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Abstract

We study the problem of demixing a pair of sparse signals from nonlinear observations of their
superposition. Mathematically, we consider a nonlinear signal observation model, yi = g(aT

i x) + ei, i =
1, . . . ,m, where x = Φw + Ψz denotes the superposition signal, Φ and Ψ are orthonormal bases in Rn,
and w, z ∈ Rn are sparse coefficient vectors of the constituent signals. Further, we assume that the
observations are corrupted by a subgaussian additive noise. Within this model, g represents a nonlinear
link function, and ai ∈ Rn is the i-th row of the measurement matrix, A ∈ Rm×n. Problems of this
nature arise in several applications ranging from astronomy, computer vision, and machine learning.

In this paper, we make some concrete algorithmic progress for the above demixing problem. Specifi-
cally, we consider two scenarios: (i) the case when the demixing procedure has no knowledge of the link
function, and (ii) the case when the demixing algorithm has perfect knowledge of the link function. In
both cases, we provide fast algorithms for recovery of the constituents w and z from the observations.
Moreover, we support these algorithms with a rigorous theoretical analysis, and derive (nearly) tight
upper bounds on the sample complexity of the proposed algorithms for achieving stable recovery of the
component signals. Our analysis also shows that the running time of our algorithms is essentially as
good as the best possible.

We also provide a range of numerical simulations to illustrate the performance of the proposed algo-
rithms on both real and synthetic signals and images. Our simulations show the superior performance
of our algorithms compared to existing methods for demixing signals and images based on convex opti-
mization. In particular, our proposed methods yield demonstrably better sample complexities as well as
improved running times, thereby enabling their applicability to large-scale problems.

1 Introduction

1.1 Setup

In numerous signal processing applications, the problem of demixing is of special interest. In simple terms,
demixing involves disentangling two (or more) constituent signals from observations of their linear superpo-
sition. Formally, consider a discrete-time signal x ∈ Rn that can be expressed as the superposition of two
signals:

x = Φw + Ψz ,

where Φ and Ψ are orthonormal bases of Rn, and w, z ∈ Rn are the corresponding basis coefficients. The
goal of signal demixing, in this context, is to reliably recover the constituent signals (equivalently, their basis
representations w and z) from the superposition signal x.

∗This work was supported in part by the National Science Foundation under the grant CCF-1566281. Parts of this work also
appear in an Iowa State University technical report [1] and a conference paper to be presented in the 2016 Asilomar Conference
in November 2016 [2].
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Demixing suffers from a fundamental identifiability issue since the number of unknowns (2n) is greater
than the number of observations (n). This is easy to see: suppose for simplicity that Φ = Ψ = In, the
canonical basis of Rn, and therefore, x = w+z. Now, suppose that both w and z have only one nonzero entry
in the first coordinate. Then, there is an infinite number of w and z that are consistent with the observations
x, and any hope of recovering the true components is lost. Therefore, for the demixing problem to have an
identifiable solution, one inevitably has to assume some type of incoherence between the constituent signals
(or more specifically, between the corresponding bases Φ and Ψ) [3, 4]. Such an incoherence assumption
certifies that the components are sufficiently “distinct” and that the recovery problem is well-posed. Please
see Section 3 for a formal definition of incoherence.

However, even if we assume that the signal components are sufficiently incoherent, demixing poses addi-
tional challenges under stringent observation models. Suppose, now, that we only have access to undersam-
pled linear measurements of the signal, i.e., we record:

y = Ax , (1.1)

where A ∈ Rm×n denotes the measurement operator and where m < n. In this scenario, the demixing
problem is further confounded by the fact that A possesses a nontrivial null space. In this case, it might
seem impossible to recover the components x and z since A possesses a nontrivial null space. Once again,
this problem is highly ill-posed and further structural assumptions on the constituent signals are necessary.
Under-determined problems of this kind have recently received significant attention in signal processing,
machine learning, and high-dimensional statistics. In particular, the emergent field of compressive sensing [5–
7] shows that it is indeed possible to exactly reconstruct the underlying signals under certain assumptions
on x, provided the measurement operator is designed carefully. This intuition has enabled the design of a
wide range of efficient architectures for signal acquisition and processing [8, 9].

In this paper, we address an even more challenging question in the demixing context. Mathematically,
we consider a noisy, nonlinear signal observation model, formulated as follows:

yi = g(〈ai,Φw + Ψz〉) + ei, i = 1, . . . ,m . (1.2)

Here, as before, the superposition signal is modeled as x = Φw + Ψz. Each observation is generated by
the composition of a linear functional of the signal 〈ai, x〉, with a (scalar) nonlinear function g. Here, g is
sometimes called a link or transfer function, and ai denotes the ith row of a linear measurement matrix
A ∈ Rm×n. For full generality, in (1.2) we assume that each observation yi is corrupted by additive noise;
the noiseless case is realized by setting ei = 0. We will exclusively consider the “measurement-poor” regime
where the number of observations m is much smaller than the ambient dimension n.

For all the reasons detailed above, the problem of recovering the coefficient vectors w and z from the
measurements y seems daunting. Therefore, we make some structural assumptions. Particularly, we assume
that w and z are s-sparse (i.e., they contain no more than s nonzero entries). Further, we will assume perfect
knowledge of the bases Φ and Ψ, and the measurement matrix A. The noise vector e ∈ Rm is assumed to
be stochastic, zero mean, and bounded. Under these assumptions, we will see that it is indeed possible to
stably recover the coefficient vectors, with a number of observations that is proportional to the sparsity level
s, as opposed to the ambient dimension n.

The nonlinear link function g plays a crucial role in our algorithm development and analysis. In signal
processing applications, such nonlinearities may arise due to imperfections caused during a measurement
process, or inherent limitations of the measurement system, or due to quantization or calibration errors.
We discuss such practical implications more in detail below. On an abstract level, we consider two distinct
scenarios. In the first scenario, the link function may be non-smooth, non-invertible, or even unknown to
the recovery procedure. This is the more challenging case, but we will show that recovery of the components
is possible even without knowledge of g. In the second scenario; the link function is a known, smooth, and
strictly monotonic function. This is the somewhat simpler case, and we will see that this leads to significant
improvements in recovery performance both in terms of theory and practice.
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1.2 Our Contributions

In this paper, we make some concrete algorithmic progress in the demixing problem under nonlinear obser-
vations. In particular, we study the following scenarios depending on certain additional assumptions made
on (1.2):

1. Unknown g. We first consider the (arguably, more general) scenario where the nonlinear link function
g may be non-smooth, non-invertible, or even unknown. In this setting, we do not explicitly model the
additive noise term in (1.2). For such settings, we introduce a novel demixing algorithm that is non-
iterative, does not require explicit knowledge of the link function g, and produces an estimate of the
signal components. We call this algorithm OneShot to emphasize its non-iterative nature. It is assumed
that OneShot possess oracle knowledge of the measurement matrix A, and orthonormal bases Φ and Ψ.

We supplement our proposed algorithm with a rigorous theoretical analysis and derive upper bounds on
the sample complexity of demixing with nonlinear observations. In particular, we prove that the sample
complexity of OneShot to achieve an estimation error κ is given by m = O( 1

κ2 s log n
s ) provided that the

entries of the measurement matrix are i.i.d. standard normal random variables.

2. Known g. Next, we consider the case where the nonlinear link function g is known, smooth, and
monotonic. In this setting, the additive noise term in (1.2) is assumed to be bounded either absolutely, or
with high probability. For such (arguably, milder) settings, we provide an iterative algorithm for demixing
of the constituent signals in (1.2) given the nonlinear observations y. We call this algorithm Demixing
with Hard Thresholding, or DHT for short. In addition to knowledge of g, we assume that DHT
possesses oracle knowledge of A, Φ, and Ψ.

Within this scenario, we also analyze two special sub-cases:

Case 2a: Isotropic measurements. We assume that the measurement vectors ai are independent,
isotropic random vectors that are incoherent with the bases Φ and Ψ. This assumption is more general
than the i.i.d. standard normal assumption on the measurement matrix made in the first scenario, and is
applicable to a wider range of measurement models. For this case, we show that the sample complexity
of DHT is upper-bounded by m = O(s polylog n), independent of the estimation error κ.

Case 2b: Subgaussian measurements. we assume that the rows of the matrix A are independent
subgaussian isotropic random vectors. This is also a generalization of the i.i.d. standard normal assump-
tion made above, but more restrictive than Case 2a. In this setting, we obtain somewhat better sample
complexity. More precisely, we show that the sample complexity of DHT is m = O(s log n

s ) for sample
complexity, matching the best known sample complexity bounds for recovering a superposition of s-sparse
signals from linear observations [10,11].

In both the above cases, the underlying assumption is that the bases Φ and Ψ are sufficiently incoherent,
and that the sparsity level s is small relative to the ambient dimension n. In this regime, we show that
DHT exhibits a linear rate of convergence, and therefore the computational complexity of DHT is only a
logarithmic factor higher than OneShot. Table 1 provides a summary of the above contributions for the
specific case where Φ is the identity (canonical) basis and Ψ is the discrete cosine transform (DCT) basis, and
places them in the context of the existing literature on some nonlinear recovery methods [12–14]. We stress
that these previous works do not explicitly consider the demixing problem, but in principle the algorithms
of [12–14] can be extended to the demixing setting as well.

1.3 Techniques

At a high level, our recovery algorithms are based on the now-classical method of greedy iterative thresholding.
In both methods, the idea is to first form a proxy of the signal components, followed by hard thresholding
to promote sparsity of the final estimates of the coefficient vectors w and z. The key distinguishing factor
from existing methods is that the greedy thresholding procedures used to estimate w and z are deliberately
myopic, in the sense that each thresholding step operates as if the other component did not exist at all.
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Table 1: Summary of our contributions, and comparison with existing methods for the concrete case where
Φ is the identity and Ψ is the DCT basis. Here, s denotes the sparsity level of the components, n denotes
the ambient dimension, m denotes the number of samples, and κ denotes estimation error.

Algorithms Sample complexity Running time Measurements Link function

LASSO [12] O( s
κ2 log n

s ) poly(n) Gaussian unknown

OneShot O( s
κ2 log n

s ) O(mn) Gaussian unknown

DHT O(s polylog n) O(mn log 1
κ ) Isotropic rows known

DHT O(s log n
s ) O(mn log 1

κ ) Subgaussian known

Despite this apparent shortcoming, we are still able to derive bounds on recovery performance when the
signal components are sufficiently incoherent.

Our first algorithm, OneShot, is based on the recent, pioneering approach of [12], which describes a
simple (but effective) method to estimate a high-dimensional signal from unknown nonlinear observations.
Our first main contribution of this paper is to extend this idea to the nonlinear demixing problem, and to
precisely characterize the role of incoherence in the recovery process. Indeed, a variation of the approach
of [12] (described in Section 5) can be used to solve the nonlinear demixing problem as stated above, with a
similar two-step method of first forming a proxy, and then performing a convex estimation procedure (such
as the LASSO [15]) to produce the final signal estimates. However, as we show below in our analysis and
experiments, OneShot offers superior performance to this approach. The analysis of OneShot is based
on a geometric argument, and leverages the Gaussian mean width for the set of sparse vectors, which is a
statistical measure of complexity of a set of points in a given space.

