
DECENTRALIZED DEEP LEARNING USING MOMENTUM-ACCELERATED CONSENSUS

Aditya Balu⋆ Zhanhong Jiang† Sin Yong Tan⋆ Chinmay Hegde § Young M Lee† Soumik Sarkar⋆

⋆ Iowa State University † Johnson Controls § New York University

ABSTRACT
We consider the problem of decentralized deep learning where multi-
ple agents collaborate to learn from a distributed dataset. While sev-
eral decentralized deep learning approaches exist, the majority con-
sider a central parameter-server topology for aggregating the model
parameters from the agents. However, such a topology may be in-
applicable in networked systems such as ad-hoc mobile networks,
field robotics, and power network systems where direct communi-
cation with the central parameter server may be inefficient. In this
context, we propose and analyze a novel decentralized deep learn-
ing algorithm where the agents interact over a fixed communication
topology (without a central server). Our algorithm is based on the
heavy-ball acceleration method used in gradient-based optimization.
We propose a novel consensus protocol where each agent shares with
its neighbors its model parameters and gradient-momentum values
during the optimization process. We consider nonconvex objective
functions and theoretically analyze our algorithm’s performance. We
present several empirical comparisons with competing decentralized
learning methods to demonstrate the efficacy of our approach under
different communication topologies.

Index Terms— Decentralized deep learning, nonconvex, mo-
mentum, convergence

1. INTRODUCTION

Spurred by the need to accelerate deep neural network training with
massive distributed datasets, several recent research efforts [1, 2,
3, 4] have put forth a variety of distributed, parallel learning ap-
proaches. One line of work has focused on adapting traditional deep
learning algorithms that use a single CPU-GPU environment to a dis-
tributed setting with a network of several GPUs [5, 2, 6, 7]. Some
of these approaches also can be used in conjunction with gradient
compression schemes between compute nodes in the network [8]. A
different line of works falls under the umbrella of federated learn-
ing [9] which deals with inherently decentralized datasets, i.e., each
compute node has its own corresponding set of data samples that
are not shared. The majority of works in this area consider a central
parameter-server topology that aggregates estimates of model param-
eters from the agents.

In this paper, our particular focus is on decentralized learning
where there is no central server: each node in the network maintains
its model parameters (which it can communicate with its neighbors
defined according to a pre-specified, but otherwise arbitrary, commu-
nication topology), and the goal is to arrive at a consensus model for
the whole network. See [10, 11, 12, 13, 14, 15, 16] for examples of
such decentralized learning approaches.

While the above works are representative of key advances in the
algorithmic front, several gaps remain in our understanding of cen-
tralized versus distributed learning approaches. Conspicuous among

corr address: soumiks@iastate.edu

these gaps is the notion of momentum, which is a common technique
to speed up convergence in gradient-based learning methods [22, 23].
However, few papers (barring exceptions such as [17, 11, 12, 20]) in
the decentralized learning literature have touched upon momentum-
based acceleration techniques, and to our knowledge, rigorous guar-
antees in the context of nonconvex and stochastic optimization have
not been presented. Our objective in this paper is to fill this key gap
from both a theoretical as well as empirical perspective.

Our contributions. We propose and analyze a stochastic op-
timization algorithm that we call decentralized momentum SGD
(DMSGD), based on the classical notion of momentum (or the
heavy-ball method [24]). See Table 1 for more comparisons.

For smooth and nonconvex objective functions, we show the con-
vergence to a first-order stationary point, that is, the algorithm pro-
duces an estimate x with sufficiently small gradient (∥∇f(x)∥ ≤ ε)
after O(1/ε+1/(Nε2)) iterations, where N is the number of agents.
Additional results on strongly-convex and its relaxation using the
Polyak-Łojasiewicz criterion is provided in the extended version of
this paper [25].

We empirically compare DMSGD with baseline decentralized
methods such as D-PSGD/CDSGD [10, 11]. We show that when the
momentum term is appropriately weighted, DMSGD is faster and
more accurate than these baseline methods, suggesting the benefits
of its use on practice.

