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Abstract

We study the problem of demizing a pair of sparse signals from nonlinear observations of their
superposition. Mathematically, we consider the observation model y = f(Az), where y € R"
represents the observations, f is a nonlinear link function, A € R™*" is a measurement operator,
and x € R" is the superposition of the signals. Further, we assume that + = ®w + Uz, where
®, U are incoherent bases of R”, and w and z are s-sparse coefficient vectors. Problems of this
nature arise in computer vision and astronomical imaging.

In this paper, we provide a simple and fast algorithm (that we call ONESHOT) to demix the
constituent signals w and z from the observations y. Our algorithm is non-iterative, does not
require explicit knowledge of the link function, and is able to recover w and z even in the case
where m < n (provided the bases are incoherent enough.) Moreover, under certain assumptions,
the number of measurements provably required for successful demixing by ONESHOT is given
by m = O(slog %), therefore matching the best-known bounds for the (easier) case of linear
observations. Finally, we verify the utility of our proposed tools via numerical experiments.

1 Introduction

In several applications in signal processing, data analysis, and statistics, the problem of
signal demixing assumes a special importance. Here, the goal is to recover a set of signals
from their linear superposition. In this context, a common, well-studied observation model
is given by:

r = ®x; 4+ Vay, (1.1)

where x € R™ represents the observations, &, U € R™ " are bases (or dictionaries), and
x1, o € R™ are the coefficients of the constituent signals. Then, the demixing problem refers
to recover x; and xo from the measurements x. This problem has been studied in the con-
text of various applications [1-3]. In image processing and computer vision applications, this
problem models tasks such as background-foreground separation [4, 5], while in astronom-
ical imaging applications, this problem represents the separation of astronomical features
(stars/galaxies) from background sky phenomena.

At first glance, a natural question is whether such a demixing of signals from their super-
position is even possible. Clearly, the answer is no. For instance, suppose that we are given
an observation vector x which is modeled as © = 1 + x5 where z1,25 and x € R™. Also
assume that x; and x5 both have only one nonzero entry in the first coordinate. Under these
assumptions, there is an infinite number of x; and x5 that do satisfy this observation model.



In general, demixing is an ill-posed problem since the number of unknowns, 2n, is greater
than the number of equations, n. This simple example reveals the fact that the recovery
of the constituent signals is impossible if these component bases are strongly aligned. In
Section 3 we use a quantity known as incoherence that captures the degree of alignment of
the bases.

However, even if we assume that the constituent signals are incoherent enough, demixing
poses a very challenging problem under more general observation models. For instance,
assume the measurement model is given by y = A(®w + Vz), where A € R™*" denotes a
linear measurement operator, and x,y € R". Let us focus on the case where m < n. Such a
measurement model has been the focus of considerable attention in recent advances in signal
processing and high-dimensional statistics [6-8]. In this case, it might seem impossible to
recover the components x and z since A possesses a nontrivial null space. Once again, this
problem becomes ill-posed and additional information about the structure of the components
is necessary. For example, in the application of separating foreground and background
images, the foreground image can be modeled as sparse while the background can be assumed
to be low-rank. Such model assumptions on the constituent signals have been shown to enable
successful demixing [9-13].

In this paper, we focus on an even more challenging scenario, where the measurements
y are nonlinear functions of the signal superposition. That is, y = f(Ax) where f is a
nonlinear function (sometimes called a link function), and x is the target superposition.
Nonlinear link functions have long been studied in the statistics literature, and have recently
been studied in the context of signal recovery [14-16]. Such nonlinear functions can be
used to model numerous phenomena in signal acquisition, including quantization [14] and
phaseless imaging [17].

We are interested in the problem of signal demixing in such observation scenarios. Math-
ematically, we consider the model of y = f(Ax) where A € R™*" is a random matrix and
x = ®dw + Vz. We exclusively focus on the case where m < n. As part of our structural
assumptions, we suppose that the signal coefficients w and z are s-sparse in the basis ® and
U, respectively (i.e., w and z contain no more than s nonzero entries). Then, the goal is
to recover w and z, given m number of measurements, {y1,ys, ..., ym} and the two bases ®
and W. Furthermore, f may be non-smooth, non-invertible, or even unknown. (The only
restriction is that f should be odd.)

In this paper, we provide a simple, fast algorithm (that we call ONESHOT) to demix the
constituent signals w and z from the observations y. Our algorithm is non-iterative, does
not require explicit knowledge of the link function, and is able to recover w and z even in
the case where m < n (provided the bases ® and ¥ are incoherent enough.)

