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Abstract—We consider the problem of reconstructing sparse
graphs from a small number of observed cuts. This problem
naturally arises in applications involving dynamically varying
graphs where the goal is to learn the evolution of edge structure
over a set of nodes. Since this is a combinatorial, non-convex
problem, previous approaches for this problem have relied on
approaches such as convex relaxation. In this paper, we describe
a fast iterative algorithm for solving this problem that is a variant
of projected sub-gradient descent; to our knowledge, this is the
first such graph reconstruction method that exhibits both near-
optimal sample complexity as well as linear convergence. As a
side benefit, we also point out potentially interesting connections
with learning sparse neural networks.

Index Terms—Sparse recovery, graph sketching, sub-gradient
descent, linear convergence.

I. INTRODUCTION

ANALYSIS of massive graphs is central to several ap-
plications involving social networks, e-commerce, and

biological networks. Unfortunately, in real-world applications,
the sheer size of the underlying graphs can make them cum-
bersome to monitor, store, and process. These computational
challenges are exacerbated if we are interested in tracking the
evolution of graph structure over an extended period of time.

Fortunately, in several applications the difference graph over
consecutive time instants only involves the modification of a
few edges or nodes. Mathematically, such difference graphs
can be assumed to be very sparse. This type of sparseness
property has been leveraged in learning the graph evolution
via a series of techniques known as graph sketching. The key
idea is to store a short summary (or sketch) of the graph at
each time instant. It is known that a small number of such
sketches is sufficient to reconstruct sparse graphs [1].

One way to sketch the graph evolution is to record a small
number of cuts of the graph chosen uniformly at random.
Following the work of [2], several recent works in the machine
learning literature have proposed algorithms for reconstructing
sparse graphs from cut sketches, borrowing techniques from
compressive sensing [3], [4], [5].

However, the aforementioned approaches suffer from two
limitations. First, most such results resort to convex (L1-norm)
relaxation for the reconstruction problem, which leads to high
running time; this can be a problem for very large graphs.
Second, sparseness assumptions implicitly assume that the
graph evolution obeys the Erdős-Rényi model, i.e., that the
presence/absence of edges are equally likely (with probability
proportional to the cardinality of the edge set) and independent
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of other edges. This is not particularly suitable for modeling
real-world networks; for example, the Web exhibits well-defined
hubs (star-like subgraphs) where a single node is connected
to several other nodes. Our goal in this paper is to provide
an iterative graph reconstruction algorithm that achieves fast
(ideally, exponential) convergence as well as can be extended
to interesting graph structures beyond sparsity.

A. Setup

Consider a simple undirected graph G = (V,E) defined over
|V | = p nodes. Let W ∈ Rp×p be the symmetric (weighted)
adjacency matrix representing the evolution (difference graph)
over V at any given time instant. We will assume that the
difference graph contains only s edges. Consider any S ⊆ V .
The observed value of the cut corresponding to S, cS , is defined
as:

cS =
∑
i,j

Wij + e, i ∈ S, j ∈ Sc.

Here, e denotes any noise or error incurred during the
observation procedure.

We rewrite the graph sketching problem as follows. For the
ith cut, define a vector ai ∈ {±1}p such that ai(S) = 1 and
ai(S

c) = −1. Suppose that the mean value of the evolution
W is zero. (If not, we can subtract the mean by assuming that
the total weight of the evolution is also observed). Then, the
cut observations can be reformulated as:

yi =
1

2
aTi Wai+ ei = 〈ai⊗ai,W 〉+ ei i = 1, 2, . . . , n. (1)

In other words, each cut sketch can be viewed as a noisy
version of the Hilbert-Schmidt inner product yi = 〈Ai,W 〉
of the adjacency matrix W with the rank-one tensor form
Ai = ai ⊗ ai. The goal is to accurately reconstruct the edges
(and weights) of the difference graph under such an observation
model. Two natural questions emerge in this context:
1) Sample complexity: How must the cut sets S be chosen in

order to enable reconstruction of the evolution W from as
few observations as possible?

