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Abstract—Compressive Sensing (CS) has developed
as an enticing alternative to the traditional process
of signal acquisition. For a length-N signal with
sparsity K, merely M = O (K log N) ≪ N random
linear projections (measurements) can be used for
robust reconstruction in polynomial time. Sparsity
is a powerful and simple signal model; yet, richer
models that impose additionalstructure on the sparse
nonzeros of a signal have been studied theoretically
and empirically from the CS perspective.

In this work, we introduce and study a sparse
signal model for streams of pulses, i.e., S-sparse
signals convolved with an unknownF -sparse impulse
response. Our contributions are threefold: (i) we
geometrically model this set of signals as an infinite
union of subspaces;(ii) we derive a sufficient number
of random measurementsM required to preserve
the metric information of this set. In particular this
number is linear merely in the number of degrees
of freedom of the signal S + F , and sublinear in
the sparsity K = SF ; (iii) we develop an algo-
rithm that performs recovery of the signal from M
measurements and analyze its performance under
noise and model mismatch. Numerical experiments
on synthetic and real data demonstrate the utility
of our proposed theory and algorithm. Our method
is amenable to diverse applications such as the high-
resolution sampling of neuronal recordings and ultra-
wideband (UWB) signals.

I. INTRODUCTION

Digital signal processing systems face two par-
allel challenges. With the availibility of ubiqui-
tous computing power, memory and communication
bandwidth, the pressure is onacquisitiondevices,
such as analog-to-digital converters, to develop the
ability to capture signals arising from a plethora of
sources at ever increasing rates. On the other hand,
to counter the “digital data deluge,” DSP systems
must develop efficientcompressionschemes that

preserve the essential information contained in the
signals of interest.

Discrete time signal acquisition is fundamen-
tally governed by the Shannon/Nyquist sampling
paradigm, which guarantees that all the information
contained in the signal is preserved if it is uniformly
sampled at a rate twice as fast as the bandwidth of
its Fourier transform. Conversely,transform com-
pressioninvolves representing a signal sampled at
the Nyquist ratex ∈ R

N in a suitable expansion
x = Ψα, with Ψ being anN×N basis matrix. The
number of large coefficients in the basis expansion
α is known as thesparsity of the signal in the
basis Ψ; for many interesting classes of signals,
K ≪ N . The JPEG compression system for images
exploits the fact that naturally occuring images are
sparse (or nearly sparse) in the Fourier basis. An
intriguing question can thus be asked: is it possible
to address the above two challenges in one shot,
i.e., can a single system attain the twin goals of
signal acquisition and compression?

Surprisingly, the answer in many cases isyes.
Addressing this issue is the central tenet in Com-
pressive Sensing (CS) [1, 2]. A prototypical CS
system works as follows: aK–sparse signalx of
lengthN is sampled by measuring its inner product
with M ≪ N vectors; therefore, the output of the
sampling system is given by the vectory = Φx =
ΦΨα, whereΦ ∈ R

M×N is a non-invertible matrix.
CS theory states thatx can beexactlyreconstructed
from y, provided the elements ofΦ are chosen
randomly from certain probability distributions, and
the number of samplesM = O (K log(N/K))
so that it is linear in the sparsityK and only
logarithmic in the signal dimensionN . Further, this
recovery can be carried out in polynomial time,
using efficient greedy approaches or optimization
based methods [3, 4].



Thus, CS can be viewed as a new information
acquisition paradigm which exploits a simple signal
model (sparsity) to motivate a low-complexity rep-
resentation (non-adaptive random measurements)
for discrete-time signals. Nevertheless, depending
on the application at hand, there may exist richer
signal models that encode various types of inter-
dependencies among signal components. For in-
stance, the sparse nonzero coefficients of a signal
may be grouped according to certain pre-defined
blocks of fixed sizes. Recent work has led to
the development of CS theory and algorithms that
are based onstructured sparsitymodels that are
equivalent to afinite union of subspaces [5, 6]. For
many models, the number of random measurements
M can be significantly reduced, while preserving
computational efficiency and robustness to noise.