We support our algorithm with a rigorous theoretical analysis. Our analysis leads us to
prove upper bounds for the sample complezity (i.e., the number of requisite observations for
successful demixing) as well as the estimation error achieved by our proposed algorithm. In
particular, under certain conditions, we prove that the sample complexity of ONESHOT is
given by m = O(slog “); this matches the best-known bounds for the (easier) case of linear
observations. Formally, assume that ® and ¥ are two incoherent basis with incoherence e
and z = dw + ¥z where ||w|lo < s, [[w|lo < s and z,w,z € R". If € is a small constant
(say € < 0.25), then with m = O(slog?) observations, we can recover x, as well as the



constituents w, z, up to accuracy O(g). See Section 4 for details.

Our technique to prove our desired upper bounds for ONESHOT is based on the approach
proposed in [18]. Our main conceptual contribution is to extend this approach for the (more
general) nonlinear demixing problem. The theoretical bounds emerging from our approach
serve to highlight the role of signal incoherence in algorithm performance. Our technique
follows a geometric argument, and leverages the Gaussian mean width for the set of sparse
vectors. The Gaussian mean width is a geometric measure of complexity of a set of points in
a given space, and tight bounds for the Gaussian width of the set of s-sparse vectors in the
unit ball in R™ are available. We use the bounds in deriving our sample complexity results.

Moreover, we provide numerical evidence for the efficiency of our methods. In particular,
we compare the performance of ONESHOT with a previous method proposed in [18] that is
based on convex optimization. The original idea of this method [18] is not directly related
to the nonlinear demixing problem, but it was proposed for nonlinear signal recovery when
the underlying signal x belongs to the set of approximately s-sparse signals. Simulation
results show that ONESHOT outperforms this convex method significantly in both statistical
efficiency as well as running time, and consequently makes it an attractive choice in large-
scale nonlinear demixing problems.

2 Prior Work

The problem of linear demixing has been a significant focus of study in the last several years.
In a class of image processing techniques known as morphological component analysis (MCA),
images are treated as the superposition of a few structured constituents, and the goal is to
reliably recover these constituents given knowledge of their structure [1,2]. Typical structural
assumptions on the signal constituents include sparsity in a given basis or dictionary. In
[19], the authors describe a number of applications of similar demixing techniques in audio
processing and hardware diagnosis.

Research in the linear demixing problem has also considered a variety of signal models
beyond sparsity-based models. The robust PCA problem [9-11] involves inferring a low-rank
matrix L and a sparse matrix S, given their sum M = L + S. In the machine learning
community, the separation of low-rank and sparse matrices is used for latent variable model
selection [20] and the robust alignment of multiple occluded images [21]. A different (more
general) signal model is the low-dimensional manifold model. For instance, in [12,13], the
authors propose a greedy iterative method for demixing signals, arising from a mixture of
known manifolds by iterative projections onto the manifolds. We refer to [3] for a compre-
hensive discussion about the linear demixing problem with various applications.

The linear demixing problem falls under the general category of inverse problems, where
the number of unknown parameters in an estimation problem far exceeds the number of ob-
servations. In signal processing applications, such problems have been widely studied under
the moniker of compressive sensing [6-8], where the goal is to reconstruct a given signal
from a small number of linear measurements. Of particular relevance to us is the 1-bit com-
pressive sensing problem. Here, the linear measurements are quantized to a single bit where
the measurements are binary (£1) and only comprise the sign of the signal coefficient (i.e.,
the amplitude information is completely absorbed by the quantization operator.) Recent



results have shown that if the signal x is sparse enough, this recovery problem can be done
efficiently using convex optimization [14-16].

The nonlinear measurement model is also related to classical observation models in statis-
tics. variously known as the single index model (SIM), or the Generalized Linear Model
(GLM). In SIM, the unknown nonlinear function f is assumed to be odd and non-decreasing,
and the goal is to estimate f as well as the parameter vector x. For representative algo-
rithmic solutions in the machine learning community, see [22,23]. Recently, [24] proposed
an approach for estimating the coefficients based on a novel second moment estimator. An
advantage of their approach is that the unknown link function can be either odd or even.