While OneShot is simple and effective, one can potentially do much better if the link function g were
available at the time of recovery. Our second algorithm, DHT, leverages precisely this intuition. First, we
formulate our nonlinear demixing problem in terms of an optimization problem with respect to a specially-
defined loss function that depends on the nonlinearity g. Next, for solving the proposed optimization problem,
we propose an iterative method to solve the optimization problem, up to an additive approximation factor.
Each iteration with DHT involves a proxy calculation formed by computing the gradient of the loss function,
followed by (myopic) projection onto the constraint sets. Again, somewhat interestingly, this method can
be shown to be linearly convergent, and therefore only incurs a small (logarithmic) overhead in terms of
running time. The analysis of DHT is based on bounding certain parameters of the loss function known as
the restricted strong convexity (RSC) and restricted strong smoothness (RSS) constants.1

Finally, we provide a wide range of simulations to verify empirically our claims both on synthetic and
real data. We first compare the performance of OneShot with the convex optimization method of [12] for
nonlinear demixing via a series of phase transition diagrams. Our simulation results show that OneShot
outperforms this convex method significantly in both demixing efficiency as well as running time, and con-
sequently makes it an attractive choice in large-scale problems. However, as discussed below, the absence
of knowledge of the link function induces an inevitable scale ambiguity in the final estimation2. For situa-
tions where we know the link function precisely, our simulation results show that DHT offers much better
statistical performance compared to OneShot, and is even able to recover the scale of the signal compo-
nents explicitly. We also provide simulation results on real-world natural images and astronomical data to
demonstrate robustness of our approaches.

1Quantifying algorithm performance by bounding RSC and RSC constants of a given loss function are quite widespread in
the machine learning literature [?, 16–18], but have not studied in the context of signal demixing.

2Indeed, following the discussion in [12], any demixing algorithm that does not leverage knowledge of g is susceptible to such
a scale ambiguity.
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1.4 Organization

The rest of this paper is organized as follows. Section 2 describes several potential applications of our
proposed approach, and relationship with prior art. Section 3 introduces some key notions that are used
throughout the paper. Section 4 contains our proposed algorithms, accompanied by analysis of their per-
formance; complete proofs are deferred to Section 6. Section 5 lists the results of a series of numerical
experiments on both synthetic and real data, and Section 7 provides concluding remarks.

2 Applications and Related Work

Demixing problems of various flavors have been long studied in research areas spanning signal processing,
statistics, and physics, and we only present a small subset of relevant related work. In particular, demixing
methods have been the focus of significant research over the fifteen years, dating back at least to [19]. The
work of Elad et al. [3] and Bobin et al. [20] posed the demixing problem as an instance of morphological
components analysis (MCA), and formalized the observation model (1.1). Specifically, these approaches
posed the recovery problem in terms of a convex optimization procedure, such as the LASSO [15]. The
work of Pope et al. [21] analyzed somewhat more general conditions under which stable demixing could be
achieved.

More recently, the work of [22] showed a curious phase transition behavior in the performance of the
convex optimization methods. Specifically, they demonstrated a sharp statistical characterization of the
achievable and non-achievable parameters for which successful demixing of the signal components can be
achieved. Moreover, they extended the demixing problem to a large variety of signal structures beyond
sparsity via the use of general atomic norms in place of the `1-norm in the above optimization. See [23] for
an in-depth discussion of atomic norms, their statistical and geometric properties, and their applications to
demixing.

Approaches for (linear) demixing has also considered a variety of signal models beyond sparsity. The
robust PCA problem [24–26] involves the separation of low-rank and sparse matrices from their sum. This
idea has been used in several applications ranging from video surveillance to sensor network monitoring. In
machine learning applications, the separation of low-rank and sparse matrices has been used for latent variable
model selection [27] as well as the robust alignment of multiple occluded images [28]. Another type of signal
model is the low-dimensional manifold model. In [10, 11], the authors proposed a greedy iterative method
for demixing signals, arising from a mixture of known low-dimensional manifolds by iterative projections
onto the component manifolds.

The problem of signal demixing from linear measurements belongs to a class of linear inverse problems
that underpin compressive sensing [5, 6]; see [7] for an excellent introduction. There, the overarching goal
is to recover signals from (possibly randomized) linear measurements of the form (1.1). More recently, it
has been shown that compressive sensing techniques can also be extended to inverse problems where the
available observations are manifestly nonlinear. For instance, in 1-bit compressive sensing [29,30] the linear
measurements of a given signal are quantized in the extreme fashion such that the measurements are binary
(±1) and only comprise the sign of the linear observation. Therefore, the amplitude of the signal is completely
discarded by the quantization operator. Another class of such nonlinear recovery techniques can be applied to
the classical signal processing problem of phase retrieval [31] which is somewhat more challenging than 1-bit
compressive sensing. In this problem, the phase information of the signal measurements may be irrecovably
lost and we have only access to the amplitude information of the signal [31]. Therefore, the recovery task here
is to retrieve the phase information of the signal from random observations. Other related works include
approaches for recovering low-rank matrices from nonlinear observations [32, 33]. We mention in passing
that inverse problems involving nonlinear observations have also long been studied in the statistical learning
theory literature; see [34–37] for recent work in this area. Analogous to our scenarios above, these works
consider both known as well as unknown link functions; these two classes of approaches are respectively
dubbed as Generalized Linear Models (GLM) learning methods and Single Index Model (SIM) learning
methods.
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For our algorithmic development, we build upon a recent line of efficient, iterative methods for signal
estimation in high dimensions [12, 16–18, 38, 39]. The basic idea is to pose the recovery as a (non-convex)
optimization problem in which an objective function is minimized over the set of s-sparse vectors. Essentially,
these algorithms are based on well-known iterative thresholding methods proposed in the context of sparse
recovery and compressive sensing [40,41]. The analysis of these methods heavily depends on the assumption
that the objective function satisfies certain (restricted) regularity conditions; see Sections 3 and 6 for details.
Crucially, we adopt the approach of [42], which introduces the concept of the restricted strong convexity
(RSC) and restricted strong smoothness (RSS) constants of a loss function. Bounding these constants in
terms of problem parameters n and s, as well as the level of incoherence in the components, enables explicit
characterization of both sample complexity and convergence rates.

3 Preliminaries

In this section, we introduce some notation and key definitions. Throughout this paper, ‖.‖p denotes the
`p-norm of a vector in Rn, and ‖A‖ denotes the spectral norm of the matrix A ∈ Rm×n. Let Φ and Ψ be
orthonormal bases of Rn. Define the set of sparse vectors in the bases Φ and Ψ as follows:

K1 = {Φa | ‖a‖0 ≤ s1},
K2 = {Ψa | ‖a‖0 ≤ s2},

and define K = {a | ‖a‖0 ≤ s}.
In order to bound the sample complexity of our proposed algorithms, we will need some concepts from

high-dimensional geometry. First, we define a statistical measure of complexity of a set of signals, follow-
ing [12].

Definition 3.1. (Local gaussian mean width.) For a given set K ∈ Rn, the local gaussian mean width (or
simply, local mean width) is defined as follows ∀ t > 0:

Wt(K) = E sup
x,y∈K,‖x−y‖2≤t

〈g, x− y〉.

where g ∼ N (0, In×n).

Next, we define the notion of a polar norm with respect to a given subset Q of the signal space:

Definition 3.2. (Polar norm.) For a given x ∈ Rn and a subset of Q ∈ Rn, the polar norm with respect to
Q is defined as follows:

‖x‖Qo = sup
u∈Q
〈x, u〉.

Furthermore, for a given subset of Q ∈ Rn, we define Qt = (Q − Q) ∩ tBn2 . Since Qt is a symmetric
set, one can show that the polar norm with respect to Qt defines a semi-norm. Next, we use the following
standard notions from random matrix theory [43]:

Definition 3.3. (Subgaussian random variable.) A random variable X is called subgaussian if it satisfies
the following:

E exp

(
cX2

‖X‖2ψ2

)
≤ 2,

where c > 0 is an absolute constant and ‖X‖ψ2 denotes the ψ2-norm which is defined as follows:

‖X‖ψ2
= sup

p≥1

1
√
p

(E|X|p)
1
p .
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Definition 3.4. (Isotropic random vectors.) A random vector-valued variable v ∈ Rn is said to be isotropic
if EvvT = In×n.

In order to analyze the computational aspects of our proposed algorithms (in particular, DHT), we will
need the following definition from [?]:

Definition 3.5. A loss function f satisfies Restricted Strong Convexity/Smoothness (RSC/RSS) if:

m4s ≤ ‖∇2
ξf(t)‖ ≤M4s,

where ξ = supp(t1) ∪ supp(t2), for all ‖ti‖0 ≤ 2s and i = 1, 2. Also, m4s and M4s are (respectively) called
the RSC and RSS constants.

As discussed earlier, the underlying assumption in all demixing problems of the form (3.4) is that the
constituent bases are sufficiently incoherent as per the following definition:

Definition 3.6. (ε-incoherence.) The orthonormal bases Φ and Ψ are said to be ε-incoherent if:

ε = sup
‖u‖0≤s, ‖v‖0≤s
‖u‖2=1, ‖v‖2=1

|〈Φu,Ψv〉|. (3.1)

The parameter ε is related to the so-called mutual coherence parameter of a matrix. Indeed, if we consider
the (overcomplete) dictionary Γ = [Φ Ψ], then the mutual coherence of Γ is given by γ = maxi 6=j |(ΓTΓ)ij |.
Moreover, one can show that ε ≤ sγ [7].

We now formally establish our signal model. Consider a signal x ∈ Rn that is the superposition of a pair
of sparse vectors in different bases, i.e.,

x = Φw + Ψz , (3.2)

where Φ,Ψ ∈ Rn×n are orthonormal bases, and w, z ∈ Rn such that ‖w‖0 ≤ s, and ‖z‖0 ≤ s. We define the
following quantities:

x̄ =
Φw̄ + Ψz̄

‖Φw̄ + Ψz̄‖ 2

= α(Φw̄ + Ψz̄), (3.3)

where α = 1
‖Φw̄+Ψz̄‖2 , w̄ = w

‖w‖2 , z̄ = z
‖z‖2 . Also, define the coefficient vector, t = [w z]T ∈ R2n. as the

vector obtaining by stacking the individual coefficient vectors w and z of the component signals.
We now state our measurement model. Consider the nonlinear observation model:

yi = g(aTi x) + ei, i = 1 . . .m, (3.4)

where x ∈ Rn is the superposition signal given in (3.2), and g : R 7→ R represents a nonlinear link function.
We denote Θ(x) =

∫ x
−∞ g(u)du as the integral of g. As mentioned above, depending on the knowledge of the

link function g, we consider two scenarios:

1. In the first scenario, the nonlinear link function may be non-smooth, non-invertible, or even unknown. In
this setting, we assume the noiseless observation model, i.e., y = g(Ax). In addition, we assume that the
measurement matrix is populated by i.i.d. unit normal random variables.

2. In this setup, g represents a known nonlinear, differentiable, and strictly monotonic function. Further,
in this scenario, we assume that the observation yi is corrupted by a subgaussian additive noise with
‖ei‖ψ2 ≤ τ for i = 1, . . . ,m. We also assume that the additive noise has zero mean and independent from
ai, i.e., E (ei) = 0 for i = 1, . . . ,m. In addition, we assume that the measurement matrix consists of either
(2a) isotropic random vectors that are incoherent with Φ and Ψ, or (2b) populated with subgaussian
random variables.