2) Computational complexity: How can we efficiently recon-
struct the evolution W ?

Following [2], [3], [4], we assume that the cut sets S are cho-
sen uniformly at random. This can be implemented by assuming
that each ai is a vector whose entries are i.i.d. Rademacher
random variables with distribution P (1) = P (−1) = 1/2.1

We propose a new algorithm for reconstructing the evo-
lution W from cut sketches of the form (1). Our method
fundamentally differs from several of the aforementioned
graph reconstruction methods: as opposed to using convex

1This scheme differs from the works [6], [7] who construct the sketch
vectors by sampling from certain other distributions.
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optimization, our method is non-convex purely uses simple first-
order techniques. Our approach offers two key benefits: (i) the
algorithm exhibits linear convergence, and (ii) the framework
is flexible and can model several different families of graph
evolutions.

The key assumption underlying our algorithm is that the
support of the adjacency matrix of the difference graph
(representing the set of edges that have evolved) obeys a
natural structured sparsity model. It is reasonable that in certain
applications, the edges in the difference graph must be clustered
in some fashion. Examples of such cluster-like structure can be
manifested in block-sparse innovations (i.e, only a small block
of edges has changed [8]) and node-perturbed innovations (i.e.,
only edges from a few nodes have changed [9]).

For such cases, we prove that the underlying matrix W
can be reconstructed by recording merely n = O(s log p) non-
adaptive cut queries. As a consequence of our analysis, the
sample complexity of our algorithm is only weakly dependent
on the number of nodes in the underlying graph and scales
according to the number of evolved edges; this can be important
in very large graphs whose edges evolve slowly.

As a consequence of the above link to structured sparsity
models, we can derive our algorithm exhibits O(p2 polylog p)
running time, which is much faster than the methods of [2],
[3] for large p, but is slower than the active learning approach
of [5] (which, unfortunately, is only applicable to sparse
graphs without any additional structure). Closing this gap is
an interesting direction for future research.

B. Techniques

At a high level, our algorithm merges two well-known lines
of work in the literature. The first line of work includes
techniques to solve the graph reconstruction problem (1)
using techniques from compressive sensing [2], [3], [4]. The
second line of work goes in the reverse direction, integrating
techniques for combinatorial optimization into sparse recovery
methods [10], [11], [12], [13], [14].

The main technical ingredient in our proof is the use of a
concentration property of the cut observation operator Eq. (1),
following [15], [16], [17], [6]). This property lends to a new
first-order graph reconstruction algorithm that provably exhibits
linear convergence. This method is (essentially) equivalent to
(projected) sub-gradient descent, but its use does not seem
to have been proposed in either the graph recovery, or the
structured sparsity, literature.

C. Learning sparse polynomial neural networks

Before proceeding, let us take a brief detour to highlight a
connection of the aforementioned graph reconstruction setup to
a different class of learning problems. Consider a shallow (two-
layer) neural network comprising p input nodes, a single hidden
layer with r neurons with quadratic activation function σ(z) =
z2, first layer weights {wj}rj=1 ⊂ Rp, and an output layer
comprising of a single node and weights {αj}rj=1 ⊂ R. Then

the above network is called a polynomial neural network [18],
[19], [20], whose input-output relation is given by:

ŷ =

r∑
j=1

αjσ(wTj x) =

r∑
j=1

αj〈wj , x, 〉2 = xTWx

where W =
∑r
j=1 αjwjw

T
j is a p × p matrix encoding the

weights of the network. Therefore, if W is s-sparse, then the
graph reconstruction problem 1 is similar to the problem of
learning a sparse ground truth polynomial neural network with
one hidden layer when excited with random binary inputs.