2. PROBLEM SETUP AND PRELIMINARIES

Let the parameters of the deep neural network be denoted as x ∈ Rd.
We define a loss function f : Rd → R and denote its corresponding
stochastic gradient by g.

Decentralized learning. Consider a static undirected graph
G = (V,E), where V is the node set and E is an edge set. Conse-
quently, if we assume that there exist N nodes (agents) in the net-
worked system, we can denote V = {1, 2, ..., N} while E ⊆ V ×V .
If (j, l) ∈ E, then agent j can communicate with agent l. A node
j ∈ V has its neighbors Nb(j) ≜ {j ∈ V : (j, l) ∈ E or l = j}.
We assume that the network G is connected without loss of gener-
ality throughout this paper. In this paper, we consider a finite sum
minimization problem defined as follows:

min
1

n

N∑
j=1

∑
i∈Dj

f i
j (x), (1)

where Dj denotes the subset of the training data (comprising nj sam-
ples) only known by the j th agent such that

∑N
j=1 nj = n, n is the

size of dataset, N is the number of agents, fj : Rd → R are lo-
cal loss functions of each node. Let xj ∈ Rd be a local copy of x.
Then, define x = [x1;x2; . . . ;xN] ∈ RNd×1. All vector and matrix
norms are Euclidean and Frobenius norms respectively.

In this paper, for simplicity of presentation, we assume that d =
1, while noting that exactly the same proof ideas hold when d > 1
albeit at the expense of extra notation.

Equation 1 can be rewritten as the constrained problem:

Table 1: Comparisons between different optimization approaches. Gra.Lip.: Gradient Lipschitz. Str.Con.: strongly convex. Cen.: centralized.
Con.: convex. Dec: decentralized. ρ: a positive constant in (0, 1). k is the number of iterations. N : the number of agents. PL: Polyak-
Łojasiewicz condition. It should be noted that each ρ in different methods vary in real values.

Method f Rate Setting Gra.Lip. Stochastic Momentum
HBM Str.Con. O(ρk) Cen. Yes No Yes

MSWG [17] Str.Con. O(ρk) Dec. Yes No Yes
SHB [18] Con. O(ρk) Cen. Yes Yes Yes

DMSGD (This paper) PL (Quasi-convex) O(ρk) Dec. Yes Yes Yes
SUM [19] Nonconvex O(1/

√
k) Cen. Yes Yes Yes

CDSGD/D-PSGD Nonconvex O(1/k + 1/
√
Nk) Dec. Yes Yes No

MSGD [20] Nonconvex O(1/k + 1/
√
Nk) Cen./Dec. Yes Yes Yes

SlowMo[21] Nonconvex O(1/k + 1/
√
Nk) Cen. Yes Yes Yes

DMSGD (This paper) Nonconvex O(1/k + 1/
√
Nk) Dec. Yes Yes Yes

min F (x) ≜ 1

n

N∑
j=1

∑
i∈Dj

f i
j (x

j), s.t. Πx = x, (2)

where the matrix Π is the mixing matrix encoding the adjacency
structure of G (which is assumed to be doubly stochastic). By turn-
ing the hard constraint Πx = x into a soft constraint that penalizes
the corresponding decision variables x, the following equivalent ob-
jective function can be obtained:

F(x) := F (x) +
1

2ξ
(xT (I −Π)x) (3)

where ξ > 0. In the next section, we will show that ξ can be related
to the step size α.

In order to study the behavior of the proposed algorithm, we now
present basic definitions and assumptions.
Definition 1. A function f : Rd → R is L-smooth, if for all x, y ∈
Rd, we have

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2.

Definition 2. A function c(·) is said to be coercive if it satisfies
c(x) → ∞ when ∥x∥ → ∞.
Assumption 1. The objective functions fj : Rd → R are assumed
to satisfy the following conditions: a) Each fj is Lj-smooth; b) each
fj is proper (not everywhere infinite) and coercive.

An immediate consequence of Assumption 1 a) is that
∑N

j=1 fj(x
j)

is Lm-smooth where Lm := max{L1, L2, ..., LN}.
Assumption 2. The unified objective function F(x) has bounded
gradient such that ∥∇F(x)∥ ≤ M .

