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Abstract

Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In
this paper we propose a data-driven AID framework that can leverage large-scale historical traffic data along with
the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared
with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two
basic steps for traffic pattern estimation. First, we estimate robust univariate speed threshold using historical traffic
information from individual sensors. This step can be parallelized using MapReduce framework thereby making it
feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve
incident detection performance significantly compared to traditional threshold determination. Second, we leverage
the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to
obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total
variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral
filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising.
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1. Introduction

Traffic congestion in freeways poses a major threat to the economic prosperity of the nation (Owens et al., 2010).
Freeway congestion is usually classified into two categories: recurrent congestion and non-recurrent congestion
(Ozbay and Kachroo, 1999; Dowling et al., 2004; Anbaroglu et al., 2014). Recurrent congestion typically exhibits a
daily pattern, observed in morning or evening peaks. On the other hand, non-recurrent congestion are mainly caused
by unexpected events like traffic incidents or stalled vehicles (Anbaroglu et al., 2014). Such events are a major source
of travel time variability (Noland and Polak, 2002) and often cause frustration to the commuters (FHWA). Hence,
automatic incident detection (AID) has been identified to be a crucial technology for reduction of non-recurrent traffic
congestion (Sussman, 2005). Early incident detection has shown to save 143.3 million man-hours and $3.06 million
in 2007 (Schrank and Lomax, 2007). Consequently, significant research has been done on development of accurate
AID algorithms.

Various data-driven algorithms and statistical models have been used to develop AID algorithms. A popular
approach for detecting traffic incidents is to learn the traffic patterns using accumulated traffic data observed in the
past, and detect incidents when traffic data observed in real-time behaves significantly different from the learned
patterns (Dudek et al., 1974; Kamran and Haas, 2007; Zhang et al., 2016). With the recent advancement in traffic
data collection and data storage technologies, fixed sensors installed on roads or probe vehicles can provide useful
information on the real-time traffic state over vast networks. These data sources when compared and matched with
corresponding historical datasets can serve as useful indicators of traffic incidents.
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However, two major challenges arise in such AID algorithm development. First, it is very difficult to obtain
a consistent statistical model of the dynamics of traffic patterns. Recurring congestion events can pair with the non-
recurring events at the same time and location, thereby making it difficult to separate the true positives (incidents) from
false positives (caused by recurring congestion). Second, with the recent advancements in data storage technologies,
the scale of traffic data stored from a traffic network makes it difficult to process it in real-time and detect traffic
incidents. Considerable amount of computation is involved in parsing the data which makes it difficult for conventional
statistical methods to handle such massive data sources and enable a real-time AID algorithm.

The primary objective of this paper is to propose and implement a massively parallelizable data-driven framework
for AID in freeways. Our framework leverages the traffic information obtained from each sensor, together with the
inherent topology of the traffic network to obtain robust traffic pattern estimates. Such traffic patterns can be used
to detect traffic incidents by comparing the real-time traffic data with the corresponding pattern and detecting the
anomalies. Further, such a framework can be easily extended over large highway networks due to the its inherent
parallelizable framework.

The primary conceptual building block of our approach is to sub-divide the road network into multiple smaller
segments. Each segment produces a time-series of the traffic state (average speed). These time-series are extensively
large-scale, with thousands of data points being recorded daily per segment. In order to enable real-time computa-
tion, we first perform dimensionality reduction with novel robust summary statistics of each time-series across non-
overlapping time windows. This summary statistics computation can be massively parallelized using MapReduce
(Dean and Ghemawat, 2008), thereby making it feasible to apply the framework over large networks. We develop
on our previous work Chakraborty et al. (2017b) to show how these robust summary statistics are less susceptible
to optimum threshold determination compared to traditional standard normal deviates based statistics. However, this
summary statistics computation do not take into account the spatio-temporal correlations of the time windows, and
are therefore noisy. To resolve this, we leverage the knowledge of the topology of the road-network and construct
a “heatmap” of the summary statistics. We then perform multivariate denoising of the “heatmap” assuming that the
summary statistics of the topologically and temporally adjacent regions are likely to be similar. Recently, Chakraborty
et al. (2017a) applied trend filtering based methods for denoising the threshold heatmaps to be used for incident de-
tection. However, the study didn’t covered what benefits can be achieved in AID performance using the denoised
heatmaps. In this study, we used bilateral filtering for threshold denoising and compared the performance with total
variation, used by Chakraborty et al. (2017a), to show the improvements obtained in incident detection performance
with such spatio-temporally denoised robust summary statistics.

