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Abstract—Compressive Sensing (CS) has developedpreserve the essential information contained in the
as an enticing alternative to the traditional process signals of interest.
of signal acquisition. For a lengthsV signal with Discrete time signal acquisition is fundamen-
ls_parsuty K, merely M = O (KlogN) < év randgrr; tally governed by the Shannon/Nyquist sampling
inear projections (measurements) can be used for o jiom which guarantees that all the information
robust reconstruction in polynomial time. Sparsity . . - . s .
contained in the signal is preserved if it is uniformly

is a powerful and simple signal model; yet, richer i :
models that impose additionalstructure on the sparse sampled at a rate twice as fast as the bandwidth of

nonzeros of a signal have been studied theoretically its Fourier transform. Converselyransform com-
and empirically from the CS perspective. pressioninvolves representing a signal sampled at
In this work, we introduce and study a sparse the Nyquist ratez € RY in a suitable expansion
signal model for streams of pulses, i.e., S-sparse x = Wq, with ¥ being anN x N basis matrix. The
signals convolved with an unknownF-sparse impulse number of large coefficients in the basis expansion
response. Our contributions are threefold: (i) we ., is known as thesparsity of the signal in the
geometrically model this set of signals as an infinite basis U; for many interesting classes of signals
union of subspaces{ii) we derive a sufficient number K < N’ The JPEG compression system for image,s

of random measurements M required to preserve . L
the metric information of this set. In particular this  €XPIOits the fact that naturally occuring images are

number is linear merely in the number of degrees SParse (or nearly sparse) in the Fourier basis. An
of freedom of the signal S + F, and sublinear in intriguing question can thus be asked: is it possible
the sparsity K = SF; (iii) we develop an algo- to address the above two challenges in one shot,
rithm that performs recovery of the signal from M j.e., can a single system attain the twin goals of
measurements and analyze its performance under signal acquisition and compression?

noise and model mismatch. Numerical experiments Surprisingly, the answer in many casesyiss

on synthetic and real data demonstrate the utility Addressing this issue is the central tenet in Com-

of our proposed theory and algorithm. Our method . . .
is amenable to diverse applications such as the high- pressive Sensing (CS) [1,2]. A prototypical CS

resolution sampling of neuronal recordings and ultra-  SyStém works as follows: & —sparse signal: of

wideband (UWB) signals. length N is sampled by measuring its inner product
with M <« N vectors; therefore, the output of the
|. INTRODUCTION sampling system is given by the vectpe= dx =

T, whered € RM*N js a non-invertible matrix.

Digital signal processing systems face two pa€S theory states thatcan beexactlyreconstructed
allel challenges. With the availibility of ubiqui- from y, provided the elements ob are chosen
tous computing power, memory and communicatiarndomly from certain probability distributions, and
bandwidth, the pressure is @atquisitiondevices, the number of sampled/ = O (K log(N/K))
such as analog-to-digital converters, to develop tise that it is linear in the sparsity and only
ability to capture signals arising from a plethora abgarithmic in the signal dimensioN. Further, this
sources at ever increasing rates. On the other hare,overy can be carried out in polynomial time,
to counter the “digital data deluge,” DSP systemssing efficient greedy approaches or optimization
must develop efficientompressionschemes that based methods [3, 4].