We highlight some additional clarifications for the second case. In particular, we make the following :
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Assumption 3.7. There exist nonnegative l1, l2 > 0 (resp., nonpositive parameters l1, l2 < 0) such that
0 < l1 ≤ g′(x) ≤ l2 (resp. l1 ≤ g′(x) ≤ l2 < 0).

In words, the derivative of the link function is strictly bounded either within a positive interval or within
a negative interval. In this paper, we focus on the case when 0 < l1 ≤ g′(x) ≤ l2. The analysis of the
complementary case is similar.

The lower bound on g′(x) guarantees that the function g is a monotonic function, i.e., if x1 < x2 then
g(x1) < g(x2). Moreover, the upper bound on g′(x) guarantees that the function g is Lipschitz with constant
l2. Such assumptions are common in the nonlinear recovery literature [?, 39].3

In Case 2a, the vectors ai (i.e., the rows of A) are independent isotropic random vectors. For this case, in
addition to incoherence between the component bases, we also need to define a measure of cross-coherence
between the measurement matrix A and the dictionary Γ. The following notion of cross-coherence was
introduced in the early literature of compressive sensing [44]:

Definition 3.8. (Cross-coherence.) The cross-coherence parameter between the measurement matrix A and
the dictionary Γ = [Φ Ψ] is defined as follows:

ϑ = max
i,j

aTi Γj
‖ai‖2

, (3.5)

where ai and Γj denote the ith row of the measurement matrix A and the jth column of the dictionary Γ.

The cross-coherence assumption implies that
∥∥aTi Γξ

∥∥
∞ ≤ ϑ for i = 1, . . . ,m, where Γξ denotes the

restriction of the columns of the dictionary to set ξ ⊆ [2n], with ‖ξ‖0 ≤ 4s such that 2s columns are selected
from each basis Φ and Ψ.

4 Algorithms and Theoretical Results

Having defined the above quantities, we now present our main results. As per the previous section, we study
two distinct scenarios:

4.1 When the link function g is unknown

Recall that we wish to recover components w and z given the nonlinear measurements y and the matrix
A. Here and below, for simplicity we assume that the sparsity levels s1 and s2, specifying the sets K1 and
K2, are equal, i.e., s1 = s2 = s. The algorithm (and analysis) effortlessly extends to the case of unequal
sparsity levels. Our proposed algorithm, that we call OneShot, is described in pseudocode form below as
Algorithm 1.

The mechanism of OneShot is simple, and deliberately myopic. At a high level, OneShot first constructs
a linear estimator of the target superposition signal, denoted by x̂lin = 1

mA
T y. Then, it performs independent

projections of x̂lin onto the constraint sets K1 and K2. Finally, it combines these two projections to obtain
the final estimate of the target superposition signal.

In the above description of OneShot, we have used the following projection operators:

ŵ = Ps(Φ∗x̂lin), ẑ = Ps(Ψ∗x̂lin).

Here, Ps denotes the projection onto the set of (canonical) s-sparse signals K and can be implemented by
hard thresholding, i.e., any procedure that retains the s largest coefficients of a vector (in terms of absolute

3Using the monotonicity property of g that arises from Assumption 3.7, one might be tempted to simply apply the inverse of
the link function on the measurements yi in (3.4) convert the nonlinear demixing problem to the more amenable case of linear
demixing, and then use any algorithm (e.g., [11]) for recovery of the constituent signals. However, this näıve way could result
in a large error in the estimation of the components, particularly in the presence of the noise ei in (3.4). This issue has been
also considered in [39] for generic nonlinear recovery both from a theoretical as well as empirical standpoint.
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Algorithm 1 OneShot

Inputs: Basis matrices Φ and Ψ, measurement matrix A, measurements y, sparsity level s.
Outputs: Estimates x̂ = Φŵ + Ψẑ, ŵ ∈ K1, ẑ ∈ K2

x̂lin ← 1
mA

T y {form linear estimator}
b1 ← Φ∗x̂lin {forming first proxy}
ŵ ← Ps(b1) {sparse projection}
b2 ← Ψ∗x̂lin {forming second proxy}
ẑ ← Ps(b2) {sparse projection}
x̂← Φŵ + Ψẑ {Estimating x̂}

value) and sets the others to zero4. Ties between coefficients are broken arbitrarily. Observe that OneShot
is not an iterative algorithm, and this in fact enables us to achieve a fast running time.

We now provide a rigorous performance analysis of OneShot. Our proofs follow the geometric approach
provided in [12], specialized to the demixing problem. In particular, we derive an upper bound on the
estimation error of the component signals w and z, modulo scaling factors. In our proofs, we use the
following result from [12], restated here for completeness.

Lemma 4.1. (Quality of linear estimator). Given the model in Equation (3.2), the linear estimator, x̂lin,
is an unbiased estimator of x̄ (defined in (3.3)) up to constants. That is, E(x̂lin) = µx̄ and: E‖x̂lin−µx̄‖22 =
1
m [σ2 + η2(n− 1)], where µ = E(y1〈a1, x̄〉), σ2 = V ar(y1〈a1, x̄〉), η2 = E(y2

1).

We now state our first main theoretical result, with the full proof provided below in Section 6.

Theorem 4.2. (Performance of OneShot) Let y ∈ Rm be given the set of nonlinear measurements. Let
A ∈ Rm×n be a random matrix with i.i.d. standard normal entries. Also, let Φ,Ψ ∈ Rn×n are bases with
incoherence ε, as defined in Def. 3.6. If we use Oneshot to recover w and z (up to a scaling) described in
equations (3.2) and (3.3), then the estimation error of the constituent signal, w (similarly, z) satisfies the
following upper bound ∀t > 0:

E‖ŵ − µαw̄‖ ≤ t+
2
√

2σ√
m

(
1 + ε√
1− ε

)
+ 2
√

2µ

(
ε√

1− ε

)
+

2η

t
√
m
Wt(K). (4.1)

The authors of [12, 45] provide upper bounds on the local mean width Wt(K) of the set of s-sparse
vectors. In particular, for any t > 0 they show that Wt(K) ≤ Ct

√
s log(2n/s) for some absolute constant C.

By plugging in this bound and letting t→ 0, we can combine components ŵ and ẑ which gives the following:

Corollary 4.3. With the same assumptions as Theorem 4.1, the error of nonlinear estimation incurred by
the final output x̂ satisfies the upper bound:

E‖x̂− µx̄‖ ≤ 4
√

2σ√
m

(
1 + ε√
1− ε

)
+ 4
√

2µ

(
ε√

1− ε

)
+

Cη√
m

√
s log

2n

s
. (4.2)

Corollary 4.4. (Example quantitative result). The constants σ, η, µ depend on the nature of the nonlinear
function f , and are often rather mild. For example, if f(x) = sign(x), then we may substitute

µ =

√
2

π
≈ 0.8, σ2 = 1− 2

π
≈ 0.6, η2 = 1,

in the above statement. Hence, the bound in (4.2) becomes:

E‖x̂− µx̄‖ ≤ 4√
m

(
1 + ε√
1− ε

)
+ 4.53

(
ε√

1− ε

)
+

C√
m

√
s log

2n

s
. (4.3)

4The typical way is to sort the coefficients by magnitude and retain the s largest entries, but other methods such as
randomized selection can also be used.
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Proof. Using Lemma 4.1, µ = E(yi〈ai, x̄〉) where yi = sign(〈ai, x〉). Since ai ∼ N (0, I) and x̄ has unit norm,

〈ai, x̄〉 ∼ N (0, 1). Thus, µ = E|g| =
√

2
π where g ∼ N (0, I). Moreover, we can write σ2 = E(|g|2)−µ2 = 1−

2
π . Here, we have used the fact that |g|2 obeys the χ2

1 distribution with mean 1. Finally, η2 = E(y2
1) = 1.

In contrast with demixing algorithms for traditional (linear) observation models, our estimated signal x̂
outputting from OneShot can differ from the true signal x by a scale factor. Next, suppose we fix κ > 0
as a small constant, and suppose that the incoherence parameter ε = cκ for some constant c, and that the
number of measurements scales as:

m = O
( s
κ2

log
n

s

)
. (4.4)

Then, the (expected) estimation error ‖x̂−µx̄‖ ≤ O(κ). In other words, the sample complexity of OneShot
is given by m = O( 1

κ2 s log(n/s)), which resembles results for the linear observation case [11,12]5.
We observe that the estimation error in (4.2) is upper-bounded by O(ε). This is meaningful only when

ε � 1, or when sγ � 1. Per the Welch Bound [7], the mutual coherence γ satisfies γ ≥ 1/
√
n. Therefore,

Theorem 4.2 provides non-trivial results only when s = o(
√
n). This is consistent with the square-root

bottleneck that is often observed in demixing problems; see [46] for detailed discussions.
The above theorem obtains a bound on the expected value of the estimation error. We can derive a

similar upper bound that holds with high probability. In this theorem, we assume that the measurements yi
for i = 1, 2, . . . ,m have a sub-gaussian distribution (according to Def. 3.3). We obtain the following result,
with full proof deferred to Section 6.

Theorem 4.5. (High-probability version of Thm. 4.2.) Let y ∈ Rm be a set of measurements with a sub-
gaussian distribution. Assume that A ∈ Rm×n is a random matrix with i.i.d standard normal entries. Also,
assume that Φ,Ψ ∈ Rn×n are two bases with incoherence ε as in Definition 3.6. Let 0 ≤ s ≤

√
m. If we use

Oneshot to recover w and z (up to a scaling) described in (3.2) and (3.3), then the estimation error of the
output of Oneshot satisfies the following:

‖x̂− µx̄‖ ≤ 2
√

2ηs√
m

(
1 + ε√
1− ε

)
+ 4
√

2µ

(
ε√

1− ε

)
+

Cη√
m

√
s log

2n

s
+ 4

ηs√
m
, (4.5)

with probability at least 1− 4 exp(− cs2η4

‖y1‖4ψ2

) where C, c > 0 are absolute constants. The coefficients µ, σ, and

η are given in Lemma 4.1. Here, ‖y1‖ψ2 denotes the ψ2-norm of the first measurement y1 (Definition 3.3).

In Theorem 4.5, we stated the tail probability bound of the estimation error for the superposition signal,
x. Similar to Theorem 4.2, we can derive a completely analogous tail probability bound in terms of the
constituent signals w and z.

4.2 When the link function g is known

The advantages of OneShot is that it enables fast demixing, and can handle even unknown, non-differentiable
link functions. But its primary weakness is that the sparse components are recovered only up to an arbi-
trary scale factor. This can lead to high estimation errors in practice, and this can be unsatisfactory in
applications. Moreover, even for reliable recovery up to a scale factor, its sample complexity is inversely
dependent on the estimation error. To solve these problems, we propose a different, iterative algorithm for
recovering the signal components. Here, the main difference is that the algorithm is assumed to possess
(perfect) knowledge of the nonlinear link function, g.

5Here, we use the term “sample-complexity” as the number of measurements required by a given algorithm to achieve an
estimation error κ. However, we must mention that algorithms for the linear observation model are able to achieve stronger
sample complexity bounds that are independent of κ.
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Recall that we define Γ = [Φ Ψ] and t = [w; z]T . First, we formulate our demixing problem as the
minimization of a special loss function F (t):

min
t∈R2n

F (t) =
1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt

s. t. ‖t‖0 ≤ 2s.

