recovery algorithm. Their
framework is applicable to a wide range of sparsity models,
but the corresponding algorithm is significantly slower than
ours, both in theory as well as in practice, as demonstrated by
our experiments in Section 3. Moreover, our recovery algo-
rithm shows more robust performance across different shapes
of graph clusters.

Both of the approaches mentioned above use iterative
greedy algorithms for sparse recovery. There is also a large
body of work on combining M-estimators with convex regu-
larizers that induce structured sparsity, e.g., see the surveys
[Bach et al., 2012a] and [Wainwright, 2014]. The work clos-
est to ours is [Jacob et al., 2009], which uses an overlap-
ping group Lasso to enforce graph-structured sparsity (graph
Lasso). In contrast to their approach, our algorithm gives
more fine-grained control over the number of clusters in the
graph. Moreover, our algorithm has better computational
complexity, and to the best of our knowledge there are no
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(a) Background-subtracted image (b) Angiogram (c) Text (d) Running times
Figure 2: Sparse recovery experiments. The images in the top row are the original images β.

formal results relating the graph structure to the sample com-
plexity of the graph Lasso. Emprirically, our algorithm recov-
ers an unknown vector with graph structure faster and from
fewer observations than the graph Lasso (see the supplemen-
tary material of the full paper [Hegde et al., 2015b]).

3 Experiments
We focus on the performance of our proposed algorithm
(Graph-CoSaMP) for the task of recovering 2D data with
clustered sparsity. Multiple methods have been proposed for
this problem, and our theoretical analysis shows that our al-
gorithm should improve upon the state of the art. We compare
our results to StructOMP [Huang et al., 2011] and the heuris-
tic Lattice Matching Pursuit (LaMP) [Cevher et al., 2009].
The implementations were supplied by the authors and we
used the default parameter settings. Moreover, we ran two
common recovery algorithms for “standard” s-sparsity: Ba-
sis Pursuit [Candès et al., 2006] and CoSaMP [Needell and
Tropp, 2009].

We follow a standard evaluation procedure for sparse re-
covery / compressive sensing: we record n observations
y = Xβ of the (vectorized) image β ∈ Rd using a sub-
sampled Fourier matrix X . We assume that all algorithms
possess prior knowledge of the sparsity s and the number of
connected-components g in the true support of the image β.
We declare a trial successful if the squared `2-norm of the
recovery error is at most 5% of the squared `2-norm of the
original vector β. The probability of successful recovery is
then estimated by averaging over 50 trials. We perform sev-
eral experiments with varying oversampling ratios n/s and
three different images. See the supplementary material of
the full paper [Hegde et al., 2015b] for a description of the
dataset, experiments with noise, and a comparison with the
graph Lasso.

Figure 2 demonstrates that Graph-CoSaMP yields consis-
tently competitive phase transitions and exhibits the best sam-
ple complexity for images with “long” connected clusters,

such as the angiogram image (b) and the text image (c). While
StructOMP performs well on “blob”-like images such as the
background-subtracted image (a), its performance is poor in
our other test cases. For example, it can successfully recover
the text image only for oversampling ratios n/s > 15. Note
that the performance of Graph-CoSaMP is very consistent: in
all three examples, the phase transition occurs between over-
sampling ratios 3 and 4. Other methods show significantly
more variability.

We also investigate the computational efficiency of Graph-
CoSaMP. We consider resized versions of the angiogram im-
age and record n = 6s observations for each image size d.
Figure 2(d) displays the recovery times (averaged over 50
trials) as a function of d. We observe that the runtime of
Graph-CoSaMP scales nearly linearly with d, comparable to
the conventional sparse recovery methods. Moreover, Graph-
CoSaMP is about 20× faster than StructOMP.

4 Further applications
We have introduced a general framework for structured spar-
sity that encompasses several previously studied sparsity
models, but still allows information-theoretically optimal
sample complexity and nearly-linear time algorithms.

Our algorithms have found applications beyond sparse re-
covery. In [Schmidt et al., 2015], we have used our PCST
algorithm for a feature extraction task in seismic image pro-
cessing. Other potential applications include the work of
[Rozenshtein et al., 2014], who use a PCST algorithm for
event detection in social networks.
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