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Abstract— Early detection of incidents is a key step to reduce
incident related congestion. State Department of Transportation
(DoTs) usually install a large number of Close Circuit Television
(CCTV) cameras in freeways for traffic surveillance. In this
study, we used semi-supervised techniques to detect traffic
incident trajectories from the cameras. Vehicle trajectories are
identified from the cameras using state-of-the-art deep learning
based You Look Only Once (YOLOv3) classifier and Simple
Online Realtime Tracking (SORT) is used for vehicle tracking.
Our proposed approach for trajectory classification is based
on semi-supervised parameter estimation using maximum-
likelihood (ML) estimation. The ML based Contrastive Pes-
simistic Likelihood Estimation (CPLE) attempts to identify
incident trajectories from the normal trajectories. We com-
pared the performance of CPLE algorithm to traditional semi-
supervised techniques Self Learning and Label Spreading, and
also to the classification based on the corresponding supervised
algorithm. Results show that approximately 14% improvement
in trajectory classification can be achieved using the proposed
approach.

Index Terms— traffic incident detection, surveillance, semi-
supervised learning, maximum likelihood estimation

I. INTRODUCTION

Quicker traffic incident detection in freeways is critical
for providing rapid incident response. Studies have shown
that every seven minutes of delay in incident verification
leads to an additional mile of queue build-up [1], thereby
increasing the likelihood of secondary incidents. Improved
procedures for incident management resulted in reduction
of $3.06 million and 143.3 million hours of incident-related
congestion [2]. Hence, significant efforts have been devoted
towards development of accurate and fast automatic inci-
dent detection (AID) algorithms. Traditional AID algorithms
rely on radar-based sensor data [3], loop detector data [4],
probe vehicle data [5], or fusing multiple multiple streams
[6], [7] to detect traffic incidents from data streams. State
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Departments of Transportation (DoTs) also install a large
number of Closed Circuit Television (CCTV) cameras for
surveillance tasks along freeways. Traffic incident detection
approaches from CCTV cameras can be broadly classified
into two categories: (a) Explicit Event Recognition and (b)
Anomaly Detection.

In explicit event recognition, the explicit knowledge of
the events to be identified are used for incident detection.
This requires a priori knowledge of all the recognizable
events, which the associated AID systems use as predefined
templates to parse the incoming data for incident detection.
For example, Ravinder et al. applied video image processing
for traffic management where there is non-adherence to lane
discipline [8]. Sadek et al. used logistic regression over His-
togram of Flow Gradients (HFG) to determine the probability
of occurrence of accident in a video sequence [9]. Zu et
al. used Gaussian Mixture Model (GMM) to detect traffic
vehicles and tracked using Mean Shift Algorithm. Then
traffic incident alarms were triggered when the velocity or
acceleration of the detected vehicles exceed a pre-determined
threshold [10]. Ren et al. used video based detection for
analyzing the traffic state distribution characteristics in a
cluster of cells dividing the lanes of a road segment [11].
More recently, Chakraborty et al. used deep convolutional
neural networks for detecting traffic congestion in camera
images [12]. Maaloul et al. used Farneback Optical Flow
for motion detection in a video sequence, together with a
heuristic threshold-selection approach for accident detection
[13].

The other popular approach to incident detection is based
on anomaly detection. In this approach, the system attempts
to learn “typical” patterns in the incoming data; any irregu-
larities in the observed data can be classified as an incident.
For example, Lou et al. used dynamic clustering techniques
to cluster the normal trajectories and detect the abnormal
ones. [14]. Picarelli used one-class Support Vector Machine
(SVM) for detecting anomalous trajectories [15]. Recently,
Yuan et al. performed anomaly detection in traffic scenes
using spatially-aware motion reconstruction [16]. Such un-
supervised modeling of the video sequences also traditionally
involved a combination of sparse coding and bag-of-words
(BOG) [17]. However, recent developments in deep learning
techniques have resulted in new methods learning normal
video patterns and thereby detecting anomalies based on
reconstruction error. Hasan et al. used a fully convolutional
feed-forward autoencoder to learn the spatio-temporal local
features and thereby learn the temporal regularity in the video
sequences [18]. Chong and Tay also used a combination



of spatial feature extractor and temporal sequencer based
on Convolutional Long Short Term Memory (ConvLSTM)
network for anomaly detection in videos [19].