In this paper, we study the compressive sensing
of streams of pulses, i.e., the set ofS-sparse sig-
nals that are convolved with anunknownF -sparse
impulse response. Such signals widely occur in
practice. For instance, neuronal spike trains can be
viewed as a sparse set of spikes of varying heights
convolved with the signature impulse response of
the particular neuron. Another example would be
the low-pass filtered output of a digital ultra-
wideband (UWB) receiver. The overall sparsity of
such a signalK = SF ; thus, a conventional CS
system would acquireM = O (SF log(N/SF ))
compressive measurements for signal recovery.

Our particular contributions are as follows. First,
we develop a deterministic model for pulse streams
that can be geometrically viewed as aninfinite
union of subspaces. Second, we derive a bound
on the number of random measurementsM that
preserve the geometric structure of the signals,
thereby enabling their stable recovery. Importantly,
our derivation shows thatM = O (F + S log N),
i.e., the number of measurements required for in-
formation preservation issublinear in the sparsity
K = SF and proportional to the number of degrees
of freedomS +F . Third, we develop a polynomial
time algorithm that recovers any signal belonging
to this set fromM measurements. Numerical exper-
iments on real and synthetic data sets demonstrate
the benefits of our approach.

Our work represents the first attempt to adopt a
deterministic union-of-subspaces model for streams
of pulses; this enables us to derive rigorous guaran-
tees for the number of measurements required for
stable recovery. The algorithm for CS recovery de-
veloped in this paper can be linked to various con-
cepts in the literature such as best basis compressive
sensing [7], simultaneous sparse approximation and
dictionary learning [8], and the classical signal
processing problem of blind deconvolution [9]. We
obtain significant gains over conventional CS re-
covery methods, particularly in terms of reducing
the number of measurements required for stable
recovery, as evident from the example in Figure 1.

The rest of the paper is organized as follows. In
Section II, we review the rudiments of standard and
structured sparsity-based CS. In Section III, we in-
troduce our signal model and examine its geometric
properties. In section IV, we derive a lower bound
on the number of random measurements required to
sample this signal set. In Section V, we develop an
algorithm for the stable signal recovery and discuss
its properties. Numerical results are presented in
Section VI, followed by conclusions in Section VII.

II. BACKGROUND

A. The geometry of sparse signal models

A signalx ∈ R
N is K-sparsein the orthonormal

basisΨ if the corresponding basis expansionα =
ΨT x contains no more thanK nonzero elements.
In the sequel, unless otherwise noted, the sparsity
basisΨ is assumed to be the identity matrix forR

N .
The locations of the nonzeros ofx can additionally
be encoded by a binary vector of lengthN with a 1
indicating a nonzero; this vectors(x) is called the
supportof x. Denote the set of allK-sparse signals
in R

N asΣK . Geometrically,ΣK can be identified
as the union of

(
N
K

)
, K-dimensional subspaces of

R
N , with each subspace being the linear span of

exactlyK canonical unit vectors ofRN .
Often, we are interested in sparse signal en-

sembles which exhibit more complex dependencies
in terms of their nonzero values and locations.
For instance, the signals of interest might admit
only a small number of support configurations.
Such classes of signals may also be modeled

2



0 200 400 600 800 1000
−5

0

5
Original signal

0 200 400 600 800 1000
−5

0

5
CoSaMP

0 200 400 600 800 1000
−5

0

5
Our proposed approach

(a) (b) (c)

Fig. 1. Example CS recovery of a stream of pulses. (a) Test signal of lengthN = 1024 comprisingS = 8 pulses of length
F = 11, so that the signal sparsityK = 88. Signals are recovered fromM = 90 random Gaussian measurements using (b) an
iterative sparse approximation algorithm (CoSaMP [10]) (c) Our proposed Algorithm 1. Near-perfect recovery is achieved using
our approach.

by a union of subspaces, consisting only ofLK

canonical subspaces (so thatLK ≤
(
N
K

)
). Thus, if

Ω = {Ω1, . . . ,ΩLK
} denote the set of permitted

supports, astructured sparsity model[5] can be
defined as the set:

MK := {x : supp(x) ∈ Ω}. (1)

Any structured sparsity modelMK is itself con-
tained in the setΣK . An intuitive interpretation is as
follows: the smaller the value ofLK , the “smaller”
the signal setMK , and the more restrictive the
model.