Our method closely follows, and can be viewed as a generalization of, the method devel-
oped in [18]. Here, the authors consider the problem of recovering sparse signals from general
nonlinear measurements. Their results implicitly assume that the (possibly unknown) non-
linear link function is odd. Using geometric arguments, they provide a minimax-optimal
rate for their bound up to constants. Quantitatively, their results indicate that the required
number of measurements for successful nonlinear recovery is proportional to the effective
dimension of the set of sparse signals; the effective dimension is defined as the square of the
Gaussian mean width, a geometric notion that captures the intrinsic complexity of a set.

None of the above works have (explicitly) considered the problem of demizing signals
from nonlinear observations. In this work, we address this problem and provide a very fast
algorithm with provable guarantees.

3 Mathematical Setup

In this section, we establish the formal mathematical model and introduce some definitions.
Consider the Gaussian observation model:

where A € R™*" is a random matrix with i.i.d. standard normal entries, and x € R" is given
by sum of two s-sparse vectors in two different basis. That is,

r=ow+ Pz, (3.2)

where &, ¥ € R"*" are orthonormal bases, and w, z € R" such that ||w]|o < s1, and ||z <
sy. Here, f denotes a (possibly unknown) odd link function which is not necessarily smooth,

invertible, or continuous. Otherwise mentioned, the symbol || - || refers to the fo-norm.
We define the following quantities:
Qw4+ vz
r=————/=«oaPw+Vz2),
|[Pw + Wz ( )
where:
1 _ w i z
a=——: W= —", Z=—"
[Pw + V2| ]l =]

Also, we assume that w and z belong to the following sets:

we Ky ={®a||alo < s},
z € Ky ={¥a | |laflo < s2},



and we define K = {a | ||a]lo < s}.

Definition 3.1. (Linear estimate of x). The linear estimate of x is given by Ty, = %ATy =
%Eﬁlyiai where a; € R™ is the i-th row of A and we have a; ~ N (0,1).

Definition 3.2. (e-incoherence). The set of s-sparse vectors in basis ® and V¥ are said to
be e-incoherent where:
€= sup |(Du, Yv)].

[ullo<s, |lv[lo<s
lull2=1, |lv]l2=1

Definition 3.3. (Polar norm) For a given x € R"™ and a subset of Q € R™, the polar norm
with respect to Q) is defined as follows:

[2|le = sup(z, u).
ueQ

Furthermore, for a given subset of @ € R", we define Q; = (Q — Q) NtBY. Since @ is a
symmetric set, it can be shown that the polar norm with respect to @); defines a semi-norm.

Definition 3.4. (Local gaussian mean width). For a given set K € R™, the local gaussian
mean width (or simply, the local mean width) is defined as follows ¥ t > 0:

Wi(K)=E sup (g,7—y)

4 A Fast Demixing Algorithm

Having defined these quantities, we are ready to present our algorithm and main theoretical
results. Recall that we wish to recover components w and z in equation 3.2. Our proposed
algorithm, that we call it ONESHOT, is given in Algorithm 1.

Algorithm 1 ONESHOT

Inputs: Basis matrices ® and ¥, measurement matrix A, measurements y, sparsity level s.
Outputs: Estimates T = ®w + ¥z, w € K1, 2 € Ko

Tiin ¢ ~ ATy {form linear estimation}
by «— ®*Ty, {forming first proxy}

W Ps(b1) {Projection on set K}

by < ¥*Tiin {forming second proxy}

Z < Ps(b2) {Projection on set s}
T+ ®w+ ¥z  {Estimating z}

In ONESHOT, we assume that the sparsity levels s; and sy defined in the sets K; and Ko
are equal to each other, i.e,s; = s = s. The algorithm effortlessly extends to the case of
unequal sparsity levels. Also, we have used the following projections:

@ - 7)8((1)*:/6\%71)7 2 - PS(\I’*.f'lm)
Here, P, denotes projection onto K and can be implemented by hard thresholding. It

is important to note that ONESHOT is not an iterative algorithm; this fact enables us to
achieve a fast running time in large-scale problems.



In our proofs, we use a result from [18] that we state for completeness.

Lemma 4.1. (Quality of linear estimate). Given the model in Equation 3.1, the linear
estimator (Def. 3.1) is an unbiased estimator of T (up to constants). That is, E(Zy,) = pz
and the variance of estimator is given by:

- B 1
EH:Elin - Hng = 5[0—2 + 772(” - 1)]7

where
1= E(yi(ar, 7)),0° = Var(y (e, )),n* = E(yD).