Thus, broadly, the above two categories can be termed
as supervised and unsupervised learning techniques. While
supervised techniques can in general provide better results
in detection or classification tasks, the main hindrance in
its application is the scarcity of enough supervised data
samples and cost of manually annotating and labeling the
dataset. In particular, manually annotating vehicle tracks in a
video stream is extremely labor intensive, expensive, and not
scalable. In this work, we establish a new learning framework
for traffic incident detection using recent advances in semi-
supervised learning [20]. Via this framework, we achieve the
“best-of-both-worlds”; we manually annotate only a small
sample of normal vehicle tracks and tracks of vehicles in-
volved in an incident, and then we used all other (unlabeled)
vehicle tracks to improve the classification performance. Our
experimental results on traffic data provided to us by the
Iowa DoT demonstrate that our framework achieves superior
performance compared to supervised learning techniques
with a comparable amount of labeled examples.

The paper is structured as follows. Section II contains the
details of the methodology adopted for vehicle detection,
tracking, and the semi-supervised techniques for vehicle
trajectory classification. Section III gives the details of the
data used in this study followed by the detailed results in
Section IV. The final section provides a summary of the paper
and outlines avenues for future work.

II. METHODOLOGY

Traffic incident detection from videos using trajectory in-
formation comprises of 3 basic tasks: (a) vehicle detection (b)
vehicle tracking and trajectory formation, and (c) trajectory
classification. Each task is described next, with our primary
focus geared towards trajectory classification using semi-
supervised techniques.

A. Vehicle Detection

In recent years, evolution of convolutional neural networks
(CNN) have resulted in significant improvement in object
detection and classification performance. In this study, we
chose YOLOv3 [21] for vehicle detection primarily because
of its fast performance with reasonable accuracy which
makes it suitable for real-time performance. Specifically,
we used the YOLOv3-416 model trained on the Microsoft
Common Objects in Context (COCO) dataset [22]. We used
the classes: ‘car’, ‘motorbike’, ‘bus’, and ‘truck’ out of the
80 classes in the COCO dataset for our vehicle detection
module.

B. Vehicle Tracking and Trajectory Formation

Recent improvements in object detection performances
have led to tracking-by-detection as the leading paradigm
for multi-object tracking (MOT). In MOT, multiple objects
are detected in each frame and the aim is to associate the
detections across frames in a video sequence. In this study

we used the Simple Online and Realtime Tracking (SORT)
algorithm for vehicle tracking. This is an online multi-object
tracking algorithm which uses the Kalman Filter and the
Hungarian algorithm for the data association problem. We
chose this tracker because of its reasonable performance in
online, realtime settings. SORT tracker updates at 260 Hz,
making it suitable for realtime implementation.

Our object tracker module outputs a sequence of bound-
ing box coordinates, X-center (Xc), Y-center (Y c) for
each unique vehicle id across the frames, thereby form-
ing a trajectory. Thus, a trajectory can be defined as
a sequence of 2-dimensional points, denoted as TRi =
(p1, p2, p3 . . . pj . . . pleni). Here, each pj is a 2-dimensional
point representing the bounding box coordinates. The length
leni of a trajectory can be different for different trajectories.
Note that, in our study, we consider only the bounding box
center coordinates, but other features such as bounding box
appearance descriptors can also be included.

C. Semi Supervised Trajectory Classification

The aim of semi-supervised learning is to exploit the
easily-available unlabeled data to improve the performance
of supervised classifiers. However, it is not always the case
that the semi-supervised classifiers achieve lower error rates
compared to the supervised counterparts. On the contrary,
empirical studies have observed severely deteriorated perfor-
mances [23]. Recently, Loog demonstrated how Maximum
Likelihood (ML) can be used to improve classification per-
formance in semi-supervised setting [20].

In this paper, we address the problem of trajectory clas-
sification in semi-supervised settings using the Contrastive
Pessimistic Likelihood Estimation (CPLE) based on ML
estimation [20]. We present experimental results proving
the validity of our approach and compare the results with
the traditional semi-supervised classification techniques. We
discuss next the details of the CPLE method for semi-
supervised classification followed by a brief description of
the traditional algorithms that we chose for comparison.

1) Contrastive Pessimistic Likelihood Estimation (CPLE):
The two main concepts that form the core of CPLE are
contrast and pessimism. The CPLE method is contrastive,
meaning that the objective function explicitly controls the
potential improvements of the semi-supervised classification
over the supervised counterpart. CPLE is also pessimistic,
which means that the unlabeled data is modeled as behave
adversarially so that any semi-supervised learning mecha-
nism least benefits from it. This makes it resilient to whatever
form the true (unobserved) labels of the unlabeled data take.