B. Stable embedding via linear measurements

Suppose instead of collecting all the coefficients
of a vectorx ∈ R

N , we merely recordM inner
products (measurements) ofx with M < N pre-
selected vectors; this can be represented in terms
of a linear transformationy = Φx,Φ ∈ R

M×N .
The central tenet of CS is thatx can beexactly
recovered fromy, even thoughΦ is necessarily low-
rank and has a nontrivial nullspace. In particular, a
condition onΦ known as therestricted isometry
property(RIP) can be defined as follows.

Definition 1: [11] An M ×N matrix Φ has the
K-RIP with constantδK if, for all x ∈ ΣK ,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22. (2)

The RIP requiresΦ to leave the norm of every
sparse signal approximately invariant; in particular,
Φ must necessarily not contain any sparse vectors

in its nullspace. In a similar fashion, thebK−RIP
can be defined in cases whereΦ preserves the
norms ofb−wise differences ofK-sparse signals,
with b being a small integer (2 or 3). An im-
portant hallmark of CS is as follows: provided
M ≥ O (K log(N/K)), matrices whose elements
are chosen as i.i.d. samples from a random sub-
gaussian distribution work with high probability.
Thus,M is linear in the sparsity of the signal set
K and only logarithmic in the native dimension
N . The RIP proves to be an essential component
in the design of stable reconstruction algorithms as
discussed below.

An analogous isometry condition can be pro-
posed for structured sparsity models [5, 12];Φ is
said to satisfy theMK -RIP if Equation 2 holds
for all x ∈ MK . For general structured sparsity
models defined byLK canonical subspaces, the
RIP can be attained with high probability provided
M ≥ O (K + log(LK)). Two observations can
be made. First, the number of measurementsM
is logarithmic in thenumberof subspaces in the
model, i.e., a “smaller” signal set can be embedded
using fewer random linear measurements. Second,
M has to be at least as large as the number of
nonzerosK of the measured signal.

C. Recovery from compressive measurements

The CS recovery problem is to perform stable,
feasible inversion of the operatorΦ, given M
measurementsy = Φx. A number of CS recovery
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algorithms have been proposed [3, 4] with the pri-
mary tradeoffs being the number of measurements,
recovery time and robustness to noise. More re-
cently, iterative support selection algorithms (such
as CoSaMP [10]) have emerged that offer uniform,
stable guarantees while remaining computationally
efficient. An added advantage of these iterative
algorithms is that with a simple modification, they
can be used to reconstruct signals belonging toany
structured sparsity model [5]. Ify = Φx+n, where
x ∈ MK and Φ satisfies theMK-RIP, then the
estimatex̂ obtained by the CS recovery algorithm
satisfies the following bound:

‖x− x̂‖2 ≤ C‖n‖2.

When there is no noise termn, the estimate
x̂ exactly coincides with the signalx. In other
words, given a sufficient number of nonadaptive
linear measurementsy, any signalx belonging to
a particular sparse signal model can be exactly
reconstructed in polynomial time.

To summarize:, at the core of CS lie three key
concepts: a signal model exhibiting a particular
type of geometry in high-dimensional space; the
construction of a low-rank linear transformation
with particular properties defined on the model;
and the development of methods to perform stable,
efficient inversion of this mapping onto its domain.

III. PULSE STREAMS

In several applications, the assumption of ex-
act sparsity under a basis transform is only ap-
proximate. An EEG recording of a single neuron
may be approximated by a stream of spikes, but
can be better modeled by a stream of pulses, the
shape of each pulse being a characteristic of the
neuron. A high-resolution image of the night sky
will consist of a field of points (corresponding
to the locations of the stars) convolved with the
point spread function of the imaging device. A
similar pulse-broadening effect can be observed in
the output of high speed UWB (ultra-wideband)
receivers. The Discrete Fourier Transform of a sum
of nonharmonic sinusoids is not a stream of spikes,
but rather the convolution of this stream with a
sinc function; this increases the apparent number

of nonzero coefficients of the underlying signal in
the Fourier domain (DFT leakage).