Denote S(x) by the stochastic gradient of F at point x such
that it is the unbiased estimate of ∇F(x). We next make another
assumption on the variance of S(x) to ensure that it is bounded from
above.
Assumption 3. The stochastic gradients of F satisfy: V ar(S(x)) =
E[||S(x)−∇F(x)||2] ≤ σ2

With Assumption 2 and Assumption 3(b), we have
E[||S(x)||] =

√
(E[||S(x)||])2 ≤

√
E[||S(x)||2]

=
√

||E[S(x)]||2 + V ar(S(x))

≤
√

M2 + σ2.

3. PROPOSED ALGORITHM

We first present our proposed approach in Algorithm 1.
In the above update law, gj(xj

k) is a stochastic gradient which
is calculated by randomly selecting at uniform a mini-batch for each

Algorithm 1 DMSGD

Input :m, Π, xj
0, x

j
1, α, N , ω, β

Output :x∗

for k = 1 : m do
for j = 1 : N do

Consensus step: Nodes run average consensus:
vjk =

∑
l∈Nb(j) πjlx

l
k;

Momentum step:
δk = ω(xj

k − xj
k−1) + (1− ω)(vjk − vjk−1);

Local gradient step for node j:
xj
k+1 = vjk − αgj(xj

k) + βδk;

end
end

agent. Let D′ be a mini-batch of the dataset Dj of the j-th agent.
Therefore,

gj(xj
k) =

1

b

∑
i∈D′

∇f i
j (x

j
k),

where b is the size of D′.
In [11, 12], decentralized variants of classic momentum have

been proposed (without analysis). On the other hand, our proposed
DMSGD method uses a special parameter, ω, to trade off between
two different momentum terms. The first momentum term is im-
plemented over the true decision variables (xj

k) while the second
momentum term is implemented over the consensus variables (vjk),
which are graph-smoothed averages of the decision variables.

We present a fairly general analysis for DMSGD; as special
cases, we obtain known convergence properties for other methods.
For example, we recover the decentralized classic momentum SGD
by setting the parameter ω = 1. When ω = 0, DMSGD produces
a new decentralized MSGD algorithm in which the momentum re-
lies on the consensus variables. When the parameter β is set to 0,
the proposed DMSGD boils down to the decentralized SGD method
without momentum [11, 10]. Another slightly different alternative of
DMSGD is to replace vjk with xj

k in the local gradient step such that
the consensus only affects the momentum term. The intuition behind
this variant is that for the local gradient step, agent j only relies on
its current state information instead of the consensus, "refusing" to
proceed the update on top of an "agreement". For convenience and
simplicity, the initial values of xj are set to 0 throughout the analysis.

We now rewrite the core update law with in a vector form as:
xk+1 = xk − α(g(xk) +

1

α
(I −Π)xk)

+ β(ωI + (1− ω)Π)(xk − xk−1)
(4)

Here, we define S(xk) = g(xk) +
1
α
(I −Π)xk and Π̃ = ωI +

(1− ω)Π. Consequently, Eq. 4 can be written in a compact form as:
xk+1 = xk − αS(xk) + βΠ̃(xk − xk−1) (5)

The simplification in Eq. 5 enables us to construct a function that
unifies the true objective function with a term that captures the
constraint of consensus among agents (nodes of the communication
graph). F(x) := F (x) +

1

2α
(xT (I −Π)x) (6)

Comparing Eqs. 3 and 6, we can know that they have exactly the
same form and in our specific case corresponding to DMSGD, the
parameter ξ is the step size α. F is smooth with L′ = Lm + 1

α
(1−

λ2) where λ2 is the second-largest eigenvalue of Π.