For a K-class supervised classification, the log-likelihood
objective function is given by:

L (θ|X) =

N∑
i=1

log p (xiyi|θ) =

K∑
k=1

Nk∑
j=1

log p (xij , k|θ) (1)

where class k contains Nk samples, N =
Nk∑
k=K

is the total

samples, X = {(xi, yi)}Ni=1 is the set of labeled training



pairs with xi ∈ Rdd-dimensional feature vectors, and yi ∈
C = {1, ...,K} are their corresponding labels.

The supervised ML estimate, θ̂sup, maximizes the above
criterion:

θ̂sup = argmax
θ

L (θ|X) . (2)

In our study, we chose Linear Discriminant Analysis
(LDA) as our classifier, similar to the approach of Loog
[20]. Here, the log-likelihood objective function is given by

LLDA (θ|X) =

N∑
i=1

log p (xi, yi|π1, ..., πk, µ1, ..., µk,Σ)

=

K∑
k=1

Nk∑
j=1

log p (xkj , k|πk, µk,Σ),

(3)

where θ = (π1, ..., πk, µ1, ..., µk,Σ), πk are the class priors,
µk are the class means, and Σ is the class conditional
covariance matrix. Let us define the fully labeled data set
by

XV = X ∪ {(ui, vi)}Mi=1

Then, θ̂opt gives the parameter estimates of the classifier
where the unlabeled data is also labeled.

θ̂opt = argmax
θ

L (θ|XV ) (4)

Since supervised parameters in θ̂sup are estimated on a
subset X of XV , we have

L
(
θ̂sup|XV

)
≤ L

(
θ̂opt|XV

)
(5)

In semi-supervised setting, V is unobserved, but we have
X (labeled data) and U (unlabeled data). We have more
information compared to supervised setting but less than the
fully labeled case. Thus,

L
(
θ̂sup|XV

)
≤ L

(
θ̂semi|XV

)
≤ L

(
θ̂opt|XV

)
(6)

Now, we take the supervised estimate into account explic-
itly in order to construct a semi-supervised classifier than
can improve upon its supervised counterpart.

Before doing so, we define qki to be the hypothetical
posterior of observing label k given feature vector ui. It
can be also interpreted as the soft label for ui. Since∑
k∈C qki = 1, the K-dimensional vector q·i can be stated

as an element of the simplex ∆K−1 in RK :

q·i ∈ ∆K−1 =

{
(ρ1, . . . , ρK)

T ∈ RK |
K∑
i=1

ρi = 1, ρi ≥ 0

}
(7)

Provided that the posterior probabilities are defined, the log-
likelihood on the complete dataset for any parameter vector
θ can be expressed as

L (θ|X,U, q) = L (θ|X) +

M∑
i=1

K∑
k=1

qki log p (ui, k|θ) (8)

where the variable q in left-hand side explicitly indicates the
dependence on qki.

The relative improvement of the semi-supervised estimate
θ over the supervised solution for a given q can be expressed
as

CL
(
θ, θ̂sup|X,U, q

)
= L (θ|X,U, q)− L

(
θ̂sup|X,U, q

)
(9)

This enables us to check the extent of improvement of
semi-supervised estimates in terms of log-likelihood, defined
as contrast. Since q is unknown, Equation 9 cannot be
used directly in optimization. Hence, we choose the most
pessimistic solution where we assume that the true (soft)
labels achieve the worst-case among all semi-supervised
solutions and consider the q which minimizes the likelihood
gain. Thus, our objective function can be written as:

CPL
(
θ, θ̂sup|X,U

)
= min
q∈∆M

K−1

CL
(
θ, θ̂sup|X,U, q

)
(10)

where ∆M
K−1 =

∏M
i=1 ∆K−1 is the Cartesian product of M

simplices.
The objective function is strictly concave in θ and linear in

q. The heuristic to solve the maximization problem is based
on alternating between the following two steps:

1) Given a soft labeling q, the optimal LDA parameters
are estimated by

π̂k =
Nk +

∑M
i=1 qki

N +M
(11)

µ̂k =

∑Nk

j=1 xkj +
∑M
i=1 qkiui

Nk +
∑M
i=1 qki

(12)

Σ̂ =
1

N +M

K∑
k=1

[

Nk∑
j=1

(xkj − µ̂k) (xkj − µ̂k)
T

+

M∑
i=1

qki (ui − µ̂k) (ui − µ̂k)
T

].