Pulse streams have been briefly studied from a
CS perspective [13]; our objective in this paper is
to develop a comprehensive CS framework for such
signals. We begin with the choice of an appropriate
signal model. A general model for streams of pulses
can be defined thus:

Definition 2: Let Mx
S , Mh

F be structured spar-
sity models defined inRN . Define the set:

Mz
S,F := {z ∈ R

N : z = x ∗ h,

such thatx ∈Mx
S andh ∈Mh

F },

where∗ denotes the circular convolution operator
in R

N . Then,Mz
S,F is called a(S,F ) pulse-stream

model.
Owing to the commutative property of the con-
volution operator, an elementz in Mz

S,F can be
represented in multiple ways:

z = x ∗ h = Hx = Xh,

whereH (respectively,X) is a square circulant ma-
trix with its columns comprising circularly shifted
versions of the vectorh (respectively,x). For
a given z, H and x need not be unique. Any
(αH, x/α) satisfies the above equality; so does
(H ′, x′), where H ′ is generated by a circularly
shifted version ofh by a time delay+τ and x′

is a circularly shifted version ofx by −τ . A more
concise pulse-stream model can be introduced by
making the following two assumptions:
1) the filter coefficients areminimum phase, i.e. all
its nonzero coefficients are concentrated at the start
of the impulse response. Thus, the model for the
filter vectorh consists of the lone subspace spanned
by the firstF canonical unit vectors.
2) the sparse spikes are sufficiently separated in
time. A deterministic structured sparsity model for
such signals has been recently introduced in [14]
and ensures that consecutive spikes are separated
by at least∆ locations from one another.
This model is useful since it eliminates possible
ambiguities that arise due to the shift invariant
nature of convolution, i.e., a vectorz belonging to
this model consists of a stream of disjoint pulses
and hence the locations of the nonzero spikes are
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uniquely defined. We denote this special pulse-
stream model byM∆

S,F .
It is also useful to adopt the following geometric

point of view. For a fixedh ∈Mh
F , the set{h∗x :

x ∈ Mx
S} forms a finite union ofK-dimensional

subspaces, owing to the fact that it is generated by
the action ofh on Lx

S canonical subspaces. Denote
this set byh(Mx

S). Then, the(S,F ) pulse-stream
model can be written as:

Mz
S,F =

⋃

h∈Mh

F

h(Mx
S).

Thus, our signal model is aninfinite union of
subspaces. The above interpretation remains un-
changed if the roles ofx and h are reversed. For
simplicity of notation, we defineK = SF , the
maximum sparsity of the signals in our proposed
model. Wherever possible, we will also drop the
superscriptsx, h, z and denote our trio of signal
models inR

N asMS ,MF andMK , respectively.
See Figure 1(a) for an example stream of pulses.

IV. STABLE EMBEDDING OF PULSE STREAMS

It is easy to see thatMK , as defined above, is
a subset of the set of allK-sparse signalsΣK . On
the other hand, only a minute fraction of allK-
sparse signals can be written as the convolution of
anS-sparse signal with anF -sparse filter. Intuition
suggests that we should be able to achieve a stable
embedding of this set usingfewer random linear
measurements than those required for the stable
embedding of allK-sparse signals. Indeed, the
following theorem makes this precise.

Theorem 1:LetMx
S be a union ofLx

S canonical
subspaces, andMh

F be a union ofLh
F canonical

subspaces. SupposeMz
S,F is the associated pulse-

stream model. Then, there exists a constantc such
that for anyt > 0 and

M ≥
c

δ2

(
(S + F ) ln

(
1

δ

)
+ log(Lx

SLh
F ) + t

)
,

an M ×N i.i.d. subgaussian matrixΦ will satisfy
the following property with probability at least1−
e−t: for every pairz1, z2 ∈M

z
S,F ,

(1−δ)‖z1−z2‖
2

2 ≤ ‖Φz1−Φz2‖
2

2 ≤ (1+δ)‖z1−z2‖
2

2.