The paper is organized as follows. Section 2 provides a brief description on the relevant literature on traffic incident
detection in freeways. Section 3 describes the methodology adopted in this study followed by the data description in
Section 4. Section 5 provides the details of the results obtained using the proposed methodology. Finally, Section 6
provides a summary of our results and points to directions of future study.

2. Literature Review

Freeway traffic incidents are usually classified as anomalies or outliers in the traffic stream. AID algorithms aim
to detect such anomalies using real-time traffic data along with historical data (whenever available). AID algorithms
can be primarily classified into two categories based on the methodology adopted:

1. Real-time traffic data is compared with the traffic data observed in the immediate past (i.e., over the previous T
intervals) to detect abnormalities which can be classified as incidents.

2. Historical traffic data is used to generate “normal” traffic patterns, and significant deviation from the normal
patterns are classified as incidents.

Several existing algorithms compare real-time traffic conditions with immediate past conditions to detect traffic
incidents. Parkany and Bernstein (1995) detected traffic incidents based on the principle that when traffic condi-
tions switches from incident-free to incident conditions, frequent lane switch maneuvers and temporal and spatial
discrepancies in headway and travel conditions can be observed. Hellinga and Knapp (2000) proposed the Waterloo
algorithm where it is assumed that travel-time is log-normally distributed and normal travel pattern is estimated from
the traffic data of past T intervals. Li and McDonald (2005) proposed the bivariate analysis model (BEAM) where
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travel time di� erence between adjacent travel time intervals are used for detecting incidents. On the other hand, Zhu
et al. (2009) used both spatially and temporally adjacent time intervals as features for incident detection purposes.
Li et al. (2013) used weighted average and standard deviation of pastT intervals of tra� c parameter values to detect
tra� c incidents from the data stream. False alarms due to �uctuations in tra� c variables were handled by replacing
the mean and standard deviation of current time intervals with those of the previous time intervals when coe� cient of
variation of tra� c variable was found to be less than a predetermined threshold. Recently, Asakura et al. (2017) used
shockwave theory to probe-vehicle trajectories to detect tra� c incidents. Although all the above algorithms have been
used extensively for incident detection, they do not utilize the wealth of information available from past historical
data. Rather, they rely only on the real-time and the immediate past tra� c data to detect the abnormalities in the data
stream.

Using only real-time and immediate past tra� c data for incident detection helps in avoiding the issues in storing
and processing large scale tra� c data. However, with the recent advancements in data storage and data processing
technologies (Zhang et al., 2017), it makes more sense to utilize the information from historical tra� c data to develop
e� cient AID algorithms. Along. For example, Sethi et al. (1995) used linear discriminant analysis to learn the
linear relationship of predictor variables from historical tra� c data that can di� erentiate between incident and non-
incident conditions. Balke et al. (1996) used standard normal deviates (SND) to generate the con�dence intervals for
normal tra� c conditions. Signi�cant deviations from normal conditions can be labeled as tra� c incidents. Historic
average travel times and their normal deviates were determined by time of day and day of week for each road segment
to denote incident-free conditions. Since mean and standard normal deviates are known to be prone to outliers,
Balke et al. (1996) used an incident dataset for removing the outliers from historic data before summary statistics
computation. So, this method also requires tra� c incident dataset with accurate start and end time of the incidents
(which are often hard to get) for incident detection. Snelder et al. (2013) used median instead of mean in order to
achieverobustsummary statistics computation and used it as a reference case to �nd out delays caused by incidents.