4. CONVERGENCE ANALYSIS

Consensus. We first prove that the agents achieve consensus, i.e.,
each agent eventually obtains a parameter that is close to the ensem-
ble average x̄k = 1

N

∑N
j=1 x

j
k, using the metrics of E[∥xj

k − x̄k∥].
In the setting of d = 1, though xj

k and x̄k are both scalars, we use
the norm notation here for generality. As defined above, x has di-
mension of N . Define x̄k = [x̄k; x̄k; ...; x̄k]N . Therefore, it holds
that ∥xi

k − x̄k∥ ≤ ∥xk − x̄k∥ [26] and instead of directly bounding
∥xi

k − x̄k∥, we investigate the upper bound for ∥xk − x̄k∥. We first
obtain:
Proposition 1. (Consensus) Let all assumptions hold. The iterates
generated by DMSGD satisfies the following inequality ∀k ∈ N,
∃α > 0:

E[||xj
k − x̄k||] ≤

8α
√
N
√
M2 + σ2√

η(1− βΛ)(1−
√
βΛ)

, (7)

where η is defined as an arbitrarily small constant such that Π̃ ≽ ηI ,
0 < η < 1, Λ = ω + (1− ω)λ2.
Proof. The proof for this proposition is fairly technical and we pro-
vide the sketch here, referring interested readers to the extended ver-
sion of this paper [25]. We first define x̃k = xk − x̄k and construct
the linear time-invariant system for [x̃k+1; x̃k]. Then by induction
and setting initialization 0, we can express [x̃k+1; x̃k] using only the
coefficient matrices and stochastic gradient inputs. By leveraging
the decomposition techniques in matrices, the upper bound of ma-
trix norms is obtained correspondingly. Hence, the iterates converge
to the consensus estimate.
Remark 1. Proposition 1 provides a uniform consensus error upper
bound among agents, proportional to the step size α and the number
of agents N and inversely proportional to the gap between the largest
and second-largest (in magnitude) eigenvalues of βΠ̃. When ω = 0,
DMSGD achieves the "best" consensus; the upper bound simplifies

to 8α
√
N
√

M2+σ2√
η(1−βλ2)(1−

√
βλ2)

. When ω → 1, we get a worse-case upper

bound on consensus error. Further, a more connected graph has a
smaller value of λ2, implying better consensus (which makes intu-
itive sense).

Nonconvex functions. We summarize the main result on
the convergence of DMSGD for nonconvex function in Theo-
rem 1. But first, we give an auxiliary lemma to simplify the
proof process for Theorem 1. Throughout the rest of the analysis,
F∗ := F(x∗) > −∞ is denoted as the minimum of the value se-
quence {F(xk)},∀k ∈ N. Recall the update law (Equation 5). For
convenience of analysis, we let p̂k = βΠ̃(I − βΠ̃)−1(xk − xk−1)
and rewrite the above equality in the following expression:

xk+1 + p̂k+1 = xk + p̂k − α(I − βΠ̃)−1S(xk) (8)

(Due to the space limit, we derive Eq. 8 in the extended version of
this paper [25].) Let ẑk = xk + p̂k such that the update rule finally
becomes:

ẑk+1 = ẑk − α(I − βΠ̃)−1S(xk) (9)

which resembles a regular form of SGD. Before showing the con-
vergence analysis, we present a lemma for characterizing the main
theorem.
Lemma 1. Let all assumptions hold. The iterates {ẑk} generated by
Eq. 9 satisfy:

E[F(ẑk+1)−F(ẑk)] ≤ −A1E[∥∇F(xk)∥2] +A2 (10)

where A1 = α
2(1−βΛ)

− L′α2

2(1−βΛ)2
, A2 = α3L′2(βΛ)2

(1−βΛ)5
(M2 + σ2) +

L′α2σ2

2(1−βΛ)2
.

With the above lemma in hand, we are ready to state the main
theorem for the nonconvex analysis for DMSGD. Before that, we
discuss the choice of step size for the convergence analysis. While
constant step size enables algorithms to converge faster, diminishing
step size can achieve better accuracy in stochastic optimization. In
this context, the step size should satisfy a condition that can guaran-
tee the value sequence {F(x)} to sufficiently descend. According
to Lemma 1, α should satisfy α ≤ 1−βΛ

L′ .