(4.6)

Observe that the loss function F (t) is not the typical squared-error function commonly encountered in
statistics and signal processing applications. In contrast, it heavily depends on the nonlinear link function g
(via its integral Θ). Instead, such loss functions are usually used in GLM and SIM estimation in the statistics
literature [?]. In fact, the objective function in (4.6) can be considered as the sample version of the problem:

min
t∈R2n

E(Θ(aTΓt)− yaTΓt),

where a, y and Γ satisfies the model (3.4). It is not hard to show that the solution of this problem satisfies
E(yi|ai) = g(aTi Γt). We note that the gradient of the loss function can be calculated in closed form:

∇F (t) =
1

m

m∑
i=1

ΓTaig(aTi Γt)− yiΓTai, (4.7)

=
1

m
ΓTAT (g(AΓt)− y).

We now propose an iterative algorithm for solving (4.6) that we call it Demixing with Hard Thresh-
olding (DHT). The method is detailed in Algorithm 2. At a high level, DHT iteratively refines its estimates
of the constituent signals w, z (and the superposition signal x). At any given iteration, it constructs the gra-
dient using (4.7). Next, it updates the current estimate according to the gradient update being determined
in Algorithm 2. Then, it performs hard thresholding using the operator P2s to obtain the new estimate of
the components w and z. This procedure is repeated until a stopping criterion is met. See Section 5 for the
choice of stopping criterion and other details. We mention that the initialization step in Algorithm 2 is arbi-
trary and can be implemented (for example) by running OneShot and obtaining initial points

(
x0, w0, z0

)
.

We use this initialization in our simulation results.
Implicitly, we have again assumed that both component vectors w and z are s-sparse; however, as above

we mention that Algorithm 2 and the corresponding analysis easily extend to differing levels of sparsity in
the two components. In Algorithm 2, P2s denotes the projection of vector t̃k ∈ R2n on the set of 2s sparse
vectors, again implemented via hard thresholding.

We now provide our second main theoretical result, supporting the convergence analysis of DHT. In
particular, we derive an upper bound on the estimation error of the constituent vector t (and therefore, the
component signals w, z). The proofs of Theorems 4.6, 4.7 and 4.8 are deferred to section 6.

Theorem 4.6. (Performance of DHT) Consider the measurement model (3.4) with all the assumptions
mentioned for the second scenario in Section 3. Suppose that the corresponding objective function F satisfies
the RSS/RSC properties with constants M6s and m6s on the set J with ‖J‖0 ≤ 6s such that 1 ≤ M6s

m6s
≤ 2√

3
.

Choose a step size parameter η′ with 0.5
M6s

< η′ < 1.5
m6s

. Then, DHT outputs a sequence of estimates (wk, zk)
such that the estimation error of the constituent vector satisfies the following upper bound (in expectation)
for any k ≥ 1:

‖tk+1 − t∗‖2 ≤ (2q)
k ‖t0 − t∗‖2 + Cτ

√
s

m
, (4.8)

where q = 2
√

1 + η′2M2
J − 2η′mJ and C > 0 is a constant that depends on the step size η′ and the convergence

rate q.
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Algorithm 2 Demixing with Hard Thresholding (DHT)

Inputs: Bases Φ and Ψ, measurement matrix A, link function g, measurements y, sparsity level s, step
size η′.
Outputs: Estimates x̂ = Φŵ + Ψẑ, ŵ, ẑ
Initialization:(
x0, w0, z0

)
← arbitrary initialization

k ← 0
while k ≤ N do
tk ← [wk; zk] {forming constituent vector}
tk1 ← 1

mΦTAT (g(Axk)− y)
tk2 ← 1

mΨTAT (g(Axk)− y)
∇F k ← [tk1 ; tk2 ] {forming gradient}
t̃k = tk − η′∇F k {gradient update}
[wk; zk]← P2s

(
t̃k
)

{sparse projection}
xk ← Φwk + Ψzk {estimating x̂}
k ← k + 1

end while
Return: (ŵ, ẑ)←

(
wN , zN

)
Equation (4.8) indicates that Algorithm 2 (DHT) enjoys a linear rate of convergence. In particular, for

the noiseless case τ = 0, this implies that Alg. 2 returns a solution with accuracy κ after N = O(log ‖t
0−t‖2
κ )

iterations. The proof of Theorem 4.6 leverages the fact that the objective function F (t) in (4.6) satisfies
the RSC/RSS conditions specified in Definition 3.5. Please refer to Section 6 for a more detailed discussion.
Moreover, we observe that in contrast with OneShot, DHT can recover the components w and z without
any ambiguity in scaling factor, as depicted in the bound (4.8). We also verify this observation empirically
in our simulation results in Section 5.

Echoing our discussion in Section 3, we consider two different models for the measurement matrix A and
derive upper bounds on the sample complexity of DHT corresponding to each case. First, we present the
sample complexity of Alg. 2 when the measurements are chosen to be isotropic random vectors, corresponding
to Case (2a) described in the introduction:

Theorem 4.7. (Sample complexity when the rows of A are isotropic.) Suppose that the rows of A are
independent isotropic random vectors. In order to achieve the requisite RSS/RSC properties of Theorem 4.6,
the number of samples needs to scale as:

m = O(s log n log2 s log(s log n)),

provided that the bases Φ and Ψ are incoherent enough.

The sample complexity mentioned in Theorem 4.7 incurs an extra (possibly parasitic) poly-logarithmic
factor relative to the sample complexity of OneShot, stated in (4.4). However, the drawback of OneShot
is that the sample complexity depends inversely on the estimation error κ, and therefore a very small target
error would incur a high overhead in terms of number of samples.

Removing all the extra logarithmic factors remains an open problem in general (although some im-
provements can be obtained using the method of [47]). However, if we assume additional structure in the
measurement matrix A, we can decrease the sample complexity even further. This corresponds to Case 2b.

Theorem 4.8. (Sample complexity when the elements of A are subgaussian.) Assume that all assumptions
and definitions in Theorem 4.6 holds except that the rows of matrix A are independent subgaussian isotropic
random vectors. Then, in order to achieve the requisite RSS/RSC properties of Theorem 4.6, the number of
samples needs to scale as:

m = O
(
s log

n

s

)
,
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provided that the bases Φ and Ψ are incoherent enough.

The leading big-Oh constant in the expression for m in Theorems 4.7 and 4.8 is somewhat complicated,
and hides the dependence on the incoherence parameter ε, the mutual coherence ϑ, the RSC/RSS constants,
and the growth parameters of the link function l1 and l2. Please see section 6 for more details.

In Theorem 4.6, we expressed the upper bounds on the estimation error in terms of the constituent
vector, t. It is easy to translate these results in terms of the component vectors w and z using the triangle
inequality:

max{‖w0 − w∗‖2, ‖z0 − z∗‖2} ≤ ‖t0 − t∗‖2 ≤ ‖w0 − w∗‖+ ‖z0 − z∗‖2,

See Section 6 for proofs and futher details.

5 Experimental Results

In this section, we provide a range of numerical experiments for our proposed algorithms based on synthetic
and real data. We compare the performance of OneShot and DHT with a LASSO-type technique for
demixing, as well as a heuristic version of OneShot based on soft thresholding (inspired by the approach
proposed in [48]). We call these methods Nonlinear convex demixing with LASSO or (NlcdLASSO), and
Demixing with Soft Thresholding or DST, respectively. Before describing our simulation results, we briefly
describe these two methods.

NlcdLASSO is a method proposed in [12], although it was not explicitly developed in the demixing
context. Using our notation from Section 3 and 4, NlcdLASSO solves the following convex problem:

min
z,w

‖x̂lin − (Φz + Ψw)‖2

subject to ‖w‖1 ≤
√
s, ‖z‖1 ≤

√
s.

(5.1)

Here, x̂lin denotes the proxy of x (equal to 1
mA

T y) and s denotes the sparsity level of signals w and z in
basis Φ and Ψ, respectively. The constraints in problem (5.1) are convex penalties reflecting the knowledge
that w and z are s-sparse and have unit `2-norm.The outputs of this algorithm are the estimates ŵ, x̂, and
x̂ = Φŵ + Ψẑ. To solve the optimization problem in (5.1), we have used SPGL1 [49, 50]. This solver can
handle large-scale problems, which is the scenario that we have used in our experimental evaluations.

On the other hand, DST solves the optimization problem (4.6) via a convex relaxation of the sparsity
constraint. In other words, this method attempts to solve the following relaxed version of the problem (4.6):

min
t

1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt+ β‖t‖1, (5.2)

where ‖t‖1 represents l1-norm of the constituent vector t and β > 0 denotes the tuning parameter. The
solution of this problem at iteration k is given by soft thresholding operator as follows:

tk+1 = Sβη′(t
k − η′∇F (tk)),

where η′ denotes the step size, and the soft thresholding operator, Sλ(.) is given by:

Sβ(y) =


y − β , if y > β

0 , if |y| ≤ β
y + β , if y < −β.

Both OneShot and NlcdLASSO do not assume knowledge of the link function, and consequently
return a solution up to a scalar ambiguity. Therefore, to compare performance across algorithms, we use
the (scale-invariant) cosine similarity between the original superposition signal x and the output of a given
algorithm x̂ defined as:

cos(x, x̂) =
xT x̂

‖x‖2‖x̂‖2
.
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Figure 1: (a) Performance of OneShot and NlcdLASSO according to the Cosine Similarity for dif-
ferent choices of sparsity level s for g(x) = sign(x). (b) Comparison of running times of OneShot with
NlcdLASSO.

5.1 Synthetic Data

As discussed above, for successful recovery we require the constituent signals to be sufficiently incoherent.
To achieve this, we choose Φ to be the 1D Haar wavelets basis, and Ψ to be the noiselet basis6. For the
measurement operator A, we choose a partial DFT matrix. Such matrices are known to have similar recovery
performance as random Gaussian matrices, but enable fast numerical operations [52]. Also, we present our
experiments based on both non-smooth as well as differentiable link functions. For the non-smooth case, we
choose g(x) = sign(x); here, we only present recovery results using OneShot and NlcdLASSO since in
our analysis DHT and DST can only handle smooth link functions.

The results of our first experiment are shown in Figure 1(a). The test signal is generated as follows: set
length n = 220, and generate the vectors w and z by randomly selecting a signal support with s nonzero
elements, and populating the nonzero entries with random Gaussian coefficients. The plot illustrates the
performance of Oneshot and NlcdLASSO measured by the Cosine Similarity for different choices of
sparsity level s, where the nonlinear link function is set to f(x) = sign(x). The horizontal axis denotes an
increasing number of measurements. Each data point in the plot is obtained by conducting a Monte Carlo
experiment in which a new random measurement matrix A is generated, recording the cosine similarity
between the true signal x and the reconstructed estimate and averaging over 100 trials.

As we can see, notably, the performance of NlcdLASSO is worse than OneShot for any fixed choice of
m and s. Even when the number of measurements is high (for example, at m = 4850), we see that OneShot
outperforms NlcdLASSO by a significant degree. In this case, NlcdLASSO has 30% worse in terms of
signal estimation quality, while OneShot recovers the (normalized) signal perfectly. This result indicates
the inefficiency of NlcdLASSO in the context of nonlinear demixing.