The proof of this theorem is provided in the ex-
panded version of this manuscript [15]. Theorem 1
indicates that the number of measurements required
for the stable embedding of signals inMz

K is
proportional to(S + F ); thus, it is sublinear in
the maximum sparsity of the signalsSF . Existing
models for structured sparsity require at least2K =
2SF linear measurements to ensure approximate
preservation of pairwise distances. Our proposed
model improves upon suchsignal supportmodels
by introducing implicit correspondences between
the amplitudesof the nonzero coefficients via the
convolution operator. The bound in Theorem 1 is
linear in the number of degrees of freedomS + F ,
and therefore is essentially optimal for the signal
classMz

K .
Theorem 1 is valid for sparse signals and filters

belonging to arbitrary models. For the special pulse-
stream modelM∆

S,F , the following corollary is a
consequence of Theorem 1 and Theorem 1 of [14].

Corollary 1: An M × N i.i.d. subgaussian ran-
dom matrix satisfies the RIP for signals belonging
toM∆

S,F with high probability if

M ≥ O (S + F + S log(N/S −∆)) .

V. STABLE RECOVERY OF PULSE STREAMS

The CS recovery problem for the pulse-stream
model can be stated as follows: given noisy mea-
surements of a stream of pulses:

y = Φz + n = ΦHx + n = ΦXh + n,

the goal is to reconstructz from y. Standard or
structured sparsity methods for CS recovery are un-
suitable for this problem, since bothx (respectively,
X) andh (respectively,H) are unknownand have
to be simultaneously inferred. This task is similar to
performingblind deconvolution[9], which attempts
simultaneous inference of the spike locations and
filter coefficients, the key difference in our case
being that we are only given access to the random
measurementsy and not Nyquist-rate samplesx.

Suppose that the spikes are separated by a min-
imum separation distance∆ and that the filter is
minimum phase. An algorithm for reconstruction
can be proposed thus: we fix a candidate sup-
port configurationΩ for the spike domain. Then,
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we form the circulant matrixH from the current
estimate of our filterĥ (so that Ĥ = C(ĥ)),
calculate the spikedictionary ΦĤ and select only
those columns that correspond to the assumed spike
locationsΩ. This transforms our problem into an
overdetermined system, which can be solved using
least-squares. Once the spike coefficients have been
inferred, we may use the commutativity property of
the convolution operator, form the filter dictionary
ΦX̂ and solve a similar least-squares problem for
the filter coefficients. This process is repeated until
convergence. The overall reconstruction problem
can be solved by repeating this process for every
support configurationΩ belonging to the spike
model. If the matrixΦ contains a sufficient number
of rows M (such as specified by Theorem 1), it
can be shown that if this algorithm converges, it
recovers the correct solution (the proof is detailed
in the expanded version of this manuscript [15]).

However, this algorithm involves iteratively solv-
ing a combinatorial number of estimation problems
and is infeasible for largeN . A simpler (subop-
timal) method is to leverage a recent algorithm
for CS recovery that uses the separated spike
train model. As opposed to cycling through every
possible support configuration for the spikes, we
instead update the support configuration at each
step based on the current estimates of the sparse
signal and filter coefficients. This can be shown to
be equivalent to solving a suitable linear program
(for details, refer [14]). Denote this support update
by D(·). Once a support has been chosen, we
repeat the least squares steps as above to solve
for the sparse signal coefficients and filter coef-
ficients respectively. This process is iterated until
convergence. The modified algorithm can be viewed
as an iterative sparse approximation process that
continually updates its estimate of the sparsifying
dictionary. The procedure is detailed in pseudocode
form in Algorithm 1.

VI. N UMERICAL EXPERIMENTS

Figure 1 demonstrates the considerable advan-
tages that our proposed algorithm offers in terms of
the number of compressive measurements required
for reliable reconstruction. The test signal was

generated by choosingS = 8 spikes with random
amplitudes and locations and convolving this spike
stream with a minimum phase filter (F = 11) with
a randomly chosen impulse response. The overall
sparsity of the signalK = SF = 88; thus, even
the best sparsity-based CS algorithm would require
2K = 176 measurements. Our approach (Algo-
rithm 1) returns an accurate estimate of both the
spike signal as well as the filter impulse response
using merelyM = 90 measurements.