SND and such similar methods do not take into consideration the spatio-temporal relationship of the road network
to generate the normal tra� c conditions. However, Chung (2011) applied SND over spatio-temporally connected cells
to determine incident-induced delay. Chung and Recker (2012) further extended the method using an optimization
method to determine optimal hyper-parameterc in SND method (� � c � � , where� denotes the mean and� denotes
the standard deviation) to estimate the spatio-temporal extent of incidents. These studies however do not consider the
spatio-temporal correlation of the thresholds. They rather use the topological and temporal information to determine
impact region of tra� c incidents based on the thresholds generated from univariate time-series. Similarly, Anbaroglu
et al. (2014) used spatio-temporal clustering for detecting non-recurrent tra� c congestion when link journey time of
spatio-temporally connected cells exceed pre-determined threshold computed from historical data. Chen et al. (2016)
also used spatio-temporal clustering to identify recurrent and non-recurrent congestion, their spatio-temporal extent
and quantify the delay caused by such incidents. Similarly, Zhang et al. (2016) used dictionary-based compression
theory for identifying the spatio-temporal tra� c patterns at detector, intersection, and sub-region level which can be
used for anomaly identi�cation.

Thus, signi�cant research has been conducted to develop accurate AID algorithms using the rich information
obtained from historical tra� c data. Spatio-temporal analysis has also been performed to �nd out the extent of
tra� c incidents and their impact regions. This study complements the existing research by providing extending
the AID framework in two di� erent ways. The �rst part involves computation of robust summary statistics using
parallel computation methods enabling application of the AID algorithm over large-scale tra� c network. The second
part involves generation of accurate summary statistics by multivariate denoising which utilizes the spatio-temporal
correlation of the parameters obtained from the �rst part. Overall, we show that our proposed AID framework can
achieve improved overall detection performance.

3. Methodology

Lane-blocking tra� c incidents or incidents impacting the tra� c stream often result in signi�cant drop in vehi-
cle speeds and/or increase in the tra� c densities. Hence AID algorithms often model tra� c incidents as outliers or
anomalies in the tra� c data stream. The basic objective of the AID algorithm is to detect these anomalies by compar-
ing the real-time tra� c data with the immediate past data or with the historical past data. In this study, we extend the
popular SND algorithm (Dudek et al., 1974; Balke et al., 1996) of incident detection with uses the historical tra� c
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data to learn tra� c pattern. Then the tra� c pattern is compared with real-time tra� c data to detect the anomalies in
the streaming real-time data. Our incident detection framework consists of two steps:

1. Univariate speed threshold determination:This involves determination of robust summary statistics (thresh-
olds) of each univariate time series resulting from each road-segment.

2. Multivariate spatio-temporal threshold denoising:The thresholds determined in the previous step are now
denoised using the spatio-temporal correlations of the adjacent thresholds.

Next, we set up our model, followed by a detailed description of each of the above two steps.

3.1. Setup

We �rst describe the mathematical abstraction of our data corpus. Let the weighted graph of the tra� c network
is denoted byG = (S; E;W). Here,S = fsign

i=1 denotes the nodes of the graph,E = feigm
i=1 denotes the (undirected)

edges, andW = fwigm
i=1 denotes the weights of the graph. In our framework, the nodes of the graphs correspond to the

consecutive road-segments into which the freeway under consideration is partitioned, and an average vehicle speed
(x) is reported each minute for each segment. The nodes corresponding to consecutive segments along the freeway
are connected via appropriately weighted edges. In this study, we assume that the weights of each node are equal
to 1 (i.e., unweighted edge segments) but conceptually these can be used to encode other spatial information. The
topology of the road network (i.e., the order of the road segments) describes the connectivity of our graph system. We
measure a (noisy) time series for each nodes on a given day (sayd) of lengthN:

xd
s =

�
xt1;d

s ; xt2;d
s ; :::;xtN;d

s

�
(1)

Here,ti denotes theith time instant, andd denotes the day of the week. The observed time series are synchronized
across di� erent nodes, i.e., the time stampst1; t2; :::;tN are same for all days across all segments.