Thus, CS can be viewed as a new information Our work represents the first attempt to adopt a
acquisition paradigm which exploits a simple signaleterministic union-of-subspaces model for streams
model (sparsity) to motivate a low-complexity repef pulses; this enables us to derive rigorous guaran-
resentation (non-adaptive random measurementsgs for the number of measurements required for
for discrete-time signals. Nevertheless, dependistable recovery. The algorithm for CS recovery de-
on the application at hand, there may exist richereloped in this paper can be linked to various con-
signal models that encode various types of intecepts in the literature such as best basis compressive
dependencies among signal components. For gensing [7], simultaneous sparse approximation and
stance, the sparse nonzero coefficients of a sigulidtionary learning [8], and the classical signal
may be grouped according to certain pre-defingaocessing problem of blind deconvolution [9]. We
blocks of fixed sizes. Recent work has led tobtain significant gains over conventional CS re-
the development of CS theory and algorithms thabvery methods, particularly in terms of reducing
are based orstructured sparsitymodels that are the number of measurements required for stable
equivalent to dinite union of subspaces [5, 6]. Forrecovery, as evident from the example in Figure 1.
many models, the number of random measurementsThe rest of the paper is organized as follows. In
M can be significantly reduced, while preservin§ection Il, we review the rudiments of standard and
computational efficiency and robustness to noisestructured sparsity-based CS. In Section Ill, we in-

In this paper, we study the compressive Sensi,t,rg)duce our signal model and examine its geometric
of streams of pulses.e., the set ofS-sparse sig- Properties. In section IV, we derive a lower bound
nals that are convolved with amknownF-sparse ON the number of random measurements required to
impulse response. Such signals widely occur FRMPple this signal set. In Section V, we develop an
practice. For instance, neuronal spike trains can B&orithm for the stable signal recovery and discuss
viewed as a sparse set of spikes of varying heigHtg properties. Numerical results are presented in
convolved with the Signature impu]se response &ection VI, followed by conclusions in Section VII.
the particular neuron. Another example would be
the low-pass filtered output of a digital ultra-
wideband (UWB) receiver. The overall sparsity of. The geometry of sparse signal models

such a signalK’ = SF7; thus, a conventional CS A signalz € RY is K-sparsein the orthonormal
system would acquire/ = O (SFlog(N/SF)) pasisV if the corresponding basis expansian=
compressive measurements for signal recovery. g7, contains no more thaf nonzero elements.
Our particular contributions are as follows. Firstin the sequel, unless otherwise noted, the sparsity
we develop a deterministic model for pulse strean@sis¥ is assumed to be the identity matrix far.
that can be geometrically viewed as arfinite The locations of the nonzeros ofcan additionally
union of subspaces. Second, we derive a bouhd encoded by a binary vector of lengthwith a 1
on the number of random measuremenfsthat indicating a nonzero; this vectaf(x) is called the
preserve the geometric structure of the signaksypportof 2. Denote the set of alk-sparse signals
thereby enabling their stable recovery. Importantlyjp R as¥ . GeometricallyYX.xc can be identified
our derivation shows that/ = O (F + Slog N), as the union of(), K-dimensional subspaces of
i.e., the number of measurements required for iR, with each subspace being the linear span of
formation preservation isublinearin the sparsity exactly X' canonical unit vectors aR”.
K = SF and proportional to the number of degrees Often, we are interested in sparse signal en-
of freedomS + F'. Third, we develop a polynomial sembles which exhibit more complex dependencies
time algorithm that recovers any signal belonginigp terms of their nonzero values and locations.
to this set fromM measurements. Numerical experfor instance, the signals of interest might admit
iments on real and synthetic data sets demonstratdy a small number of support configurations.
the benefits of our approach. Such classes of signals may also be modeled
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Fig. 1. Example CS recovery of a stream of pulses. (a) Test signargthN = 1024 comprisingS = 8 pulses of length

F = 11, so that the signal sparsify = 88. Signals are recovered froM = 90 random Gaussian measurements using (b) an
iterative sparse approximation algorithm (CoSaMP [10])@ar proposed Algorithm 1. Near-perfect recovery is acdikusing
our approach.