Theorem 4.2. (Main theorem.) Let y € R™ be given the set of measurements. Let A €
R™™ be a random matrix with i.i.d. standard normal entries. Also, let &, ¥ € R™™"™ are
bases with incoherence €, as defined in Definition 3.2. If we use ONESHOT to recover w and
z described in equations 3.1 and 3.2, then the error of nonlinear estimation incurred by 1,
the output of ONESHOT, satisfies the following upper bound:

4¢g0(¢11+—8)+4”<¢—) e\

where C' > 0 is an absolute constant. The coefficients p, o, and n are given in Lemma 4.1.
Similar upper bounds can be obtained for estimates of the constituent signals w, z via the
triangle inequality.

ElZ — pz| <

Proof. See Section 5. m
Corollary 4.3. (Ezample quantitative result). If f(x) = sign(z), then we may substitute

2 2 2 2
o= %%08, 0':].—;%06, 7’]:1,

i the above statement. Hence, the bound in 4.1 becomes:

~ 4 l1+e¢ £ C 2n
E|lr — <— | —— | +453 + log — 4.2
17 = pall === (m) (m) T\ s (4.2)
Proof. Using Lemma 4.1, u = E(yi{a;,Z)) where y; = sign((a;, x)). Since a; ~ N(0,1)

and Z has unit norm, (a;,z) ~ N(0,1). Thus, u = E|g| = \/g Moreover, we can write

o =E(|g]*) — p* =1 — 2. Here, we have used the fact that |g|? obeys the xi distribution
Wlth mean 1. Finally, n* = E(y?) = 1. O

Remark 4.4. (Implications). The upper bound on the estimation error in the main theorem
shows that to achieve an estimation error of O(g), the following number of measurements

suffices:
m=Q0 (62 log — )

For constant €, this matches the sample complezity of demixing in the linear case [13].



The main theorem obtains a bound on the expected value of the estimation error. We can
derive a similar upper bound that holds with high probability. In this theorem, we assume
that measurements y; for i = 1,2,...,m have a sub-gaussian distribution. See [25] for a
comprehensive discussion about sub-gaussian random variables.

Theorem 4.5. (High-probability version of main theorem.) Lety € R™ be a set of mea-
surements with a sub-gaussian distribution. Assume that A € R™ " is a random matriz with
i.1.d standard normal entries. Also, assume that ®, ¥ € R™™"™ are two bases with incoherence
e as in Definition 3.2. Let 0 < s < y/m. If we use ONESHOT to recover w and z described in
(3.1) and (3.2), then the estimation error of the output of ONESHOT satisfies the following:

N B 2\/5773 1+¢ € Cn 2n ns
— < 4v/2 log — +4———
1o = el < =72 <m>+ f”(m)*m MR

with probability at least 1 — 4exp(—ﬁf—) where C,c > 0 are absolute constants. The
W2

coefficients p, o, and n are given in Lemma 4.1. Here, ||y1]|y, denotes the ya-norm of the
first measurement y; .

Proof. See Section 5. O

5 Proofs

In this section, we derive the proof of Theorem 4.2. The proof mostly follows the method
of [18]. As a precursor, we need the following lemma from geometric functional analysis,
restated from [18].

Lemma 5.1. Assume K is a closed star-shaped set. Then for u € K, and a € R", one has
the following result ¥t > 0:

[P (a) — ullz < max(t, %HPK(a) — ullp)- (5.1)

We also use the following result of [18].
Claim 5.2. (orthogonal decomposition of a;) Suppose we decompose the rows of A, a;, as:
a; = <CLZ‘, £Z‘>ZZ‘ + bi; (52)

where b; € R™ is orthogonal to T. Then we have b; ~ N(0,I,1) since a; ~ N(0,1). Also,
I,. = I—zzT. Moreover, the measurements y; in equation 3.1 and the orthogonal component
b; are statistically independent.

Proof of Theorem 4.2. Observe that the magnitude of the signal x may be completely lost
due to the action of the nonlinear measurement function f (such as the sign(-) function).
Therefore, our recovered signal T approximates the true signal modulo (possibly unknown)



scaling factor. Indeed, for u defined in Lemma 4.1, we have:

|z — pz|| = ||Pw + ¥z — apdw — apVz||
< [|®flf|w — paw[| + [[¥[[|[Z = poz|

2, ~ 2 _
< (o N1 Fuin — pawllp) + (¢ + 21V T — pazlng)

The equality comes from the definition of Z. The first inequality results from an applica-
tion of the triangle inequality and the definition of the operator norm of a matrix, while the
second inequality follows from Lemma 5.1.