2) The gradient ∇ for q given θ is calculated, and q is
changed to q − α∇, with step size α > 0. The step
size α is decreased as one over the number of iterations
and the maximum number of iterations to restricted to
3,000.

2) Baseline algorithms: We compared the performance of
our above CPLE-based framework for trajectory classifica-
tion with respect to two baseline semi-supervised methods:
Self Learning [24] and Label Spreading [25]. Self Learning
combines information from unlabeled data with the labeled
data to iteratively identify the label of unlabeled data. The
labeled training set is enlarged on each iteration until the
entire dataset is labeled. LDA [26] is used as the base
model in Self Learning in this study. Label Spreading [25], a
modification of the traditional Label Propagation algorithm
[27] uses an affinity matrix based on normalized graph
Laplacian. It uses soft clamping for labeling and the loss



function has regularization properties that make it robust to
noise. Interested readers can refer to [28] for further details.
Besides these two baseline, we also compared the results of
our algorithm to its supervised counterpart obtained from the
LDA classifier trained on the labeled data.

3) Feature Vector Generation: The trajectories obtained
from the vehicle tracker module are of variable length
(see Section II-B). However, the semi-supervised techniques
described above requires fixed-dimensional feature vectors.
Hence, we first used trajectory subsampling to convert these
variable length trajectories into fixed-length trajectories, sim-
ilar to [15]. Each trajectory is subsampled to form a list
of 2-D coordinates. We heuristically chose 75 as the fixed
length of each of these lists. since the typical length of each
trajectory is between 70 to 80. Thus, each trajectory can
now be defined as TRi = p1p2p3...pj ...p75, where pj is the
2D vector representing [Xc

j , Y cj ]. We normalized the feature
vector to zero mean and performed Principal Component
Analysis for dimension reduction. We found that 95% of
variance (explained by top 3 principal components for Xc

and Y c each) is sufficient, similar to [20]. Finally, the top
3 principal components for Xc and Y c are concatenated to
form a 6-D vector representing the trajectory information of
each vehicle id. This 6-D feature vector is used for trajectory
classification.

III. DATA DESCRIPTION

The primary source of data in this study are the traffic
incident videos obtained from the CCTV cameras installed
by the Iowa Department of Transportation (DoT) along the
freeways of Iowa. Our dataset consists of 151 traffic incident
videos recorded from these cameras during the period of
2016-2017. Each video is of two-minutes duration recorded
at 30 frames per second and clearly captures the onset of
the traffic incident. The resolution of videos varies from
800×480 pixels to 1920×1080 pixels depending on the
camera resolution. The traffic incidents are caused due to car
crashes or stalled vehicles. Out of the 151 incident videos,
we manually annotated 11 videos with the bounding boxes
of the vehicles involved in the incident. A javascript based
video annotation tool [29] based on VATIC [30] is used
for annotating the vehicles. This resulted in a total of 15
unique trajectories of vehicles involved in incidents. These
trajectories are then matched with the vehicle trajectories
obtained from object detection and tracking modules used
in this study (YOLOv3 for vehicle detection and SORT for
vehicle tracking). For each frame, each manually annotated
bounding box is matched with the detected bounding box
with maximum overlap, setting a minimum threshold of
0.5 Intersection over Union (IoU).Each manually annotated
incident trajectory was successfully matched with unique
trajectory obtained from the tracking algorithm. These tra-
jectories are henceforth referred to as incident trajectories.
The remaining trajectories in those 11 incident videos are
classified as normal trajectories. We randomly selected 15
such normal trajectories into our labeled dataset. Thus, our

labeled dataset consists of 15 normal trajectories and 15
incident trajectories.

We randomly selected 90 incident videos from the 151
incident videos for our unlabeled dataset preparation. The
11685 trajectories obtained by the object detection and
tracking algorithm from those 90 videos are included in
the unlabeled dataset. The remaining 50 incident videos are
equally divided into validation and test data sets, with 25
incident videos in each set. We also randomly selected 50
baseline videos without any incidents and split them equally
into validation and test set. Thus, our validation dataset and
test dataset consist of 50 videos each, 25 of them being
incident videos and remaining 25 being normal baselines
videos. Our validation and test datasets consist of 6333 and
5375 trajectories respectively.