Theorem 1. Let all assumptions hold. Suppose the step size satis-

fies α = min{ 1−βΛ
2L′ ,

√
N
K
}. The iterates {xk} generated by Eq. 5

satisfy the following inequality:

1

K

K∑
k=1

E[∥∇F(xk)∥2] ≤ max
{
8(F(x1)−F∗)L′

K
,

4(1− βΛ)(F(x1)−F∗)√
NK

}
+

4NL′2(βΛ)2(M2 + σ2)

K(1− βΛ)4

+
2NL′σ2

(1− βΛ)
√
NK

.

(11)

Proof. Using the conclusion from Lemma 1, by induction, we can
get the desired results. Please refer to the extended version of this
paper [25] for more details.

Theorem 1 shows that with a properly selected constant step-
size, for nonconvex functions, DMSGD can converge to the optimal
solution x∗ (which essentially is a stationary point) with a rate of
O(1/K + 1/

√
NK). This matches the best results in [21, 20]. Ad-

ditionally, the selection of α satisfies the condition that α ≤ 1−βΛ
L′

such that when K ≥ NL′2

(1−βΛ)2
, Theorem 1 suggests O(1/

√
NK),

which implies the linear speed up for DMSGD. Additional analytical
results regarding strongly convex and quasi-convex objective func-
tions are presented in the extended version of this paper [25] due to
the space limit.

5. EXPERIMENTAL RESULTS

We now support the utility of our proposed DMSGD algorithm by
simulating a distributed environment over a GPU cluster with mul-
tiple GPUs, similar to the experiments of [27, 11, 28]. We define
a graph topology where each agent in the graph can communicate
with another agent with an interaction matrix initialized by the user,
ensuring that it is doubly stochastic (in our experiments, we explore
a fully connected topology, a ring topology, and a bipartite graph just
as in [12]).

(a) (b)

0 20 40 60 80 100 120 140 160
Number of epochs

10

20

30

40

50

60

70

Ac
cu

ra
cy

(%
)

Fully-Connected
Ring
Bipartite

(c)
Fig. 1: (a) Performance of our proposed algorithm, DMSGD with different ω values, and its comparison with CDSGD. These performances
are with iid data simulation strategy (b) Performance of our proposed algorithm in non-iid data simulation strategy (c) Performance on
different topologies for mnist dataset.

We split the given (complete) training dataset among different
agents equally, creating two data simulation strategies:

1. iid: the dataset is shuffled completely and distributed
amongst the agents to simulate an environment where each
of the agents has an independently identical draw from the
data distribution.

2. non-iid: We first segregate the dataset based on the target la-
bels, then we create chunks of data and distribute the chunks
with unique target labels to all the agents. If the number of
agents is larger than the number of target labels, each agent
gets only a chunk of data corresponding to each target label,
and if the number of agents is lesser than the number of target
labels, each agent gets a set of multiple chunks with unique
target labels unavailable with other agents. This strategy sim-
ulates an extreme imbalance across different agents and we
expect to see significant loss in the performance of decentral-
ized learning algorithms.

In this work, we implement proposed algorithms with both the data
simulation strategies. The implementation is using Pytorch.

First, we demonstrate empirical evidence of good consensus us-
ing the lesser generalization gap as done by [11, 28]. In Figure 1,
the dotted lines denote the performance of agents on test data, which
closely follow the solid line (performance on training data) but lag
slightly. We attribute to the averaging of several weights, which pro-
motes generalization, as explained in [29, 30]. In [29], authors show
that by averaging the weights of the network, they get wider and
flat optima that generalize well. We note that the consensus step
provides us with similar conditions. Another observation from our
experiments is a validation of Remark 1; we see that as ω increases,
the generalization gap increases with a weaker consensus bound oc-
curring at ω → 1 as explained in Remark 1. Therefore, we see that
at ω = 0.99, our algorithm does not converge.