It suffices to derive a bound on the first term in the above expression (since a similar
bound will hold for the second term.) We obtain:

*25 — * 1 =\ = —
| Z1in — poid|[rp = || P Ezi(%@i,@x + yibi) — paw|| gy

o1 = _ W1
< | @* =35 (yi{as, 2)T) — pad|| o + || " —X;ybil ke
m m

* 1 —\ = * = 1Ty = * 1
<|® 521(%(%37)37) — p®*T| ko + || pa® W E| ko + || EziyibiHKf-
NN / W N

S S2

S3

(5.3)

The first equality follows from the orthogonal decomposition of a;, while the second and
third inequalities result from the triangle inequality. We first bound S; as follows:

1 .
S1 = |87~ Ri(yilai, 2)7) — p®7|
1
= ||(E2i(yi(ai,f> — )% ke
1
= | =Xi(yifai, ) — x| k-
| Bilyi{ai, ) — W[ ®72
Therefore,

1 _ .
E(ST) = E(’%&(%Wu@ —p)P||® 33“%(;’)

Define ~; 2 yi{a;, T) — p;. Then,

By (a0, 7) — 1)) = B(— (5

1 m
= E(W(Z %+ Big i)

1« 2 1 2
= W(; E%‘) = EE%

S|



where 02 has been defined in Lemma 4.1. The third and last equalities follow from the fact
that the y;’s are independent and identically distributed.
Now, we bound [[®*Z|[%, as follows:

D% o = sup (DT, u)
ue(K—K)NtB2
=t sup (DP'T,v; — wvy)
U1€%K,UQG%K
]| <1,i=1,2
<2t sup [(9*7,a)l

llallo<s
llall<1

< 2t( sup [(aw,a)| + sup [(a®"VZ a)|)
llallo<s llallo<s
llall<1 lall<1

< 2at(l+ sup [{(aV¥z, Pa)|)
lallo<s
Jall<1

= 2at(1 +¢).

This implies that:
a?t?0?

— E(S}) < 4 (1+¢)> (5.4)

The second inequality follows from (3.2) and the triangle inequality. The last inequality
is results from an application of the Cauchy-Schwarz inequality and the definition of ¢.
Similarly, we can bound S, as follows:

E(S2) = E(||uad®*®z|| k)
= E(|pa|||@*Z| k)
= |pal|| 0" 2| ko

= [pal  sup  (Uz, Qu)
ue(K—K)NtB2

Clpalt s (UE (0 — )
’U1€%K,U2€%K
[lvs]| <1,i=1,2

< 2uate. (5.5)
Finally, we give the bound for S5. Define L 2 %Eiyibz-. Then, we get:
1
E(S5) = E®"—Ziyibill xp = B[ 2" L] rp-
Our goal is to bound E|®*L|| .. Since y; and b; are independent random variables (as per

Claim 5.2), we can use the law of conditional covariances and the law of iterated expectation.
That is, we first condition on y;, and then take expectation with respect to b;.



By conditioning on y;, we have L ~ N (0, 3°I,.) where [,. = I — zz" is the covariance
of vector b; according to claim 5.2 and ? = 5%y, Define g, ~ N(0,1,.). Therefore,
L = Bg,. Putting everything together, we get:

B(S;) = B|0"Lxg
=E|[®*Bg,+ || x;
= BE[[®"gp || k-

We need to extend the support of distribution of g,. and consequently L from z+ to R".
This is done by the following claim in [18]:

Claim 5.3. Let gg be a random vector which is distributed as N(0,1Ig). Also, assum that
I' : R" - R is a convexr function. Then, for any subspace E of R"™ such that E C F, we
have:

E(I'(9z)) < E(T'(gr)).

Hence, we can orthogonally decompose R™ as R” = D& C where D is a subspace support-
ing * and C' is the orthogonal subspace onto it. Thus, gg» = gp + g¢ in distribution such
that gp ~ N(0,1p), go ~ N(0,1c). Also, ||.||xe is a convex function since it is a semi-norm.
Hence,

Ep||®*g9p|lxe = Ep||®*gp + Ec(9c) || ke
= Ep||Ecip(®*9p + gc) || ko
< EpEcp||®*(9p + g¢)l ke
= E[|2"grn || xp-

The first inequality follows from Jensen’s inequality, while the second inequality follows
from the law of iterated expectation. Therefore, we get:

E[[®"L| rp = E|2*Bg,- [ rcp
= BR[| ®* gy | e
< BE||®*grn | rcp
=B  sup  (D"Bggn,u)

ue(K—K)NtB2
= BWi(K).