Next, we contrast the running time of both algorithms, illustrated in Figure 1(b). In this experiment,
we measure the wall-clock running time of the two recovery algorithms (OneShot and NlcdLASSO), by
varying signal size x from n = 210 to n = 220. Here, we set m = 500, s = 5, and the number of Monte Carlo
trials to 1000. Also, the nonlinear link function is considered as f(x) = sign(x). As we can see from the plot,
OneShot is 12 times faster than NlcdLASSO when the size of signal equals to 220. Overall, OneShot
is efficient even for large-scale nonlinear demixing problems. We mention that in the above setup, the main
computational costs incurred in OneShot involve a matrix-vector multiplication followed by a thresholding
step, both of which can be performed in time that is nearly-linear in terms of the signal length n for certain

6These bases are known to be maximally incoherent relative to each other [51]
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(a) DHT (b) DST (c) OneShot (d) NlcdLASSO

Figure 2: Phase transition plots of various algorithms for solving the demixing problem (3.4) as a function
of sparsity level s and number of measurements m with cosine similarity as the criterion.

choices of A,Φ,Ψ. In particular, we have experimentally verified that varying the sparsity level does not
have any effect in running time.

Next, we turn to differentiable link functions. In this case, we generate the constituent signal coefficient
vectors, w, z with n = 216, and compare performance of the four above algorithms. The nonlinear link
function is chosen to be g(x) = 2x+ sin(x); it is easy to check that the derivative of this function is strictly
bounded between l1 = 1 and l2 = 3. The maximal number of iterations for both DHT and DST is set
to to 1000 with an early stopping criterion if convergence is detected. The step size is hard to estimate in
practice, and therefore is chosen by manual tuning such that both DHT and DST obtain the best respective
performance.

Figure 2 illustrates the performance of the four algorithms in terms of phase transition plots, following [22].
In these plots, we varied both the sparsity level s and the number of measurements m. For each pair (s,m),
as above we randomly generate the test superposition signal by choosing both the support and coefficients
of x at random, as well as the measurement matrix. We repeat this experiment over 20 Monte Carlo trials.
We calculate the empirical probability of successful recovery as the number of trials in which the output
cosine similarity is greater than 0.99. Pixel intensities in each figure are normalized to lie between 0 and 1,
indicating the probability of successful recovery.

As we observe in Fig. 2, DHT has the best performance among the different methods, and in particular,
outperforms both the convex-relaxation based methods. The closest algorithm to DHT in terms of the
signal recovery is DST, while the LASSO-based method fails to recover the superposition signal x (and
consequently the constituent signals w and z). The improvements over OneShot are to be expected since
as discussed before, this algorithm does not leverage the knowledge of the link function g and is not iterative.

In Fig. 3, we fix the sparsity level s = 50 and plot the probability of recovery of different algorithms with a
varying number of measurements. The number of Monte Carlo trials is set to 20 and the empirical probability
of successful recovery is defined as the number of trials in which the output cosine similarity is greater than
0.95. The nonlinear link function is set to be g(x) = 2x + sin(x) for figure (a) and g(x) = 1

1+e−x for figure
(b). As we can see, DHT has the best performance, while NlcdLASSO for figure (a) and Oneshot, and
NlcdLASSO for figure (b) cannot recover the superposition signal even with the maximum number of
measurements.

5.2 Real Data

In this section, we provide representative results on real-world 2D image data using Oneshot and Nlcd-
LASSO for non-smooth link function given by g(x) = sign(x). In addition, we illustrate results for all four

algorithms using smooth g(x) = 1−e−x
1+e−x as our link function.

We begin with a 256×256 test image. First, we obtain its 2D Haar wavelet decomposition and retain the
s = 500 largest coefficients, denoted by the s-sparse vector w. Then, we reconstruct the image based on these
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Figure 3: Probability of recovery for four algorithms; DHT, STM, Oneshot, and NlcdLASSO. Sparsity
level is set to s = 50. (a) g(x) = 2x+ sin(x), (b) g(x) = 1

1+e−x .

largest coefficients, denoted by x̂ = Φw. Similar to the synthetic case, we generate a noise component in our
superposition model based on 500 noiselet coefficients z. In addition, we consider a parameter which controls
the strength of the noiselet component contributing to the superposition model. We set this parameter to
0.1. Therefore, our test image x is given by x = Φw + 0.1Ψz.

x x̂ (OneShot) x̂ (NlcdLasso)

Figure 4: Comparison of Oneshot and NlcdLASSO for real 2D image data from nonlinear under-sampled
observations. Parameters: n = 256× 256, s = 500,m = 35000, g(x) = sign(x).

Figure 4 illustrates both the true and the reconstructed images x and x̂ using Oneshot and Nlcd-
LASSO. The number of measurements is set to 35000 (using subsampled Fourier matrix with m = 35000
rows). From visual inspection we see that the reconstructed image, x̂, using Oneshot is better than the
reconstructed image by NlcdLASSO. Quantitatively, we also calculate Peak signal-to-noise-ratio (PSNR) of
the reconstructed images using both algorithms relative to the test image, x. We obtain PSNR of 19.8335 dB
using OneShot, and a PSNR of 17.9092 dB using NlcdLASSO, again illustrating the superior performance
of Oneshot compared to NlcdLASSO.

Next, we show our results using a differentiable link function. For this experiment, we consider an
astronomical image illustrated in Fig. 5. This image includes two components; the “stars” component,
which can be considered to be sparse in the identity basis (Φ), and the “galaxy” component which are sparse
when they are expressed in the discrete cosine transform basis (Ψ). The superposition image x = Φw + Ψz

16



(a) Original x (b) Φ(ŵ) Ψ(ẑ)

Figure 5: Successful demixing on a real 2-dimensional image from nonlinear under-sampled observations with

DHT. Parameters: n = 512× 512, s = 1000,m = 15000, g(x) = 1−e−x
1+e−x . Image credits: NASA and [23].

is observed using a subsampled Fourier matrix with m = 15000 rows multiplied with a diagonal matrix with
random ±1 entries [53]. Further, each measurement is nonlinearly transformed by applying the (shifted)

logistic function g(x) = 1−e−x
1+e−x as the link function. In the recovery procedure using DHT, we set the number

of iterations to 1000 and step size η′ to 150000. As is visually evident, our proposed DHT method is able to
reliably recover the component signals.

6 Proofs

In this section, we derive the proofs of our theoretical results stated in Section 4.

6.1 Analysis of OneShot

Our analysis mostly follows the techniques of [12]. However, several additional complications in the proof
arise due to the structure of the demixing problem. As a precursor, we need the following lemma from
geometric functional analysis, restated from [12].

Lemma 6.1. Assume K is a closed star-shaped set. Then for u ∈ K, and a ∈ Rn, one has the following
result ∀ t > 0:

‖PK(a)− u‖2 ≤ max

(
t,

2

t
‖a− u‖Ko

t

)
. (6.1)

We also use the following result of [12].

Claim 6.2. (Orthogonal decomposition of ai.) Suppose we decompose the rows of A, ai, as:

ai = 〈ai, x̄〉x̄+ bi, (6.2)

where bi ∈ Rn is orthogonal to x̄. Then we have bi ∼ N (0, Ix⊥) since ai ∼ N (0, I). Also, Ix⊥ = I −
x̄x̄T . Moreover, the measurements yi in equation (3.4) and the orthogonal component bi are statistically
independent.

Proof of Theorem 4.2. Observe that the magnitude of the signal x may be lost due to the action of the non-
linear measurement function f (such as the sign(·) function). Therefore, our recovered signal x̂ approximates
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the true signal modulo a scaling factor. Indeed, for µ defined in Lemma 4.1, we have:

‖x̂− µx̄‖2 = ‖Φŵ + Ψẑ − αµΦw̄ − αµΨz̄‖2
≤ ‖Φ‖‖ŵ − µαw̄‖2 + ‖Ψ‖‖ẑ − µαz̄‖2

≤
(
t+

2

t
‖Φ∗x̂lin − µαw̄‖Ko

t

)
+

(
t+

2

t
‖Ψ∗x̂lin − µαz̄‖Ko

t

)
.

The equality comes from the definition of x̄. The first inequality results from an application of the
triangle inequality and the definition of the operator norm of a matrix, while the second inequality follows
from Lemma 6.1.

It suffices to derive a bound on the first term in the above expression (since a similar bound will hold for
the second term.) This proves the first part of Theorem 4.2. We have:

‖Φ∗x̂lin − µαw̄‖Ko
t

= ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄+ yibi)− µαw̄‖Ko

t

≤ ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄)− µαw̄‖Ko

t
+ ‖Φ∗ 1

m
Σiyibi‖Ko

t

≤ ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄)− µΦ∗x̄‖Ko

t︸ ︷︷ ︸
S1

+ ‖µαΦ∗Ψz̄‖Ko
t︸ ︷︷ ︸

S2

+ ‖Φ∗ 1

m
Σiyibi‖Ko

t︸ ︷︷ ︸
S3

. (6.3)

The first equality follows from Claim 6.2, while the second and third inequalities result from the triangle
inequality. We first bound S1 as follows:

S1 = ‖Φ∗ 1

m
Σi(yi〈ai, x̄〉x̄)− µΦ∗x̄‖Ko

t

= ‖( 1

m
Σi(yi〈ai, x̄〉 − µ))Φ∗x̄‖Ko

t

= | 1
m

Σi(yi〈ai, x̄〉 − µ)|‖Φ∗x̄‖Ko
t
.

Therefore,

E(S2
1) = E(| 1

m
Σi(yi〈ai, x̄〉 − µ)|2‖Φ∗x̄‖2Ko

t
).

Define γi
∆
= yi〈ai, x̄〉 − µi. Then,

E(| 1
m

Σi(yi〈ai, x̄〉 − µ)|2) = E(
1

m2
(Σiγi)

2)

= E(
1

m2
(

m∑
i=

γ2
i + Σi6=jγiγj))

=
1

m2
(

m∑
i=1

Eγ2
i ) =

1

m
Eγ2

1

=
σ2

m

where σ2 has been defined in Lemma 4.1. The third and last equalities follow from the fact that the yi’s are
independent and identically distributed. Now, we bound ‖Φ∗x̄‖2Ko

t
as follows::
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‖Φ∗x̄‖Ko
t

= sup
u∈(K−K)∩tB2

n

〈Φ∗x̄, u〉

= t sup
v1∈ 1

tK,v2∈
1
tK

‖vi‖≤1,i=1,2

〈Φ∗x̄, v1 − v2〉

≤ 2t sup
‖a‖0≤s
‖a‖≤1

|〈Φ∗x̄, a〉|

≤ 2t( sup
‖a‖0≤s
‖a‖≤1

|〈αw̄, a〉|+ sup
‖a‖0≤s
‖a‖≤1

|〈αΦ∗Ψz̄, a〉|)

≤ 2αt(1 + sup
‖a‖0≤s
‖a‖≤1

|〈αΨz̄,Φa〉|)

= 2αt(1 + ε).

This implies that:

=⇒ E(S2
1) ≤ 4

α2t2σ2

m
(1 + ε)2. (6.4)

The second inequality follows from (3.2) and the triangle inequality. The last inequality is results from an
application of the Cauchy-Schwarz inequality and the definition of ε. Similarly we can bound S2 as follows:

E(S2) = E(‖µαΦ∗Φz̄‖Ko
t
)

= E(|µα|‖Φ∗Φz̄‖Ko
t
)

= |µα|‖Φ∗Φz̄‖Ko
t

= |µα| sup
u∈(K−K)∩tB2

n

〈Ψz̄,Φu〉

= |µα|t sup
v1∈ 1

tK,v2∈
1
tK

‖vi‖≤1,i=1,2

〈Ψz̄,Φ(v1 − v2)〉

≤ 2µαtε. (6.5)

Finally, we give the bound for S3. Define L
∆
= 1

mΣiyibi. Then, we get:

E(S3) = E‖Φ∗ 1

m
Σiyibi‖Ko

t
= E‖Φ∗L‖Ko

t
.