by a union of subspaces, consisting only ©f in its nullspace. In a similar fashion, thd{ —RIP
canonical subspaces (so that < ([]\(I)) Thus, if can be defined in cases whefle preserves the
Q = {Q,...,91,} denote the set of permittednorms of b—wise differences ofi{-sparse signals,
supports, astructured sparsity moddb] can be with b being a small integer (2 or 3). An im-
defined as the set: portant hallmark of CS is as follows: provided
M > O(Klog(N/K)), matrices whose elements
M = {z : supz) € Q}. (1) are chosen as i.i.d. samples from a random sub-
Any structured sparsity modeM  is itself con- gaussian distribution work with high probability.
tained in the set k. An intuitive interpretation is as 1huS, M is linear in the sparsity of the signal set
follows: the smaller the value df g, the “smaller” K and only logarithmic in the native dimension

the signal setMy, and the more restrictive the/N- The RIP proves to be an essential component
model. in the design of stable reconstruction algorithms as

discussed below.
B. Stable embedding via linear measurements An analogous isometry condition can be pro-

Suppose instead of collecting all the coefficienfdosed for structured sparsity models [5, 12];is
of a vectorz € RV, we merely record inner said to satisfy theM g-RIP if Equation 2 holds
products (measurements) ofwith M < N pre- for all x € M. For general structured sparsity
selected vectors; this can be represented in terf@dels defined byLx canonical subspaces, the
of a linear transformationy = @z, ® € RM*V, RIP can be attained with high probability provided
The central tenet of CS is that can beexactly M = O (K +log(Lk)). Two observations can
recovered fromy, even thoughb is necessarily low- b€ made. First, the number of measuremelits
rank and has a nontrivial nullspace. In particular, i§ logarithmic in thenumberof subspaces in the
condition on® known as therestricted isometry Model, i.e., a “smaller” signal set can be embedded

property (RIP) can be defined as follows. using fewer random linear measurements. Second,
Definition 1: [11] An M x N matrix ® has the M has to be at least as large as the number of
K-RIP with constantx if, for all = € Y, nonzerosk of the measured signal.

(1= 6r)|lzll5 < |®=]5 < (1+0x)llz5. (2) C. Recovery from compressive measurements

The RIP requiresd to leave the norm of every The CS recovery problem is to perform stable,
sparse signal approximately invariant; in particulafeasible inversion of the operatob, given M
® must necessarily not contain any sparse vectoreeasurementg = ®x. A number of CS recovery
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algorithms have been proposed [3, 4] with the prof nonzero coefficients of the underlying signal in
mary tradeoffs being the number of measurementee Fourier domain (DFT leakage).

recovery time and robustness to noise. More re-Pulse streams have been briefly studied from a
cently, iterative support selection algorithms (suc8S perspective [13]; our objective in this paper is
as CoSaMP [10]) have emerged that offer unifornto develop a comprehensive CS framework for such
stable guarantees while remaining computationalygnals. We begin with the choice of an appropriate
efficient. An added advantage of these iterativgnal model. A general model for streams of pulses
algorithms is that with a simple modification, theycan be defined thus:

can be used to reconstruct signals belongingrty Definition 2: Let M%, M”% be structured spar-
structured sparsity model [5]. if = &= +n, where sity models defined ilRY. Define the set:

r € My and @ satisfies theM -RIP, then the .