Our theory shows that only O(s log p) training samples
suffice to learn the new network, and that (projected) sub-
gradient descent converges at a linear rate. This suggests a
considerable improvement over the results in [19], [20] —
where the sample complexity scales as Ω(pr) — for the
case when the underlying ground network is very sparse
(this, for instance, can arise if the weights of the network
are slowly evolving). A deeper dive into further connections
between sparse recovery, graph sketching, and polynomial
neural network learning is outside the scope of this paper but
could be of potential future interest.

II. ALGORITHM AND ANALYSIS

A. Basics

Let us start with a somewhat more general problem for-
mulation than what we need. Suppose a ∈ {±1}p denotes a
vertex of the hypercube. For each subset J ⊆ [p], we define
the multivariate polynomial basis functions:

χJ(a) =

{∏
i∈J ai, J 6= ∅,

1, J = ∅.

We assume the following generative model for our queries. We
obtain data samples (ai, yi) ∈ Rp × R such that

yi = f(ai).

Expanding in term of the polynomial basis, we can express f
in terms of its (Fourier) basis coefficients

yi =
∑
J⊆[n]

dJχJ(a).

In the following, we will restrict our attention to quadratic
polynomials where |J | ≤ 2. Observe that this setting exactly
matches that of Eq. (1). Moreover, we will assume that only a
few of the coefficients dJ are non-zero; specifically, the number
of nonzero basis coefficients is given by s� p2.

We re-write Equation (1) in terms of a linear operator
mapping the coefficients of the polynomial to the observations.
Suppose we represent the Fourier coefficients of the function
f in the form of a p2 × 1 vector z = vec(Z) such that

Zij = dij , i, j ∈ [p].

Overall, the forward mapping can be written as:

yi = A(z) + ei i = 1, 2, . . . , n. (2)

Similar to sparse recovery, the goal will be to recover z from
y.
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B. Sub-gradient descent

Our goal is to learn the entries of z given a minimal number
of samples. We achieve this by performing projected sub-
gradient descent (PsGD). Define the loss function

ψ(z) = ‖y −A(z)‖1.

and pose the estimate of z to the solution to the non-convex
constrained optimization problem:

ẑ = arg min
‖z‖0≤s

ψ(z).

As opposed to ordinary sparse recovery approaches, the objec-
tive function is non-differentiable and therefore conventional
iterative hard-thresholding schemes do not directly apply.
Instead, starting from the zero vector z0 = 0, we update the
estimated coefficients via projected sub-gradient descent:

zt+1 = Pκs(zt − ηt∂ψ(zt)), (3)

where z0 := 0, ∂ψ(x) is a sub-gradient of ψ at x, and κ and
ηt are constants to be specified later in the proof. By properties
of the absolute value function, one can see that a suitable
sub-gradient is the sign function:

∂ψ(z) = A∗sgn(y −A(z)).

We will prove below that with sufficiently many samples,
the PsGD algorithm converges linearly, and at termination,
provides an accurate estimate of the true polynomial coef-
ficients. To our knowledge, this proof is novel. This proof
complements the theoretical analysis of [6] with a simple,
practical algorithm with provably fast convergence guarantees;
the method suggested in that paper used convex relaxation and
didn’t specify convergence rates. In particular, we obtain the
following:

Theorem 1: Suppose that the linear map A is constructed
using n = O(s log p) cut queries of the form 1. Then, the
projected sub-gradient descent algorithm produces a sequence
of estimates ẑt for t = 1, 2, . . . such that:

‖ẑt+1 − z‖2 ≤ γ‖ẑt − z‖2 + C‖e‖1,

where 0 < γ < 1 is a constant that depends on α, β, κ, s, and
C > 0 is a constant. Moreover, the algorithm provides an error
of ε within O(log(1/ε)) iterations.

The running time of PsGD is given by Õ(sp2), where
the tilde hides polylogarithmic factors. This theorem also
affirmatively addresses an open question (Remark 12) of [21],
which suggest the possibility of non-convex algorithms to solve
recovery problems of the form (1).