Our goal is to bound E‖Φ∗L‖Ko
t
. Since yi and bi are independent random variables (as per Claim 6.2),

we can use the law of conditional covariance and the law of iterated expectation. That is, we first condition
on yi, and then take expectation with respect to bi.

By conditioning on yi, we have L ∼ N (0, β2Ix⊥) where Ix⊥ = I − x̄x̄T is the covariance of vector bi
according to claim 6.2 and β2 = 1

m2 Σiy
2
i . Define gx⊥ ∼ N (0, Ix⊥). Therefore, L = βgx⊥ Putting everything

together, we get:

E(S3) = E‖Φ∗L‖Ko
t

= E‖Φ∗βgx⊥‖Ko
t

= βE‖Φ∗gx⊥‖Ko
t
.

We need to extend the support of distribution of gx⊥ and consequently L from x⊥ to Rn. This is done
by the following claim in [12]:
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Claim 6.3. Let gE be a random vector which is distributed as N (0, IE). Also, assum that Γ : Rn → R is a
convex function. Then, for any subspace E of Rn such that E ⊆ F , we have:

E(Γ(gE)) ≤ E(Γ(gF )).

Hence, we can orthogonally decompose Rn as Rn = D ⊕ C where D is a subspace supporting x⊥ and C
is the orthogonal subspace onto it. Thus, gRn = gD + gC in distribution such that gD ∼ N (0, ID), gC ∼
N (0, IC). Also, ‖.‖Ko

t
is a convex function since it is a semi-norm. Hence,

ED‖Φ∗gD‖Ko
t

= ED‖Φ∗gD + EC(gC)‖Ko
t

= ED‖EC|D(Φ∗gD + gc)‖Ko
t

≤ EDEC|D‖Φ∗(gD + gC)‖Ko
t

= E‖Φ∗gRn‖Ko
t
.

The first inequality follows from Jensen’s inequality, while the second inequality follows from the law of
iterated expectation. Therefore, we get:

E‖Φ∗L‖Ko
t

= E‖Φ∗βgx⊥‖Ko
t

= βE‖Φ∗gx⊥‖Ko
t

≤ βE‖Φ∗gRn‖Ko
t

= β sup
u∈(K−K)∩tB2

n

〈Φ∗βgRn , u〉

= βWt(K).

The last equality follows from the fact that Φ∗gRn ∼ N (0, I). The final step is to take an expectation
with respect to yi, giving us a bound on E(S3):

E(S3) = E‖Φ∗L‖Ko
t

≤ E(β)Wt(K)

≤
√
E(β2)Wt(K) ,

where β2 = 1
m2

∑m
i=1 y

2
i . Hence,

E(S3) ≤ η√
m
Wt(K) . (6.6)

Putting together the results from (6.4), (6.5), and (6.6), we have:

E(‖Φ∗x̂lin − µαw̄‖Kt) ≤ E(S1) + E(S2) + E(S3)

≤
√

E(S1) + E(S2) + E(S3)

≤ 2αtσ√
m

(1 + ε) + 2µαtε+
η√
m
Wt(K).

Therefore, we obtain:

E‖ŵ − µαw̄‖2 ≤ t+
2

t
E(‖Φ∗x̂lin − µαw̄‖Kt) ≤ t+

4ασ√
m

(1 + ε) + 4µαε+
2η

t
√
m
Wt(K). (6.7)

Moreover, we can bound α = 1
‖Φw̄+Ψz̄‖ as follows:

‖Φw̄ + Ψz̄‖22 ≥ ‖Φw̄‖22 + ‖Ψz̄‖22 − 2|〈Φw̄,Ψz〉|
≥ 2− 2ε, or,

α ≤ 1√
2
√

1− ε
.
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By plugging α in (6.7), we obtain the desired result in Theorem 4.2. However, K is a closed star-shaped
set (the set of s-sparse signals), and therefore Wt(K) = tW1(K) [12]. Now using (6.3), we can conclude the
Corollary 4.3 (bound on the estimation error for superposition signal):

E(‖x̂− µx̄‖) ≤ 2t+
8ασ√
m

(1 + ε) + 8µαε+
4η

t
√
m
Wt(K).

We can use Lemma 2.3 in [45] and plug in Wt(K) ≤ Ct
√
s log(2n/s). Using the above bound on α and by

letting t→ 0, we get:

E‖x̂− µx̄‖ ≤ 4
√

2σ√
m

(
1 + ε√
1− ε

)
+ 4
√

2µ

(
ε√

1− ε

)
+

Cη√
m

√
s log

2n

s
, (6.8)

where C > 0 is an absolute constant. This completes the proof of Corollary 4.3.

We now prove the high-probability version of the main theorem. As a precursor, we need a few preliminary
definitions and lemmas:

Definition 6.4. (Subexponential random variable.) A random variable X is subexponential if it satisfies the
following relation:

E exp

(
cX

‖X‖ψ1

)
≤ 2,

where c > 0 is an absolute constant. Here, ‖X‖ψ1
denotes the ψ1-norm, defined as follows:

‖X‖ψ1 = sup
p≥1

1

p
(E|X|p)

1
p .

We should mention that there are other definitions for subexponential random variables (also for sub-
Gaussian defined in Definition 3.3). Please see [43] for a detailed treatment.

Lemma 6.5. Let X and Y be two subgaussian random variables. Then, XY is a subexponential random
variable.

Proof. According to the definition of the ψ2-norm, we have:

(E|XY |p)
1
p = (E|X|p|Y |p)

1
p ≤

((
E|X|2p

) 1
2p
(
E|Y |2p

) 1
2p

)
≤
√

2p‖X‖ψ2
‖Y ‖ψ2

, (6.9)

where the first inequality results from Cauchy-schwarz inequality, and the last inequality is followed by the
subgaussian assumption on X and Y . This shows that the random variable XY is subexponential random
variable according to Definition 6.4.

Lemma 6.6. (Gaussian concentration inequality) See [43, 54]. Let (Gx)x∈T be a centered gaussian process
indexed by a finite set T . Then ∀t > 0:

P(sup
x∈T

Gx ≥ E sup
x∈T

Gx + t)) ≤ exp

(
− t2

2σ2

)
where σ2 = supx∈T EG2

x <∞.

Lemma 6.7. (Bernstein-type inequality for random variables) [43]. Let X1, X2, . . . , Xn be independent sub-
exponential random variables with zero-mean. Also, assume that K = maxi ‖Xi‖ψ1

. Then, for any vector
a ∈ Rn and every t ≥ 0, we have:

P(|ΣiaiXi| ≥ t) ≤ 2 exp

(
−cmin

{
t2

K2‖a‖22
,

t

K‖a‖∞

})
.

where c > 0 is an absolute constant.
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Proof of Theorem 4.5. We follow the proof given in [12]. Let β = s
2
√
m

for 0 < s <
√
m where m denotes

the number of measurements. In (6.3), we saw that

‖x̂− µx̄‖2 ≤ 2(t+
2

t
(S1 + S2 + S3)). (6.10)

We attempt to bound each term S1, S2, and S3 with high probability, and then use a union bound to obtain
the desired result.

For S1, we have:

S1 ≤ |
1

m
Σi(yi〈ai, x̄〉 − µ)|‖Φ∗x̄‖Ko

t
.

We note that yi is a sub-gaussian random variable (by assumption) and 〈ai, x̄〉 is a standard normal random
variable. Hence, by Lemma 6.5, yi〈ai, x̄〉 is a sub-exponential random variable. Also, yi〈ai, x̄〉 for i =
1, 2, . . . ,m are independent sub-exponential random variables that can be centered by subtracting their
mean µ. Now, we can apply Lemma 6.7 on | 1

mΣi(yi〈ai, x̄〉 − µ)|. Therefore:

P(| 1
m

Σi(yi〈ai, x̄〉 − µ))| ≥ ηβ) ≤ 2 exp

(
−cβ

2η2m

‖y1‖2ψ2

)
.

Here, η and µ are as defined in 4.1. Using the bound on ‖Φ∗x̄‖Ko
t
, we have:

S1 ≤
√

2ηβt
1 + ε√
1− ε

, (6.11)

with probability at least 1− 2 exp(− cβ
2η2m
‖y1‖2ψ2

) where c > 0 is some constant.

For S2 we have:

S2 ≤
√

2µαt
ε√

1− ε
, (6.12)

with probability 1 since S2 is a deterministic quantity.
For S3 we have:

S3 ≤ ‖Φ∗
1

m
Σiyibi‖Ko

t
.

To obtain a tail bound for S3, we are using the following:

S3 ≤
1

m
(Σiy

2
i )1/2‖Φ∗g‖Ko

t

We need to invoke the Bernstein Inequality (Lemma 6.7) for sub-exponential random variables (y2
i − η2) for

i = 1, 2, . . . ,m which are zero mean subexponential random variables in order to bound 1
m (Σiy

2
i )1/2. we

have
∣∣∣ 1
mΣi(y

2
i − η2)

∣∣∣ ≤ 3η2 with high probability 1− 2 exp(− cmη4

‖y1‖4ψ2

).

Next, we upper-bound ‖Φ∗g‖ (where g ∼ N (0, I)) with high probability. Since Φ is an orthogonal matrix,
we have that Φ∗g ∼ N (0, I). Hence, we can use the Gaussian concentration inequality to bound Φ∗g as
mentioned in Lemma 6.6. Putting these pieces together, we have:

S3 ≤
2η√
m

(
Wt(K) + tβ

√
m
)
, (6.13)

with probability at least 1 − 2 exp(− cmη4

‖y1‖4ψ2

) − exp(cβ2m). Here, Wt(K) denotes the local mean width for

the set K1 defining in Definition 3.1.
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Now, combining (6.10), (6.11), (6.12), and (6.13) together with the union bound, we obtain:

‖x̂− µx̄‖2 ≤
2
√

2ηs√
m

(
1 + ε√
1− ε

)
+ 4
√

2µ

(
ε√

1− ε

)
+

Cη√
m

√
s log

2n

s
+ 4

ηs√
m
,

with probability at least 1 − 4 exp(− cs2η4

‖y1‖4ψ2

) where C, c > 0 are absolute constants. Here, we have again

used the well-known bound on the local mean width of the set of sparse vectors (for example, see Lemma
2.3 of [45]). This completes the proof.

6.2 Analysis of DHT

Our analysis of DHT occurs in two stages. First, we define a loss function F (t) that depends on the
nonlinear link function g and the measurement matrix A. We first assume that F (t) satisfies certain regularity
conditions (restricted strong convexity/smoothness), and use this to prove algorithm convergence. The
proof of Theorem 4.6 follows the proof of convergence of the iterative hard thresholding (IHT) algorithm
in the linear case [40], and is more closely related to the work of [17] who extended it to the nonlinear
setting. Our derivation here differs from these previous works in our specific notion of restricted strong
convexity/smoothness, and is relatively more concise. Later, we will prove that the RSS/RSC assumptions
on the loss function indeed are valid, given a sufficient number of samples that obey certain measurement
models. We assume a variety of measurement models including isotropic row measurements as well as
subgaussian measurements. To our knowledge, these derivations of sample complexity are novel.

First, we state the definitions for restricted strong convexity and restricted strong smoothness, abbrevi-
ated as RSC and RSS. The RSC and RSS was first proposed by [?, 55]; also, see [16].