Now, we analyze the convergence and performance of the
DMSGD algorithm. Due to space constraints, we only present
a few anecdotal results here. In Figure 1(a and b), we show the
performance of DMSGD with different ω values for CIFAR-10
dataset. All the results shown here are for a sufficiently large Con-
volutional Neural Network. While we could perform comparisons
with the algorithm proposed by [12, 13], it would be unfair as the
protocol for communication used by them is different (Push-Sum
and Dynamic Model Averaging). Note that we could extend our
momentum-accelerated consensus to these models, analysis of the
same is beyond the scope of this work. Therefore, as a baseline,
we use a non-momentum decentralized algorithm that would have

a fair comparison. For this, we compare with CDSGD [11] in
this simple experiment. We observe that DMSGD performs with
similar performance as the CDSGD algorithm, i.e., without any
acceleration. However, while working on a non-iid data simulation
strategy, DMSGD performs better than the CDSGD algorithm. We
believe that this is a trade-off between consensus and convergence,
which [31] explores in detail.

We also note from the results shown and the analysis in the previ-
ous section that as ω → 1, the convergence bounds become weaker.
This explains why the performance dies down as a function of ω, e.g.
ω = 0.5 performs better than ω = 0.75. However, setting ω = 0
performs very badly for non-iid data. The dynamics of ω with re-
spect to the data distribution is not explored in this work and can be
considered as future work.

Finally, we would like to add another result for the performance
of our proposed DMSGD algorithm for different communication
topologies in Figure 1(c). We consider three communication topolo-
gies: (1) Fully connected topology (2) Ring topology (3) Bipartite
topology. As the communication topology has sparse communica-
tion, the consensus and convergence bounds also become weaker. In
Figure 1(c), where we see that the Bipartite graph with very sparse
connections performs worse than fully connected graph, which vali-
dates the analysis.

6. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of deep learning in a decentral-
ized setting using momentum accelerated consensus. We establish a
consensus-based decentralized learning algorithm using the stochas-
tic heavy ball approach that can assist in finding the optimal solu-
tion faster than conventional SGD-style methods. We show that the
proposed DMSGD with different choices of momentum terms can
achieve linear convergence rate with appropriately chosen step size
for strongly-convex, quasi-convex objective functions along with the
assumption of smoothness, and convergence to a stationary point for
nonconvex objective functions.

Relevant experimental results using benchmark datasets show
that the proposed algorithms can achieve better accuracy with suf-
ficient training epochs. While our current research focuses on ex-
tensive testing and validation of the proposed framework (especially
for large networks), a few directions for future research include an
extension to the analysis of Nesterov momentum with nonconvex
objective functions, analysis of non-iid data setting and variance re-
duction strategies for further convergence speed-up techniques in the
stochastic setting.

7. REFERENCES

[1] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Mark Mao, Andrew Senior, Paul Tucker, Ke Yang,
Quoc V Le, et al., “Large scale distributed deep networks,”
Advances in neural information processing systems, pp. 1223–
1231, 2012.

[2] Sixin Zhang, Anna E Choromanska, and Yann LeCun, “Deep
learning with elastic averaging sgd,” in Advances in neural
information processing systems, 2015, pp. 685–693.

[3] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer,
“How to scale distributed deep learning?,” arXiv preprint
arXiv:1611.04581, 2016.

[4] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al.,
“Advances and open problems in federated learning,” arXiv
preprint arXiv:1912.04977, 2019.

[5] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li, “Terngrad: Ternary gradients to reduce
communication in distributed deep learning,” in Advances in
Neural Information Processing Systems, 2017, pp. 1508–1518.

[6] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis,
Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing
Jia, and Kaiming He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[7] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and
Rafal Jozefowicz, “Revisiting distributed synchronous sgd,”
arXiv preprint arXiv:1604.00981, 2016.

[8] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli,
and Anima Anandkumar, “signsgd: Compressed optimisation
for non-convex problems,” arXiv preprint arXiv:1802.04434,
2018.

[9] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter
Richtárik, Ananda Theertha Suresh, and Dave Bacon, “Fed-
erated learning: Strategies for improving communication effi-
ciency,” arXiv preprint arXiv:1610.05492, 2016.

[10] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei
Zhang, and Ji Liu, “Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel
stochastic gradient descent,” in Advances in Neural Informa-
tion Processing Systems, 2017, pp. 5336–5346.