C. Proof of linear convergence

In this section, we prove Theorem 1 in the noiseless case
where e = 0. The proof in the presence of noise follows in an
identical manner (but with somewhat more tedious algebra),
so we omit it here.

In [6], it is shown for several distributions from which ai are
sampled, the (debiased form of) the linear operator A satisfies
a form of mixed-norm restricted isometry property. Specifically,

if we consider consecutive samples a2i−1, a2i, then we “debias”
the linear mapping A by defining B such that:

B : d→
∑
J⊂[n]

dJ (χJ(a1)− χJ(a2)) .

This can be simulated by taking consecutive differences
of observed samples. Moreover, this linear mapping satisfies
the so-called RIP-(`2, `1). Formally, the RIP-(`2, `1) says that
there exist constants α, β such that 0 < α < β that depend
only on the problem size parameters p, n, s, such that for any
vector z with ‖z‖0 ≤ 2s, the following holds:

α‖z‖2 ≤ ‖B(z)‖1 ≤ β‖z‖2. (4)

Henceforth, we use the notation A, while keeping in mind
that we are really taking about is really a debiased version of
the definition given in (2).

We now show that if the linear map A satisfies (4), then
PsGD converges linearly. Our approach follows that of [22],
who demonstrate convergence of a similar algorithm using sub-
exponential Gaussian observations; our proof is somewhat
different and relatively shorter. We rely on the following
auxiliary geometric lemma by [23], which states that an
orthogonal projection onto the set of sparse vectors behaves
like a near-contraction.

Lemma 2: For any z ∈ Rn and s-sparse w ∈ Rn and for
any integer κ > 1, the following holds:

‖Pκs(z)− w‖22 ≤

(
1 + 2

√
1

κ− 1

)
‖z − w‖22

:= ν‖z − w‖22.

The “near-contraction” parameter ν can be made arbitrarily
close to 1, provided we increase the parameter κ accordingly.
We now are ready to prove our main theorem. Proof. Define
Ω = supp(z)

⋃
supp(zt)

⋃
supp(zt+1). Let gt = ∂ψ(zt) =

A∗sgn(y − A(zt)). Define b − zt − ηtgt. Since zt+1 is the
best sparse approximation to b, it also happens to be the best
sparse approximation to bΩ. We apply Lemma 2 to z = bΩ

and w = zt+1 to get:

‖zt+1 − z‖22 ≤ ν
∥∥z − bΩ∥∥2

2
.

We now simplify the right hand side as follows:∥∥z − bΩ∥∥2

2

= ‖z − zt − ηtA∗Ωsgn(A(z − zt))‖22
= ‖z − zt‖22 − 2ηt〈z − zt,A∗Ωsgn(A(z − zt))〉+ η2

t

∥∥gΩ
t

∥∥2

2

= ‖z − zt‖22 − 2ηt〈AΩ(z − zt), sgn(A(z − zt))〉+ η2
t

∥∥gΩ
t

∥∥2

2

= ‖z − zt‖22 − 2ηt‖A(z − zt)‖1 + η2
t

∥∥gΩ
t

∥∥2

2
. (5)

We now upper bound
∥∥gΩ
t

∥∥ as follows. Observe that∥∥gΩ
t

∥∥2

2
= 〈A∗Ωsgn(y −A(zt)),A∗Ωsgn(y −A(zt))〉
= 〈sgn(y −A(zt)),AΩA∗Ωsgn(y −A(zt))〉
≤ ‖AΩA∗Ωsgn(y −A(zt))‖1
≤ β‖A∗Ωsgn(y −A(zt))‖2 = β

∥∥gΩ
t

∥∥
2
.
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Fig. 1: Simulated graph recovery results using various algorithms. Images represent adjacency matrices with weights depicted in grayscale. Our
algorithm improves sample-complexity by at least 2.5× over existing approaches.