The last equality follows from the fact that ®*ggn ~ N(0, ). The final step is to take an
expectation with respect to y;, giving us a bound on E(S3):

E(S3) = E[|®*L|x;
< E(B)Wi(K)

< VE(B)Wi(K),

where 2 = =5 3" 2. Hence,

E(S;) < \/%Wt(l(). (5.6)
10



Putting together the results from (5.4), (5.5), and (5.6), we have:
E(|9Z1in — pawl|x,) < E(S1) +E(S2) + E(Ss3)
< VE(S)) + E(S;) + E(Ss)

2at
< U(1+6)+2ﬂat€+LWt(K).
m

T Vm vm

Therefore, we obtain:

2 4 2
o+ SE(|0 R — pat] ) < t+ %(1 + ) + dpas + — =W, (K).

tvm

Hence,
E(||z — pz||) <2t + 80“7(1 +¢) + 8pae + il Wi(K)
T — ux — aE + —— .
Moreover, we can bound o = i @w-lwzn as follows:
|Pw + WZ[3 > | @3 + |93 — 2/(Pw, T2)] (5.7)
> 2—2¢e, or,
1

N N

However, k is a closed star-shaped set, thus W;(k) = tW;(K). We can use lemma (2.3)
in [15] to bound W;(K) and let ¢ — 0. Using this, we have the final bound:

R 20 [ 1+¢ £ Cn 2n
E|z — pz| < +4V2 + slog — | 5.8
o - prl < 2 (S ) ava (i )+ T o 5)
where C' > 0 is an absolute constant. This completes the proof of Theorem 4.2. O

As a precursor to the high probability version of the main theorem, we need a few more
definitions and preliminary lemmas:

Definition 5.4. (Sub-Gaussian random variable.) A random wvariable X is called sub-
Gaussian if it satisfies the following:

cX
E — ] <2
eXp(nxniz) =

where ¢ > 0 is an absolute constant and || Xy, denotes the o-norm which is defined as
follows:

1 1
X =sup —(E|X|P)».
1 X [, p;\/ﬁ( | X[7)

11



Definition 5.5. (Sub-ezponential random variable.) A random variable X is called sub-
gaussian if it satisfies the following:

cX
E — | <2
eXp(HXle) =5

where ¢ > 0 is an absolute constant and || Xy, denotes the 1-norm which is defined as
follows:

1 1
1 X |y, = sup —(E|X|")>.
p>1 P
We should mention that there are other definitions for sub-Gaussian and sub-exponential

random variables. Please see [25].

Lemma 5.6. Let z and y be two sub-Gaussian random wvariables. Then, XY 1is a sub-
exponential random variable.

Proof. According to the definition of the ¥s-norm, we have:
1
(EIXY]7)r < plIX s 1V [, (5.9)
This shows that the random variable XY is sub-exponential according to Definition 5.5. [
Lemma 5.7. (Gaussian concentration inequality) See [25]. Let (G, )zer be a centered gaus-

sian process indexed by a finite set T'. Then ¥Vt > 0:

tZ
P(sup G, > Esup G, + 1)) < exp (——2)
a€T zeT 20

where 0* = sup, . EG2 < 0.

Lemma 5.8. (Bernstein-type inequality for random wvariables) [25]. Let Xy, Xa,..., X,
be independent sub-exponential random wvariables with zero-mean. Also, assume that K =
max; || X;||y,. Then, for any vector a € R™ and every t > 0, we have:

t° t
P(|X;a,X;| > t) < 2exp (—cmin{ , }) .
K2[all3” Kllallo

where ¢ > 0 is an absolute constant.

Proof of Theorem 4.5. We follow the proof given in [18]. Let = o for 0 <'s < vm

where m denotes the number of measurements. In (5.3), we saw that

SO 2
17— pzl] < 2(t + £ (51 + 52 + 53)) (5.10)

We attempt to bound the tail probability separately for each term Si, S, and S3 and then
use a union bound to obtain the desired result.