[11] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik
Sarkar, “Collaborative deep learning in fixed topology net-
works,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 5906–5916.

[12] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and
Michael Rabbat, “Stochastic gradient push for distributed deep
learning,” arXiv preprint arXiv:1811.10792, 2018.

[13] Michael Kamp, Linara Adilova, Joachim Sicking, Fabian
Hüger, Peter Schlicht, Tim Wirtz, and Stefan Wrobel, “Ef-
ficient decentralized deep learning by dynamic model averag-
ing,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2018, pp. 393–
409.

[14] David Luengo, Luca Martino, Víctor Elvira, and Mónica
Bugallo, “Efficient linear fusion of partial estimators,” Dig-
ital Signal Processing, vol. 78, pp. 265–283, 2018.

[15] Luca Martino, Jorge Plata-Chaves, and Francisco Louzada, “A
monte carlo scheme for node-specific inference over wireless
sensor networks,” in 2016 IEEE Sensor Array and Multichan-
nel Signal Processing Workshop (SAM). IEEE, 2016, pp. 1–5.

[16] Xiangyu Wang and David B Dunson, “Parallelizing mcmc via
weierstrass sampler,” arXiv preprint arXiv:1312.4605, 2013.

[17] Euhanna Ghadimi, Iman Shames, and Mikael Johansson,
“Multi-step gradient methods for networked optimization,”
IEEE Transactions on Signal Processing, vol. 61, no. 21, pp.
5417–5429, 2013.

[18] Nicolas Loizou and Peter Richtárik, “Linearly convergent
stochastic heavy ball method for minimizing generalization er-
ror,” arXiv preprint arXiv:1710.10737, 2017.

[19] Tianbao Yang, Qihang Lin, and Zhe Li, “Unified convergence
analysis of stochastic momentum methods for convex and non-
convex optimization,” arXiv preprint arXiv:1604.03257, 2016.

[20] Hao Yu, Rong Jin, and Sen Yang, “On the linear speedup anal-
ysis of communication efficient momentum sgd for distributed
non-convex optimization,” arXiv preprint arXiv:1905.03817,
2019.

[21] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael
Rabbat, “Slowmo: Improving communication-efficient
distributed sgd with slow momentum,” arXiv preprint
arXiv:1910.00643, 2019.

[22] Yurii Nesterov, Introductory lectures on convex optimization:
A basic course, vol. 87, Springer Science & Business Media,
2013.

[23] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton, “On the importance of initialization and momentum in
deep learning,” in International conference on machine learn-
ing, 2013, pp. 1139–1147.

[24] Boris T Polyak, “Some methods of speeding up the conver-
gence of iteration methods,” USSR Computational Mathemat-
ics and Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[25] Aditya Balu, Zhanhong Jiang, Sin Yong Tan, Chinmay Hedge,
Young M Lee, and Soumik Sarkar, “Decentralized deep learn-
ing using momentum-accelerated consensus,” arXiv preprint
arXiv:2010.11166, 2020.

[26] Albert S Berahas, Raghu Bollapragada, Nitish Shirish Keskar,
and Ermin Wei, “Balancing communication and computation
in distributed optimization,” IEEE Transactions on Automatic
Control, vol. 64, no. 8, pp. 3141–3155, 2018.

[27] Qihang Lin, Zhaosong Lu, and Lin Xiao, “An accelerated prox-
imal coordinate gradient method,” in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 3059–3067.

[28] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu,
“D2: Decentralized training over decentralized data,” arXiv
preprint arXiv:1803.07068, 2018.

[29] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson, “Averaging weights leads
to wider optima and better generalization,” arXiv preprint
arXiv:1803.05407, 2018.

[30] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger, “Snapshot ensembles:
Train 1, get m for free,” arXiv preprint arXiv:1704.00109,
2017.

[31] Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang,
“Communication efficient decentralized training with multiple
local updates,” arXiv preprint arXiv:1910.09126, 2019.

	 Introduction
	 Problem Setup and Preliminaries
	 Proposed Algorithm
	 Convergence Analysis
	 Experimental Results
	 Conclusions and Future Work
	 References