Figure 2 displays the averaged results of a Monte
Carlo simulation of our algorithm over 200 trials.
Each trial was conducted by generating a sample
signal belonging toMK , computingM linear ran-
dom Gaussian measurements, reconstructing with
different algorithms and recording the magnitude
of the recovery error for different values of the
overmeasuring factorM/K. It is clear that our
proposed approach outperforms both conventional
CS recovery (CoSaMP [10]) with target sparsity
K = SF , as well as block-based reconstruction [5]
with knowledge of the size and number of blocks
(resp.F and S). In fact, our algorithm performs
nearly as well as the oracle decoder that possesses
perfect prior knowledge of the filter coefficients and
solves only for the sparse signal coefficients.

Further, we show that our algorithm is stable to
noise in the signal and measurement domains. We
generate a length-1024 signal comprisingS = 8
pulses of widthF = 11, add a small amount of
Gaussian noise to all its components, compute150
noisy linear measurements and reconstruct using
Algorithm 1. As is evident from Figure 3, our
proposed algorithm provides a good approximation
of the original (noisy) stream of pulses.

Figure 4(a) shows the electrochemical spiking
potential of a single neuron measured using an
EEG. The shape of the pulses is characteristic of the
neuron; however, there exist minor fluctuations in
the amplitudes, locations and profiles of the pulses.
Despite the apparent model mismatch, our algo-
rithm recovers a good approximation (Figure 4(b))
to the original signal. The inferred impulse response
can be viewed as an a scale-invariant average across
different pulses and can be potentially used to
distinguish between the firings of various neurons.
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Algorithm 1

Inputs: Projection matrixΦ, measurementsy, model parameters∆, S, F .
Output:M∆

S,F -sparse approximation̂z to true signalz

x̂ = 0 , ĥ = (1⊤
F , 0, . . . , 0); i = 0 {initialize}

while halting criterion falsedo
1. i← i + 1

2. ẑ ← x̂ ∗ ĥ {current signal estimate}
3. Ĥ = C(ĥ),Φh = ΦĤ {form dictionary for spike domain}
4. e← ΦT

h (y − Φhx̂) {residual}
5. Ω← supp(D2(e)) {prune residual according to(2S, 2∆) model}
6. T ← Ω ∪ supp(x̂i−1) {merge supports}
7. b|T ← (Φh)†T y, b|T C = 0 {update spike estimate}
8. x̂← D(b) {prune spike estimate according to(S,∆) model}
9. X̂ = C(x̂),Φx = ΦX̂ {form dictionary for filter domain}
10. ĥ← Φ†

xy {update filter estimate}
end while
return ẑ ← x̂ ∗ ĥ
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Fig. 2. Reconstruction error vs.M/K for different reconstruction algorithms averaged over 200sample trials.N = 1024, S = 8,
F = 11. Our method outperforms standard and structured sparsity-based methods, particularly in low-measurement regimes.
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Fig. 3. (a) Synthetic noisy signal. (b) Recovery using 150 measurements. The quality of the reconstructed signal demonstrates
that our algorithm is robust to signal and measurement domain noise.
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Fig. 4. Experiment with real EEG data. (a) Single neuron recording (N = 1000). The signal consists of a series of pulses of
approximately the same shape. (b) Recovered signal usingM = 150 measurements. (c) Estimated pulse profile. Our algorithm is
robust to small variations in pulse shapes.

VII. C ONCLUSIONS

In this paper, we have introduced and analyzed
the compressive sensing of sparse pulse streams.
This signal set can be modeled as an infinite union
of subspaces which exhibits a particular geometric
structure. This enables us to quantitatively deduce
that the number of measurements needed for the
stable embedding and recovery of such signals is
much smaller than that required for conventional
or structured sparsity-based CS. We motivate an
efficient algorithm that performs signal recovery
from this reduced set of measurements and numer-
ically demonstrate its benefits over state-of-the-art
methods for CS recovery. Though our theoretical
and empirical results are promising, we do not yet
possess a precise theoretical characterization of the
convergence of our proposed algorithm under non-
idealities such as noise and model mismatch; we
defer this to future research.
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