12



For S, we have:
1 _ .
Si < ‘Ezi<yi<aiax> — )27z xce-

We note that y; is a sub-gaussian random variable (by assumption) and (a;, Z) is a standard
normal random variable. Hence, by Lemma 5.6, y;(a;, Z) is a sub-exponential random vari-
able. Also, y;(a;,z) for i = 1,2,...,m are independent sub-exponential random variables
that can be centered by subtracting of their mean, u. Now, we can apply Lemma 5.8 on
| -3 (y;(a;, ) — p)|. Therefore, We have:

1 2,2
P(|E2i(yi<ai@> — 1) = nB) < 2exp (_i’ﬁyﬁ@m) |

Here, n and y are as defined in 4.1. Using the bound on |®*Z||;o, we have:

1+e¢
S, < V2npt , 5.11
1> np 1z ( )
with probability at least 1 — 2 exp(—cuﬁy j’ﬁzm) where ¢ > 0 is some constant.
W
For S5 we have: ’
Sy < V2pat—— (5.12)

V1i—¢’

with probability 1 since S5 is a deterministic quantity.
For S5 we have:

1
Sy < |0 —2yibi rep-
m
To obtain a tail bound for S5, We are using the following:
1 2\1/2(| g
S3 < —(5ig;) 711279l ke
m

We need to invoke the Bernstein Inequality (lemaa 5.8) for sub-exponential random variables
(y? —n?) for i =1,2,...,m in order to bound X (X;y?)"/2. we have:

1
|—[2(y; — )| < 31
m

with high probability 1 — 2 exp(—ﬂﬁ).

lyally,
Also, we need to bound ||®*g|| where g ~ N(0, ) with high probability. Since ® is an
orthogonal matrix; as a result, ®*g ~ N(0, I'). Hence, we can use the Gaussian concentration
inequality to bound ®*¢ as mentioned in lemma 5.7. Put these pieces together, we have:

5 < j—%(wm T tBvm), (5.13)
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with probability at least 1 — 2exp(— T H4 ) — exp(cf*m). Here, W(K) denotes the local

mean width for the set Ky defining in section 3.
Now, using 5.10 to 5.13 together with union bound, we obtain:

5 - el < 22 (S22 ) v

with probability at least 1 — 4 exp(—

i) e

52 4
||4 ) where C, ¢ > 0 are absolute constants. Here, we

||
have again used the well-known bound on the local mean width of the set of sparse vectors;

see lemma (2.3) in [15]. This completes the proof. O

6 Numerical Results

In this section, we provide some representative numerical experiments for our proposed
algorithm based on synthetic and real data. We also compare its performance with a LASSO-
type technique for demixing. This method, first proposed in [18], was not explicitly developed
in the demixing context, but is suitable for our problem. We call this method the Nonlinear
convex demizing LASSO, or the NLCDLASSO for short. Using our notation from Section 3
and 4, NLCDLASSO solves the following convex problem:

min | Z1in — (P2 + Yw)]|
2w (6.1)
subject to [lwlli < Vs, |21 < V5.

Here, Zj;, denotes the linear estimation of x (definition 3.1) and s denotes to the sparsity
level of signals w and z in basis ® and W, respectively. The constraints in problem 6.1 are
convex penalties reflecting the knowledge that w and z are s-sparse and have unit /5-norm.
The outputs of this algorithm are the estimates w, z, and ¥ = ®w + Vz. To solve the
optimization problem in 6.1, we have used SPGL1 [26,27]. This solver can handle large scale
problems, which is the scenario that we have used in our experimental evaluations.

6.1 Synthetic data

We precisely describe the setup of our simulations for synthetic data. First, we generate
w and z belonging to R™ with n = 2%°, whose support is randomly generated among all
supports in R” with s nonzero elements. According to the discussion in the Introduction,
for successful recover we require that the constituent signals to be incoherent enough. To
achieve this, we consider that the signal w to be s-sparse in the Haar wavelet basis, and z to
be s-sparse in the noiselet basis [28]. For the measurement operator A, we choose a partial
DFT matrix. Such matrices are known to have similar recovery performance as random
Gaussian matrices, but enable fast numerical operations [29].

For our nonlinear link function, we set f(x) = sign(x). Due to this measurement model,
the scale (amplitude) of the underlying signal is irrevocably lost. To measure recovery
performance in the absence of scale information, we use the criterion of Cosine Similarity
between x and Z to compare the performance of different methods. More precisely, suppose
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Figure 1: Performance of ONESHOT and NLCDLASSO according to the COSINE SIMILARITY for different
choices of sparsity level s and for different number of measurements m.