Definition 6.8. A function f satisfies the RSC and RSS conditions if one of the following equivalent
definitions is satisfied for all t1, t2 such that ‖t1‖0 ≤ 2s and ‖t2‖0 ≤ 2s:

m4s

2
‖t2 − t1‖22 ≤ f(t2)− f(t1)− 〈∇f(t1), t2 − t1〉 ≤

M4s

2
‖t2 − t1‖22, (6.14)

m4s‖t2 − t1‖22 ≤ 〈∇f(t2)−∇f(t1), t2 − t1〉 ≤M4s‖t2 − t1‖22, (6.15)

m4s ≤ ‖∇2
ξf(t)‖ ≤M4s, (6.16)

m4s‖t2 − t1‖2 ≤ ‖∇ξf(t2)−∇ξf(t1)‖2 ≤M4s‖t2 − t1‖2, (6.17)

where ξ = supp(t1) ∪ supp(t2), ‖ξ‖0 ≤ 4s. Moreover, m4s and M4s are called the RSC-constant and RSS-
constant, respectively. We note that ∇ξf(t) denotes the gradient f restricted to set ξ. In addition, ∇2

ξf(t)

is a 4s× 4s sub-matrix of the Hessian matrix ∇2f(t) comprised of row/column indices indexed by ξ.

Proof. (Equivalence of Eqs. (6.14), (6.15), (6.16), (6.17)). The proof of above equivalent definitions only
needs some elementary arguments and we state them here for completeness. If we assume that (6.14) is
given, then by exchanging t1 and t2 in (6.14), we have:

m4s

2
‖t1 − t2‖22 ≤ f(t1)− f(t2)− 〈∇f(t2), t1 − t2〉 ≤

M4s

2
‖t1 − t2‖22, (6.18)

by adding (6.18) with (6.14), inequality in (6.15) is resulted. Now, assume that (6.15) is given. Then we
can set t2 = t1 + ∆(t2 − t1) in (6.15) and then letting ∆ → 0 results (6.16) according to the definition of
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second derivative. Next, if we assume that (6.16) is given, then we can invoke the mean value theorem [56]
for twice-differentiable vector-valued multivariate functions:

∇ξf(t2)−∇ξf(t1) =

∫ 1

0

PTξ ∇2f(ct2 + (1− c)t1)(t2 − t1)dt.

where c > 0 and Pξ denotes the identity matrix which its columns is restricted to set ξ with ‖ξ‖0 ≤ 2s. It
follows that: ∥∥∇ξf(t2)−∇ξf(t1)

∥∥ ≤ ∫ 1

0

∥∥PTξ ∇2f(ct2 + (1− c)t1)(t2 − t1)
∥∥dt

≤M4s‖(t2 − t1)‖.

where the last inequality follows by (6.16). Similarly, we can establish the lower bound in (6.17) by invoking
the Cauchy Schwartz inequality in (6.15).

Finally, suppose that (6.16) holds. We can establish (6.14) by performing a Taylor expansion of f(t).
For upper bound in (6.14) and some 0 ≤ c ≤ 1, we have:

f(t2) ≤ f(t1)− 〈∇f(t1), t2 − t1〉+
1

2
(t2 − t1)

T ∇2
ξf(ct2 + (1− c)t1) (t2 − t1)

≤ f(t1)− 〈∇f(t1), t2 − t1〉+
M4s

2
‖t1 − t2‖22.

The lower bound in (6.14) also follows similarly.

We now give a proof that DHT enjoys the linear convergence, as stated in Theorem 4.6. Recall that as
opposed to the commonly used least-squares loss function, we instead define a special objective function:

F (t) =
1

m

m∑
i=1

Θ(aTi Γt)− yiaTi Γt,

where Γ = [Φ Ψ], t = [w z]T , and Θ(x) =
∫ x
−∞ g(u)du with g(x). The gradient and Hessian of the objective

function are given as follows:

∇F (t) =
1

m

m∑
i=1

ΓTaig(aTi Γt)− yiΓTai , (6.19)

∇2F (t) =
1

m

m∑
i=1

ΓTaia
T
i Γg′(aTi Γt) . (6.20)

We start with the projection step in Algorithm 2. In what follows, the superscript k denotes the k-th
iteration. Let tk+1 = [tk1 t

k
2 ]T ∈ R2n be the constituent vector as the kth iteration. Hence,

tk+1 = P2s

(
tk − η′∇F (tk)

)
,

where η′ denotes the step size in Algorithm 2 and P2s(.) denotes the hard thresholding operation. Further-
more, ∇F (tk) is the gradient of the objective function at iteration k. Moreover, we define sets Sk, Sk+1, S∗

as follows, each of whose cardinalities is no greater than 2s:

supp(tk) = Sk, supp(tk+1) = Sk+1, supp(t∗) = S∗.

Moreover, define Sk ∪ Sk+1 ∪ S∗ = J such that ‖J‖0 ≤ 6s.
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Define b = tk − η′∇JF (tk). Then,

‖tk+1 − t∗‖2 ≤ ‖tk+1 − b‖2 + ‖b− t∗‖2 ≤ 2‖b− t∗‖2, (6.21)

where t∗ = [t∗1 t
∗
2] ∈ R2n such that ‖t∗‖0 ≤ 2s is the solution of the optimization problem in (4.6). The last

inequality follows since tk+1 is generated by taking the 2s largest entries of tk − η′∇F (tk); by definition of
J , tk+1 also has the minimum Euclidean distance to b over all vectors with cardinality 2s. Moreover:

‖b− t∗‖2 = ‖tk − η′∇JF (tk)− t∗‖2
≤ ‖tk − t∗ − η′

(
∇JF (tk)−∇JF (t∗)

)
‖2 + η′‖∇JF (t∗)‖2. (6.22)

Now, by invoking RSC and RSS in the Definition 6.8, we have:

‖tk − t∗ − η′
(
∇JF (tk)−∇JF (t∗)

)
‖22 ≤ (1 + η′

2
M2

6s − 2η′m6s)‖tk − t∗‖22,

where M6s and m6s denote the RSC and RSS constants. The above inequality follows by the upper bound
of (6.17) and the lower bound of (6.15) in Definition 6.8 with the restriction set ξ chosen as J . Now let

q =
√

1 + η′2M2
6s − 2η′m6s. By (6.21) and (6.22), we have:

‖tk+1 − t∗‖2 ≤ 2q‖tk − t∗‖2 + 2η′‖∇JF (t∗)‖2. (6.23)

In order for the algorithm to exhibit linear convergence, we need to have 2q < 1. That is,

η′
2
M2

6s − 2η′m6s +
3

4
< 0.

By solving this quadratic inequality with respect to η′, we obtain that η′, m6s, and M6s should satisfy

1 ≤ M6s

m6s
≤ 2√

3
,

0.5

M6s
< η′ <

1.5

m6s
.

Under these conditions, we obtain the following linear convergence by induction on k:

‖tk+1 − t∗‖2 ≤ (2q)
k ‖t0 − t∗‖2 +

2η′

1− 2q
‖∇JF (t∗)‖2, (6.24)

where t0 denotes the initial value for the constituent vector, t. The bound in (6.24) shows that after enough
iterations the first term vanishes and the quality of estimation depends on the vanishing speed of the second

term, 2η′

1−2q‖∇JF (t∗)‖2 that is determined by the number of measurements.

To bound the gradient in second term, ‖∇JF (tk)‖2, we need the following lemma:

Lemma 6.9. (Khintchine inequality [43].) Let Xi be a finite number of independent and zero mean sub-
gaussian random variables with unit variance. Assume that ‖Xi‖ψ2 ≤ r. Then, for any real bi and p ≥ 2:(∑

i

b2i

) 1
2

≤

(
E|
∑
i

biXi|p
) 1
p

≤ Cr√p

(∑
i

b2i

) 1
2

.

Recall that our measurement model is given by:

yi = g(aTi Γt) + ei, i = 1, . . . ,m.

As mentioned above, we assume that ei represents the additive subgaussian noise with ‖ei‖ψ2
≤ τ for

i = 1 . . .m.
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We leverage the Khintchine inequality to bound E‖∇JF (tk)‖2 under the subgaussian assumption on ei.
Denoting by (∇JF (t))k as the kth entry of the gradient (restricted to set J), from the Khintchine inequality,
and for each k = 1, . . . , |J |, we have:

(
E |(∇JF (t))k|

2
) 1

2 r1=

E

(
1

m

m∑
i=1

(ΓJ)
T
k aiei

)2
 1

2

r2
≤ 1

m
E

Cτ√2

(
m∑
i=1

(
(ΓJ)

T
k ai

)2
) 1

2


≤ 1

m
Cτ
√

2

(
m∑
i=1

(ΓJ)
T
k E

(
aia

T
i

)
(ΓJ)k

) 1
2

r3=
Cτ
√

2√
m

, (6.25)

where ΓJ denotes the restriction of the columns of the dictionary to set J with ‖J‖0 ≤ 6s such that 3s of
the columns are selected from each basis of the dictionary. Here, r1 follows from (6.19), r2 follows from the
Khintchine inequality with p = 2 and the fact that ei are independent from ai. Finally, r3 holds since the
rows of A are assumed to be isotropic random vectors. Now, we can bound E‖∇JF (tk)‖2 as follows:

E‖∇JF (tk)‖2 ≤
√

E‖∇JF (tk)‖22 ≤ C ′τ
√

s

m
, (6.26)

where C ′ > 0 is an absolute constant and the last inequality is followed by (6.25) and the fact that ‖J‖0 ≤ 6s.

Proof of Theorem 4.6. By taking expectation from bound in (6.24) and using the bound stated in (6.25), we
obtain the desired bound in Theorem 4.6 as follows:

‖tk+1 − t∗‖2 ≤ (2q)
k ‖t0 − t∗‖2 +

2η′

1− 2q
‖∇JF (t∗)‖2

≤ (2q)
k E‖t0 − t∗‖2 + Cτ

√
s

m
, (6.27)

where C > 0 is a constant which depends only on the step size, η′ and q. In addition, in the noiseless case
(τ = 0), if we denote κ as the desired accuracy for solving optimization problem (4.6), then the number of

iterations to achieve the accuracy κ is given by N = O(log ‖t
0−t∗‖2
κ ).

In the above convergence analysis of DHT, we assumed that objective function in (4.6), F (t) satisfies
the RSC/RSS conditions. In this section, we validate this assumption via the proofs for Theorems 4.7 and
4.8. As discussed above, we separately analyze two cases.

6.2.1 Case (a): isotropic rows of A

We first consider the case where the rows of the measurement matrix A are sampled from an isotropic
probability distribution in Rn. Specifically, we make the following assumptions on A:

1. the rows of A are independent isotropic vectors. That is, EaiaTi = In×n for i = 1 . . .m.

2. ‖aTi Γξ‖∞ ≤ ϑ for i = 1 . . .m.
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Remark 6.10. Assumption 2 is unavoidable in our analysis, and indeed this is one of the cases where
our derivation differs from existing proofs. The condition ||aTi Γξ||∞ ≤ ϑ requires that all entries in AΓξ
are bounded by some number ϑ. In other words, ϑ captures the cross-coherence between the measurement
matrix, A and the dictionary Γξ = [Φ Ψ]ξ and controls the interaction between these two matrices. Without
this assumption, one can construct a counter-example with the Hessian of the objective to be zero with high
probability (for instance, consider partial DFT matrix as the measurement matrix A and Γξ = [I Ψ]ξ with
Ψ being the inverse DFT basis).