where the last inequality follows from the upper bound in (4).
Therefore, we get: ∥∥gΩ

t

∥∥ ≤ β.
Plugging this into (5) and setting ηt = ‖y −Azt‖/β2 we get:∥∥z − bΩ∥∥2

2

≤ ‖z − zt‖22 − 2
‖A(z − zt)‖21

β2
+
‖A(z − zt)‖21

β2

= ‖z − zt‖22 −
‖A(z − zt)‖21

β2

≤ ‖z − zt‖22 −
α2

β2
‖z − zt‖22 =

(
1− α2

β2

)
‖z − zt‖22.

Therefore, we get:

‖zt+1 − z‖22 ≤ ν
(

1− α2

β2

)
‖z − zt‖22,

which gives us the noiseless version of Theorem 1 with
convergence parameter γ =

√
ν
√

1− α2/β2. Of course,
convergence happens only when γ < 1, so we need to choose
κ accordingly. If we define ∆ := β/α then κ = 1 suffices as
long as ∆ <

√
4/3. Otherwise, we set:

κ >
1(

∆√
∆2−1

− 1
)2 .

This completes the proof.

III. NUMERICAL VALIDATION

Our primary contribution in this paper is conceptual.
Nonetheless, we provide preliminary numerical evidence that
our algorithm indeed succeeds as advertised, while acknowledg-
ing that more extensive numerical evaluations of our method
are necessary.

We demonstrate the benefits of our approach in comparison
with existing techniques. Figure 1 demonstrates learning the
structure of a graph exhibiting star-like evolutions; this test
example has been proposed and experimented upon in [8].
Figure 1 also displays recovery results using a greedy pursuit
algorithm (suggested in [3]) and convex optimization (suggested
in [2]). The input to all methods are n = 1140 random cut
sketches of the test adjacency matrix W with s = 100 edges
and p = 128 nodes. Figure 1 also displays phase transitions
of the probability of successful recovery as a function of the

number of cut sketches n. We observe that our algorithm is
able to accurately recover the edge structure of the evolution,
while previous methods, such as `1-minimization [24] and
CoSaMP [25] fail. The fact that our algorithm can effectively
leverage the dependencies between edges in the target graph
evolution is key to its success.

The above star-graph example is relevant for networks that
exhibit well-defined hubs where a central node is connected
to lots of other nodes. Extension to other families of graph
structures (such as cliques, blocks, cycles, and trees) is
straightforward; as long as there exists a routine to project
onto the space of possible supports of graph evolutions, the
above proof can be modified to show that PsGD exhibits linear
convergence.

IV. RELATED WORK AND DISCUSSION

Due to space constraints, our discussion of prior work will
necessarily be brief. We refer to the seminal work of [2] for
an in-depth discussion of prior work in this area.

Approaches to reconstructing graphs from linear measure-
ments have emerged (more or less in parallel) in the machine
learning literature [2], [3] as well as in the theoretical computer
science literature [1], [26]. Reconstructing structured temporal
differences of graphs has been subsequently studied [8].

Recent work by [6], [7] have made explicit the connections
between graph sketching and sparse recovery by representing
cut queries via rank-one projections of the adjacency matrix.
We borrow this setup. However, we note that the techniques
of [6], [7] involve convex relaxations and do not seem to
be easily amenable to structured graphs. Our algorithm and
analysis closes this gap.

Recovery of structured-sparse vectors from random linear
measurements has been studied by [10], [11], [12], [13], [14].
However, all these earlier works eventually require an RIP-like
assumption of the observation operator, and is not applicable
to cut queries.

Finally, we note that recovering adjacency matrices from
cut queries can be interpreted as a special case of learning
sparse additive models from quadratic measurements [27], [21],
[28]. However, these approaches seems to require carefully
chosen adaptive queries. in contrast, our framework succeeds
with random non-adaptive cut queries and is more generically
applicable.
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