IV. RESULTS

We used the state-of-the-art object detection algorithm
YOLOv3 [21] for vehicle detection and SORT [31] for
vehicle tracking. The object detection and tracking runs at
around 45 frames per second (fps) on an NVIDIA GTX 1080
GPU, making it suitable for real-time performance. Figure 1
shows a sample image of vehicle trajectories.

Fig. 1. Vehicle detection and tracking sample

Our labeled trajectory dataset consists of 15 incident
trajectories and 15 normal trajectories. To find out the sensi-
tivity of the algorithm on the number of labeled examples, we
ran each algorithm for label sample sizes varying from 5-15
trajectories for each class (normal and incident). The efficacy
of the proposed model (CPLE) along with the comparison
models (Label Spreading, Self Learning and Supervised
Learning) are validated using the validation dataset and the
final accuracy is reported for the test dataset. We label a
video as an incident video if at least 1 trajectory in the
video is classified as incident trajectory by the algorithm. The
accuracy of the algorithm (ACC) is given by the accuracy
of correctly classifying incident videos (TPR) and baseline
videos (TNR), as shown in Equations 15, 13, and 14. TP
and TN refer to the number of correctly identified incident
and baseline videos while P and N refer to total number of
incident and baseline videos (25 each).

TPR =
TP

P
(13)



Fig. 2. Accuracy of the algorithms on number of labeled samples

TABLE I
ACCURACY OF ALGORITHMS ON TEST DATA

Method TPR TNR ACC

CPLE 0.83 0.92 0.88
Label Spreading 0.6 0.94 0.77

Self Learning 0.53 0.88 0.71
Supervised 0.28 0.96 0.62

TNR =
TN

N
(14)

ACC =
TP + TN

P +N
(15)

Figure 2 shows the accuracy of each algorithm on the
validation dataset for different number of labeled samples.
The experiments are repeated 20 times and the average
accuracy is reported. We clearly see that CPLE performs
superior compared to the other semi-supervised approaches
and its supervised counterpart. On an average, 14% im-
provement is obtained on using CPLE compared to the
second best algorithm (Label Spreading). The best model
obtained from each algorithm is selected and applied on the
test dataset. Table I shows the accuracy of each algorithm
on the test dataset. It shows that while CPLE successfully
identifies a large majority of the incident videos (21 out 25
incident videos), other algorithms fail to do so and perform
poorly in TPR. However, since majority of trajectories are
normal trajectories, all algorithms perform well in detecting
the baseline videos correctly. This shows that the CPLE
algorithm successfully extracts information regarding both
incident and normal trajectories from the unlabeled dataset
and hence achieves better performance.

Figure 3 shows a sample of incident and normal trajecto-
ries labeled by the CPLE algorithm for 3 incident videos (ID
1, 2, and 3). The X and Y coordinates of the bounding box
center of each vehicle across the video frames is shown in
the figure. It successfully detects the incident trajectories in
Video ID 1 and 2, but fails to detect any incident trajectory
in ID 3, primarily due to missing object detection caused
by poor video quality. A sample image of a stalled vehicle
detected across 3 frames is shown in Figure 4.

Fig. 3. Incident and normal trajectories labeled by CPLE algorithm for 3
incident videos

V. CONCLUSIONS

State Department of Transportation (DOTs) usually in-
stall a large number of CCTV cameras across freeways
for surveillance purpose. However, it is virtually impossi-
ble to manually monitor such a large network of cameras
constantly. Hence, there is a significant need to develop
automatic incident detection algorithms using these these
cameras. In this study, we approached the incident detection
problem using semi-supervised techniques. We used Max-
imum Likelihood Estimation based Contrastive Pessimistic
Likelihood Estimation (CPLE) for trajectory classification
and identification of incident trajectories. Vehicle detection
is performed using state-of-art deep learning based YOLOv3
and SORT tracker is used for tracking. Results show that
CPLE based trajectory classification outperforms the tradi-
tional semi-supervised techniques (Self Learning and Label
Spreading) and also its supervised counterpart by significant
margin.

As future work, we intend to expand our framework
to enable operation on a network of cameras to improve
detection rates and reduce false alarms rates in incident
detection. We also intend to explore the performance of
integrated detection-and-tracking algorithms to enable better
trajectory estimation.
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