Modifying (6.20), we define the restricted Hessian matrix as a 4s× 4s sub-matrix of the Hessian matrix:

∇2
ξF (t) =

1

m

m∑
i=1

ΓTξ aia
T
i Γξg

′(aTi Γt), ‖ξ‖0 ≤ 4s. (6.28)

Here, Γξ is the restriction of the columns of the dictionary Γ = [Φ Ψ] with respect to set ξ, such that
2s columns are selected from each basis. Let Si = ΓTξ aia

T
i Γξg

′(aTi Γt), i = 1 . . .m. As per our assumption
in Section 3, the derivative of the link function, g(x) satisfies 0 < l1 ≤ g′(x) ≤ l2. By this assumption, it is
guaranteed that λmin(Si) ≥ 0, i = 1 . . .m; this follows since ΓTξ aia

T
i Γξ is a positive semidefinite matrix and

g′ > 0, we have λmin(Si) = λmin(ΓTξ aia
T
i Γξ)g

′ ≥ 0.

Let Λmax = max
ξ
λmax(∇2

ξF (t)) and Λmin = min
ξ
λmin(∇2

ξF (t)) where λmin and λmax denote the minimum

and maximum eigenvalues of the restricted Hessian matrix. Furthermore, let U be any index set with
‖U‖0 ≤ 6s such that ξ ⊆ U . We have:

l1 min
U

λmin

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
≤ Λmin ≤ Λmax ≤ l2 max

U
λmax

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
.

Here, ΓU is the restriction of the columns of Γ with respect to a set U such that 3s columns is selected from
each basis. By taking expectations, we obtain:

l1Emin
U

λmin

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
≤ EΛmin ≤ EΛmax ≤ l2Emax

U
λmax

(
1

m

m∑
i=1

ΓTUaia
T
i ΓU

)
. (6.29)

Inequality in (6.29) shows that for proving RSC and RSS, we need to bound the expectation of the maximum
and minimum eigenvalues of 1

m

∑m
i=1 ΓTξ aia

T
i ΓU over sets U with ‖U‖0 ≤ 6s. We should mention that (6.29)

establishes RSC/RSS constants in expectation. One can establish RSC/RSS in tail probability using results
in [54,57].

As our main tool for bounding the RSC/RSS constants, we use the uniform Rudelson’s inequality [43,57].

Lemma 6.11. (Uniform Rudelson’s inequality) Let xi be vectors in Rn for i = 1, . . . ,m and m ≤ n. Also
assume that the entries of xi’s are bounded by ϑ, that is, ‖xi‖∞ ≤ ϑ. Let hi denote independent Bernoulli
random variables (with parameter 1/2) for i = 1 . . .m. Then for every set Ω ⊆ [n], we have:

E max
|Ω|≤n

∥∥∥ m∑
i=1

hi(xi)Ω(xi)
T
Ω

∥∥∥ ≤ Cϑ√|Ω| max
|Ω|≤n

∥∥∥ m∑
i=1

(xi)Ω(xi)
T
Ω

∥∥∥ 1
2

, (6.30)

where (xi)Ω denotes the restriction of xi to Ω, l = log(|Ω|)
√

logm
√

log n, and Cϑ denotes the dependency of
C only on ϑ.

Before using the above result, we need to restate the uniform version of the standard symmetrization
technique (Lemma 5.70 in [43]):
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Lemma 6.12. (Uniform symmetrization) Let xik, i = 1 . . .m be independent random vectors in some Banach
space where indexed by some set Ξ such that k ∈ Ξ. Also, assume that hi, i = 1 . . .m denote independent
Bernoulli random variables (with parameter 1/2) for i = 1 . . .m. Then,

E sup
k∈Ξ

∥∥∥ m∑
i

(xik − Exik)
∥∥∥ ≤ 2E sup

k∈Ξ

∥∥∥ m∑
i

hixik

∥∥∥. (6.31)

Now we apply the Uniform Rudelson’s inequality on λmax

(
1
m

∑m
i=1 ΓTUaia

T
i ΓU

)
over all set U with ‖U‖0 ≤

6s. We have:

R
∆
= Emax

U

∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU − ΓTUΓU

∥∥∥ r1≤ 2Emax
U
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m
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i=1
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T
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r2
≤ Cϑ

√
6s√
m

Emax
U

∥∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU

∥∥∥ 1
2

, (6.32)

where r1 follows from Lemma 6.12 with hi defined in this lemma and r2 follows from (6.30). In addition
l = log(6s)

√
logm

√
log 2n. Then by application of a triangle inequality, we have:

Emax
U

∥∥∥ 1

m

m∑
i=1

ΓTUaia
T
i ΓU

∥∥∥ ≤ R+ max
U

∥∥ΓTUΓU
∥∥.

On the other hand by Cauchy-Schwarz inequality, we get:

Emax
U

∥∥∥ 1

m

m∑
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ΓTUaia
T
i ΓU

∥∥∥ 1
2 ≤

(
Emax

U
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m

m∑
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ΓTUaia
T
i ΓU
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2

By combining the above inequalities, we obtain:

R ≤ C ′ϑl
√
s√

m

(
R+ max

U

∥∥ΓTUΓU
∥∥) 1

2

, (6.33)

where C ′ϑ depends only on ϑ. This inequality is a quadratic inequality in terms of R and is easy to solve.

By noting β = maxU
∥∥ΓTUΓU

∥∥, we can write (6.33) as R
β ≤

C′ϑl
√
s√

m
1
β

(
1 + R

β

) 1
2

. Now we can consider two

cases; either R
β ≤ 1, or R

β > 1. As a result, we have:

R ≤ max

(
δ0

(
max
U

∥∥ΓTUΓU
∥∥) 1

2

, δ2
0

)
, (6.34)

where δ0 =
C′ϑl
√
s√

m
. In addition, we can use the Gershgorin Circle Theorem [58] to bound λmax(ΓTUΓU ) =

‖ΓTUΓU‖ and λmin(ΓTUΓU ). This follows since:

ΓTUΓU =

I ΦTΨ

ΨTΦ I


6s×6s

,

and hence we have: ∣∣∣λi(ΓTUΓU )− 1
∣∣∣ ≤ (6s− 1)γ, i = 1 . . . 6s,

where γ denotes the mutual coherence of Γ. Hence, the following holds for all index set U :

1− (6s− 1)γ ≤ λmin(ΓTUΓU ) ≤ λmax(ΓTUΓU ) ≤ 1 + (6s− 1)γ, (6.35)

provided that γ ≤ 1
6s−1 to have nontrivial lower bound.
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Proof of Theorem 4.7. If we choose m ≥
(
C′′ϑ
δ2 s log(n) log2 s log

(
1
δ2 s log(n) log2 s

)
(1 + (6s− 1)γ)

)
in (6.34),

then we have R ≤ δ for some δ ∈ (0, 1) and C ′′ϑ > 0 which depends only on ϑ. If s = o(1/γ), then we obtain
the stated sample complexity in Theorem 4.7.

6.2.2 Case (b): isotropic subgaussian rows of A

Now, suppose that the measurement matrix A has independent isotropic subgaussian rows. We show that
under this assumption, one can obtain better sample complexity bounds compared to the previous case. We
use the following argument (which is more or less standard; see [59–61]). Let Γ = [Φ Ψ], and let BU = AΓU
for any fixed |U | ≤ 6s, where 3s elements are chosen from each basis. According to the notation from
Section 6.2, we have:

l1 min
U

λmin

(
1

m
BTUBU

)
≤ Λmin ≤ Λmax ≤ l2 max

U
λmax

(
1

m
BTUBU

)
. (6.36)

where l1, l2 are upper and lower bounds on the derivative of the link function. Therefore, all we need to do
is to bound the maximum and minimum singular values of 1√

m
BU . To do so, we use the fact that if the

rows of A are m independent copies of an isotropic vector with bounded ψ2 norm, then the following holds
for any fixed vector v ∈ R2n: ∣∣∣ 1

m

∥∥∥Bx∥∥∥2

2
−
∥∥∥Γx

∥∥∥2

2

∣∣∣ ≤ ε′

2
,

for some constant ε′ with probability at least 1 − exp(−Cmε2/2) for some absolute constant C [60]. Now
fix any set U as above. Then, one can show using a covering number argument (for example, Lemma 2.1
in [59]) that with probability greater than 1− 2(1 + 2

ε )6s exp(−c1mε2), we get for any v ∈ U :

(1− ε)‖ΓUv‖22 ≤ ‖AΓUv‖22 ≤ (1 + ε)‖ΓUv‖22.

Taking a union bound over all possible subsets U with |U | ≤ 6s, we get:

max
U

∥∥∥ 1

m
BTUBU − ΓTUΓU

∥∥∥ ≤ δ, (6.37)

with probability at least 1 − 2
(
n
6s

)
(1 + 1/δ)6s exp

(
−c2u2m

)
. Therefore, for sufficiently large m (that we

specify below), the following holds with high probability:

λmin

(
ΓTUΓU

)
− δ ≤ λmin

(
1

m
BTUBU

)
≤ λmax

(
1

m
BTUBU

)
≤ λmax

(
ΓTUΓU

)
+ δ

We use (6.35) to bound λmax(ΓTUΓU ) = ‖ΓTUΓU‖ and λmin(ΓTUΓU ); as a result,

1− (6s− 1)γ − δ ≤ λmin

(
1

m
BTUBU

)
≤ λmax

(
1

m
BTUBU

)
≤ 1 + (6s− 1)γ + δ (6.38)

Thus, we obtain the desired bound in (6.36). That is:

l1 (1− (6s− 1)γ − δ) ≤ Λmin ≤ Λmax ≤ l2 (1 + (6s− 1)γ − δ) . (6.39)

holds with high probability for some 0 < δ < 1− (6s− 1)γ.

Proof of Theorem 4.8. The probability of failure of the above statement can be vanishingly small if we set
m ≥ C′

δ2 s log n
s for some δ ∈ (0, 1) and absolute constant C ′ > 0. Note that we only obtain nontrivial upper

and lower bounds on Λmin,Λmax if γ ≤ 1
6s−1 . Assuming constant δ and coherence γ inversely proportional

to s, we obtain the required sample complexity of DHT as: m = O
(
s log n

s

)
.
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For both cases (a) and (b), RSC and RSS constants follow by setting M6s ≤ l2 (1 + (6s− 1)γ − δ) and
m6s ≥ l1 (1− (6s− 1)γ − δ). As we discussed in the begging of section 6.2, we require that 0.5

M6s
< η′ < 1.5

m6s

in order to establish linear convergence of DHT. Hence, for linear convergence, the step size must satisfy:

0.5

l2 (1 + (6s− 1)γ − δ)
< η′ <

1.5

l1 (1− (6s− 1)γ − δ)

for some 0 < δ < 1− (6s− 1)γ.

7 Conclusion

In this paper, we consider the problem of demixing sparse signals from their nonlinear measurements. We
specifically study the more challenging scenario where only a limited number of nonlinear measurements
of the superposition signal are available. As our primary contribution, we propose two fast algorithms for
recovery of the constituent signals, and support these algorithms with the rigorous theoretical analysis to
derive nearly-tight upper bounds on their sample complexity for achieving stable demixing.

We anticipate that the problem of demixing signals from nonlinear observations can be used in several
different practical applications. As future work, we intend to extend our methods to more general signal
models (including rank-sparsity models for matrix valued data), as well as robust recovery under more general
nonlinear observation models.
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