estimateZ obtained by the CS recovery algorithm Msp = {zeRV:z=axh,

satisfies the following bound: such thatr € M§ andh € M}},

Iz — 3|2 < C|ln|2. where + denotes the circular convolution operator
in RV, Then, M5 1. is called a(S, F) pulse-stream
When there is no noise term, the estimate model.
z exactly coincides with the signat. In other Owing to the commutative property of the con-
words, given a sufficient number of nonadaptiveolution operator, an element in M7 . can be
linear measurementg, any signalx belonging to represented in multiple ways:
a particular sparse signal model can be exactly
reconstructed in polynomial time. ¢=zxh=Hz=Xh,
To summarize:, at the core of CS lie three kewhereH (respectively,X) is a square circulant ma-
concepts: a signal model exhibiting a particula¥ix with its columns comprising circularly shifted
type of geometry in high-dimensional space; thgersions of the vectorh (respectively,z). For
construction of a low-rank linear transformatiora given z, H and = need not be unique. Any
with particular properties defined on the mode(;aH,x/a) satisfies the above equality; so does
and the development of methods to perform stabl@t,lgx/), where H' is generated by a circularly
efficient inversion of this mapping onto its domainshifted version ofh by a time delay+r and 2’
is a circularly shifted version of by —7. A more
concise pulse-stream model can be introduced by
In several applications, the assumption of exnaking the following two assumptions:
act sparsity under a basis transform is only af) the filter coefficients areninimum phasei.e. all
proximate. An EEG recording of a single neuroits nonzero coefficients are concentrated at the start
may be approximated by a stream of spikes, baf the impulse response. Thus, the model for the
can be better modeled by a stream of pulses, thker vectorh consists of the lone subspace spanned
shape of each pulse being a characteristic of thg the first ' canonical unit vectors.
neuron. A high-resolution image of the night sky) the sparse spikes are sufficiently separated in
will consist of a field of points (correspondingtime. A deterministic structured sparsity model for
to the locations of the stars) convolved with theuch signals has been recently introduced in [14]
point spread function of the imaging device. Aand ensures that consecutive spikes are separated
similar pulse-broadening effect can be observed by at leastA locations from one another.
the output of high speed UWB (ultra-widebandYhis model is useful since it eliminates possible
receivers. The Discrete Fourier Transform of a suambiguities that arise due to the shift invariant
of nonharmonic sinusoids is not a stream of spikesature of convolution, i.e., a vecterbelonging to
but rather the convolution of this stream with ahis model consists of a stream of disjoint pulses
sinc function; this increases the apparent numband hence the locations of the nonzero spikes are

[1l. PULSE STREAMS
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uniquely defined. We denote this special pulsdhe proof of this theorem is provided in the ex-
stream model by\/tSF panded version of this manuscript [15]. Theorem 1
It is also useful to adopt the foIIowrng geometriéndicates that the number of measurements requrred
point of view. For a fixech € M , the set{hxx : for the stable embedding of signals it
z € Mg} forms a finite union ofK dimensional proportional to (S + F'); thus, it is sublinear in
subspaces owing to the fact that it is generated bye maximum sparsity of the signaf". Existing
the action ofh on L canonical subspaces. Denotenodels for structured sparsity require at lezist =
this set byh(M%). Then, the(S, F') pulse-stream 2SF linear measurements to ensure approximate
model can be written as: preservation of pairwise distances. Our proposed
M — U h(ME) moqlel imprgveg upon suckignal supportmodels
S,F S by introducing implicit correspondences between
heMi: the amplitudesof the nonzero coefficients via the
Thus, our signal model is ainfinite union of convolution operator. The bound in Theorem 1 is
subspacesThe above interpretation remains untnear in the number of degrees of freeddin- F,
changed if the roles of andh are reversed. For and therefore is essentially optimal for the signal
simplicity of notation, we definek’ = SF, the classMz,.
maximum sparsity of the signals in our proposed Theorem 1 is valid for sparse signals and filters
model. Wherever possible, we will also drop theelonging to arbitrary models. For the special pulse-
superscriptsz, b, z and denote our trio of signalstream modelM§ ., the following corollary is a
models inRY as Mg, Mp and My, respectively. consequence of Theorem 1 and Theorem 1 of [14].
See Figure 1(a) for an example stream of pulses. Corollary 1: An M x N i.i.d. subgaussian ran-
dom matrix satisfies the RIP for signals belonging