ONESHOT (or NLCDLASSO) outputs @ and Z, such that ¥ = ®w + ¥Zz. Then, the Cosine
Similarity criterion is defined as follows:

'z

(il

Figure 1 illustrates the performance of ONESHOT and NLCDLASSO according to the
Cosine Similarity for different choices of sparsity level s. The horizontal axis denotes an
increasing number of measurements. Each data point in the plot is obtained by conducting
a Monte Carlo experiment in which a new random measurement matrix A is generated, and
averaging over 100 trials. As we can see from the plot, the performance of NLCDLASSO is
worse than ONESHOT for any fixed choice of m and s. Even for extreme situations (m = 4850
and s = 5), ONESHOT outperforms NLCDLASSO significantly.

Figure 2 shows the true signal and its components (z, dw and ®z) as well as the re-
constructed signals using ONESHOT. In this experiment, we have used a standard normal
random matrix as the measurement matrix A, and a test signal of length 2'5. The sparsity
parameter s is set to 15, and the number of measurements is set to 5000. From visual in-
spection, we can observe that both true and reconstructed signals as well as true constituent
signals and their estimations are close to each other (up to a scaling factor).

Finally, we contrast the running time of both algorithms, illustrated in Figure 3. In this
experiment, we have measured the wall-clock running time of the two algorithms, by varying
signal size z from n = 2! to n = 22°. Here, we set the number of measurements to m = 500
and the number of Monte Carlo trials to 1000. The horizontal axis in the plot is in log
scale. As we can see, ONESHOT is 12 times faster than NLCDLASSO when the size of signal
equals to 220 which makes ONESHOT very efficient even for large scale nonlinear demixing
problems.

cos(x,T) =
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Figure 2: (a) Ground truth z, ®w, and ®z. (b) ONESHOT estimates &, ®w, and 2.
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Figure 3: Comparison of running times of ONESHOT with NLCDLASSO.

6.2 Real data

In this section, we provide representative results on real-world 2-dimensional data using
ONEsHOT and NLCDLASSO.

For the 2-dimensional scenario, we start with a 256 x 256 test image. First, we obtain its
2D Haar wavelet decomposition and retain the s = 500 largest coefficients, denoted by the s-
sparse vector w. Then, we reconstruct the image based on these largest coefficients, denoted
by = ®w. Similar to the synthetic case, we generate a noise component in our superposition
model based on 500 noiselet coefficients z. In addition, we consider a parameter which
controls the strength of the noiselet component contributing to the superposition model. We
set this parameter to 0.1. Therefore, our test image x is given by x = dw + 0.1V z.

Figure 4 illustrates both the true and the reconstructed images = and T as well as both
the true and the reconstructed wavelet-sparse component, denoting by ®w and W, respec-
tively. The number of measurements is set to 35000. In this simulation, for measurement
matrix A, we have used a partial (subsampled) DFT matrix due to the difficulties in large-
scale computations with Gaussian measurement matrices. However, the main theoretical
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Figure 4: Comparison of ONESHOT and NLCDLASSO for demixing problem in real 2-dimensional case.

results obtained in this paper are applicable to random Gaussian measurement matrices.
Hence, our theoretical results do not directly apply in this, and we defer a thorough in-
vestigation of random DFT measurement matrices for the nonlinear demixing problem as
future research. Nevertheless, the results are promising, and from visual inspection we see
that the reconstructed image, 7, using ONESHOT is better than the reconstructed image by
NLcDLASSO. Quantitatively, we also calculate Peak signal-to-noise-ratio (PSNR) of the
reconstructed images using both algorithms relative to the test image, x. We have:

therefore illustrating the superior performance of ONESHOT compared to NLCDLASSO.
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7 Conclusions

We proposed a simple (and fast) algorithm for demixing sparse signals from nonlinear ob-
servations. We call this algorithm ONESHOT since it is non-iterative. The performance
of ONESHOT is characterized via upper bounds on the statistical error that depend on the
(in)coherence between the sparse signal constituents. An important implication of our bound
is that under the assumption of sufficient incoherence, the number of measurements required
for reliable recovery of the constituent signals is given by m = O(slog 2?”) where s is the
sparsity level of the constituent signals and n is the ambient dimension. We anticipate that
the problem of demixing signals from nonlinear observations can be used in numerous differ-
ent practical applications. As future work, we intend to extend our methods to more general
signal models (including rank-sparsity models), as well as robust algorithms for more general
measurement models.
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