COMPRESSIVE SENSING OF A SUPERPOSITION OF PULSES

Chinmay Hegde and Richard G. BaraniukRice University

Compressive Sensing (CS)

- Natural/manmade signals often have sparse/compressible structure
- Traditional signal acquisition: sample first, then compress
- Compressive sensing: sample and compress simultaneously

Sparsity and Compression

Traditional signal acquisition:

- Sample data at Nyquist rate (2x bandwidth)
- Compress data (signal dependent, nonlinear)

N pixel image

K large wavelet coefficients

Compressive Sensing (CS)

• Acquire *compressive measurements* $y = \Phi x$

Rice Compressive Imaging Camera

 $M \ge O(K \log(N/K))$

Signal Recovery

- Recovery algorithms *rely on sparsity*
 - ℓ_1 minimization (slow, strong guarantees for recovery)
 - orthogonal matching pursuit (fast, weak guarantees)
 - CoSaMP / IHT (fast, strong guarantees)

Structured Sparsity

- Sparsity assumption does not capture dependencies among coefficients
- New model for signals well-approximated by a sparse sum of pulses
- Provably reduces number of measurements needed to sample signals

Sparse Sums of Pulses

Sparsity is often an oversimplification

- 1D example: pulse stream N=1024, K=66
- Signal consists of S=6 pulses of width F=11 with identical shapes but varying amplitudes and locations
- Can we exploit this special structure in CS recovery?

Proposed Signal Model

Signals of interest can be written as

$$z = x * h = Hx = Xh$$

where:

- $x \in \mathcal{M}_S^\Delta$, the space of all S-sparse images with nonzeroes separated by at least Δ locations
- $h \in \mathcal{M}_{\Omega}$, the space of all minimum phase filters defined over a domain Ω
- Proposed model: *Infinite union of subspaces*

Sampling Theorem

$$M \ge O\left((S + |\Omega|) + S\log(N/S - \Delta)\right)$$

- Overall number of nonzeroes: $K = S|\Omega|$
- \bullet Hence, number of measurements is $\mathit{sublinear}$ in the sparsity K

Improved CS Recovery

- Requires far fewer measurements than state-of-the-art CS methods
- Recovery robust under noise, model mismatch
- Testing performed on synthetic and real data

Iterative support estimation + deconvolution

Input: measurements $y = \Phi z$, matrix Φ

Output: Estimates \widehat{x} , \widehat{h}

Initialize: $\widehat{H} \leftarrow I$

Repeat until convergence:

- Solve for \widehat{x} via model-based CoSaMP: $y = \Phi \widehat{H} \widehat{x}$
- Solve for \widehat{h} via pseudoinverse: $y = \Phi \widehat{X} \widehat{h}$
- Update estimate of signal:

Synthetic test image

$$N = 64 \times 64, S = 7, |\Omega| = 25, M = 290$$

 $\widehat{z} \leftarrow \widehat{x} * \widehat{h}$

Test image

CoSaMP(MSE = 16.95)

New algorithm (MSE = 0.07)

Real-world test image

$$N = 64 \times 64, S = 3, |\Omega| = 120, M = 330$$

Test image

CoSaMP

New algorithm