IV. STABLE EMBEDDING OF PULSE STREAMS n SAl T
to M%  with high probability if

It is easy to see thaM g, as defined above, is
a subset of the set of alt-sparse signal& . On M >0 (S+F+ Slog(N/S — A)).
the other hand, only a minute fraction of ail-
sparse signals can be written as the convolution of V- STABLE RECOVERY OF PULSE STREAMS
an S-sparse signal with af’-sparse filter. Intuition ~ The CS recovery problem for the pulse-stream
suggests that we should be able to achieve a staledel can be stated as follows: given noisy mea-
embedding of this set usinfpwer random linear surements of a stream of pulses:
measurements than those required for the stable
embedding of all K-sparse signals. Indeed, the
following theorem makes this precise. the goal is to reconstruct from y. Standard or
Theorem 1:Let M% be a union ofZ.% canonical structured sparsity methods for CS recovery are un-
Subspaces ath be a union Oth canonical suitable for this problem since bcxﬁ'r(respectlvely,
subspaces. SuppoSd % is the associated pulse-X) andh (respectively,H) are unknownand have
stream model. Then, there exists a constastich to be simultaneously inferred. This task is similar to
that for anyt > 0 and performingblind deconvolutio9], which attempts
. 1 simultaneous inference of the spike locations and
M > 52 ((S+F) In <5> + log( gL’}) +t> ,  filter coefficients, the key difference in our case
being that we are only given access to the random
an M x N i.i.d. subgaussian matri will satisfy measurementg and not Nyquist-rate samplas
the following property with probability at leagt— Suppose that the spikes are separated by a min-
e~ t: for every pairzy, 29 € MG s imum separation distancA and that the filter is
minimum phase. An algorithm for reconstruction
(1=0)llz1=22l; < [ ®21-82[l5 < (14+0) |21 2. can be proposed thus: we fix a candidate sup-
port configuration(2 for the spike domain. Then,

y=®z+n=0Hxr+n=>Xh+n,



we form the circulant matrix// from the current generated by choosin§ = 8 spikes with random
estimate of our filterh (so that H = C(h)), amplitudes and locations and convolving this spike
calculate the spikelictionary ®H and select only stream with a minimum phase filteF’(= 11) with
those columns that correspond to the assumed spikeandomly chosen impulse response. The overall
locations 2. This transforms our problem into ansparsity of the signak = SF = 88; thus, even
overdetermined system, which can be solved usittge best sparsity-based CS algorithm would require
least-squares. Once the spike coefficients have b&dti = 176 measurements. Our approach (Algo-
inferred, we may use the commutativity property afthm 1) returns an accurate estimate of both the
the convolution operator, form the filter dictionaryspike signal as well as the filter impulse response
® X and solve a similar least-squares problem farsing merelyM = 90 measurements.

the filter coefficients. This process is repeated until Figure 2 displays the averaged results of a Monte
convergence. The overall reconstruction proble@arlo simulation of our algorithm over 200 trials.
can be solved by repeating this process for evepach trial was conducted by generating a sample
support configuration? belonging to the spike signal belonging toM g, computing) linear ran-
model. If the matrix® contains a sufficient numberdom Gaussian measurements, reconstructing with
of rows M (such as specified by Theorem 1), ifiifferent algorithms and recording the magnitude
can be shown that if this algorithm converges, if the recovery error for different values of the
recovers the correct solution (the proof is detailegvermeasuring facto//K. It is clear that our
in the expanded version of this manuscript [15]). proposed approach outperforms both conventional
However, this algorithm involves iteratively solv-CS recovery (CoSaMP [10]) with target sparsity
ing a combinatorial number of estimation problemg = SF, as well as block-based reconstruction [5]
and is infeasible for largeV. A simpler (subop- with knowledge of the size and number of blocks
timal) method is to leverage a recent algorithnresp. F and S). In fact, our algorithm performs
for CS recovery that uses the separated spikearly as well as the oracle decoder that possesses
train model. As opposed to cycling through evergerfect prior knowledge of the filter coefficients and
possible support configuration for the spikes, Weolves only for the sparse signal coefficients.
instead update the support configuration at eachryrther, we show that our algorithm is stable to
step based on the current estimates of the Spaffise in the signal and measurement domains. We
signal and filter coefficients. This can be shown tgenerate a lengtho24 signal comprisingS = 8
be equivalent to solving a suitable linear programyises of width = 11, add a small amount of
(for details, refer [14]). Denote this support updatgayssian noise to all its components, compidi@
by D(-). Once a support has been chosen, Wgyjsy linear measurements and reconstruct using
repeat the least squares steps as above t0 sQlygorithm 1. As is evident from Figure 3, our
for the sparse signal coefficients and filter Coebroposed algorithm provides a good approximation
ficients respectively. This process is iterated unt the original (noisy) stream of pulses.
convergence. The modified algorithm can be viewed Figure 4(a) shows the electrochemical spiking

as an iterative sparse approximation process _ﬂb%ttential of a single neuron measured using an
cc_)n_tmually updates its es_tlmate _Of the sparsifyin EG. The shape of the pulses is characteristic of the
dlctlo_nary. Th_e procedure is detailed in pseudoco %uron; however, there exist minor fluctuations in
form in Algorithm 1. the amplitudes, locations and profiles of the pulses.
Despite the apparent model mismatch, our algo-
rithm recovers a good approximation (Figure 4(b))
Figure 1 demonstrates the considerable advan-the original signal. The inferred impulse response
tages that our proposed algorithm offers in terms @&n be viewed as an a scale-invariant average across
the number of compressive measurements requirdifferent pulses and can be potentially used to
for reliable reconstruction. The test signal wadistinguish between the firings of various neurons.

VI. NUMERICAL EXPERIMENTS
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Algorithm 1

Inputs: Projection matrixb, measurementg, model parametera, S, F.
Output:MéF—sparse approximation to true signalz

£=0,h=(1},0,...,0);i=0 {initialize}
while halting criterion falsedo
l.i—i+1
2.2 3xh {current signal estimatg
3. H=C(h),®, = H {form dictionary for spike domain
4. ¢ — D) (y — ©42) {residua}
5. Q « supp(Dy(e)) {prune residual according t@5S,2A) model
6.7 «— QU supp(T;—1) {merge supporis
7.7 — (®)hy, blre =0 {update spike estimae
8.7 — D(b) {prune spike estimate according (6, A) model
9. X =C(2), P, = ®X {form dictionary for filter domain}
10. 7 — ®ly {update filter estimaté

end while
returnz «— z x h

1.4 T :
-+ Oracle Decoder
1.2 -+--CoSaMP
- »-Block-based recovery
1 ——Algorithm 1
8
@
- 0.8
Q
N
©
£ 0.6
o
Z04
0.2

Fig. 2. Reconstruction error vdd / K for different reconstruction algorithms averaged over 28@ple trialsN = 1024, S = 8,
F = 11. Our method outperforms standard and structured spdraigd methods, particularly in low-measurement regimes.
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Fig. 3. (a) Synthetic noisy signal. (b) Recovery using 150 measargsn The quality of the reconstructed signal demonstrates
that our algorithm is robust to signal and measurement domaie.
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Experiment with real EEG data. (a) Single neuron recordMg=(1000). The signal consists of a series of pulses of

approximately the same shape. (b) Recovered signal idirng 150 measurements. (c¢) Estimated pulse profile. Our algorithm is

robust to small variations in pulse shapes.

VII. CONCLUSIONS 2]

In this paper, we have introduced and analyzed

the compressive sensing of sparse pulse streams.

This signal set can be modeled as an infinite uniof!
of subspaces which exhibits a particular geometric
structure. This enables us to quantitatively deducg;
that the number of measurements needed for the
stable embedding and recovery of such signals i

much smaller than that required for conventiona?)
or structured sparsity-based CS. We motivate an
efficient algorithm that performs signal recoveryl€]
from this reduced set of measurements and numer
ically demonstrate its benefits over state—of—the—arft'
methods for CS recovery. Though our theoreticalg]
and empirical results are promising, we do not yet

possess a precise theoretical characterization of ﬂfﬁ
convergence of our proposed algorithm under nopo]
idealities such as noise and model mismatch; we
defer this to future research. [11]
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