Overall, we model the time series as athird-order tensor x2 Rn� N� D
+ . Here,D denotes di� erent days,n refers to

the total number of nodes in the graph, andN denotes the length of the time series. For example, if average speed of
each segment is reported in 1-minute intervals (as in this study), then the length of the time seriesN will be equal to
24� 60 = 1440. Our objective here is to identify anomalous local patterns in this tensor.

However, a major challenge that we face is the scale of the tra� c data. The number of road segments and the
sampling rate of the segments are very high, thereby producing millions of tra� c records daily. For example, the
entire road network of Iowa, divided into approximately 54,000 segments, produce 4 gigabytes of daily tra� c speed
data, which aggregates to approximately 1.5 terabytes of annual tra� c data.

To alleviate this issue, we �rst pre-process along the second dimension of the tensor. We perform robust summary
statistics computation of each univariate time series across non-overlapping windows to determine (scalar) thresholds
of each window in the time series, which will serve as key parameters in our AID framework. The details of this step
is discussed next.

3.2. Univariate Threshold Computation

Our basic methodology for univariate threshold computation is based on the popular SND algorithm (Dudek et al.,
1974; Balke et al., 1996) for incident detection. The algorithm involves modeling the univariate statistics of each non-
overlapping windows of the time series data as a Laplace distribution with location parameter� and scale parameter
� . More speci�cally, each univariate time series is divided into 15-minute non-overlapping windows (p), similar to
study by Dudek et al. (1974), and the threshold speed (� ) for each window is determined from the location and scale
parameters. The threshold (� p;d

s ) speed is de�ned as:

� p;d
s = � p;d

s � c � � p;d
s (2)

where, the optimum constantc is to be determined from the validation set. This auxiliary reduced tensor, speed
threshold (� p;d

s ), can be compared with real-time speed dataXti ;d
s to detect anomalies or tra� c incidents.

The SND algorithm uses the mean speed value ( ¯x) as the location parameter (� ) and the corresponding standard
deviation (� ) as the scale parameter (� ) to model the normal tra� c pattern. Normal tra� c condition varies depending
on the time of day and day of the week. Hence the location and scale parameters are determined for each day of the
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week, and 15-minute periods of the day for each segment. Threshold speed values over 15-minute intervals of each
day of the week are determined using the previous 8 weeks of tra� c data for the same segment for the given day of
the week and period of the day, similar to the study of Balke et al. (1996). The mean speed values ( ¯xp;d

s ), standard
deviation� p;d

s , and threshold speed� p;d
s;snd for SND algorithm can be determined as follows:

x̄p;d
s =

P
8k xp;d

k;sP
8k k

(3)

� p;d
s =

1
P

8k k

X

8k2(d;p;s)

�
xp;d

k;s � x̄p;d
s

�2
(4)

� p;d
s;snd = x̄p;d

s � csnd � � p;d
s (5)

Although the SND algorithm is easy to calibrate and inherits good transferability (Li et al., 2013), a major drawback
of the algorithm is that it is prone to outliers or anomalies (Balke et al., 1996). Both location and scale parameters
(mean and standard deviation) are known to be highly susceptible to outliers (Pearson, 2005). This causes a severe
challenge for tra� c datasets that contain anomalies (in the form of incidents), and can lead to misrepresentation of the
underlying normal tra� c patterns due to these anomalies. One possible way to tackle this issue is to manually remove
all time intervals that are known incidents (e.g. by referring to incident reports), before calculating the aforementioned
threshold parameters. This requires complete knowledge of the tra� c incident data during both training, testing, and
implementation; however, it is often di� cult to get accurate reports of incidents (Ren et al., 2012). In particular, it
is hard to obtain accurate estimates for start time, duration, and impacted regions due to tra� c incidents (Yue et al.,
2016). To alleviate this issue, we propose to usealternaterobust summary statistics (learned from the time series
tensor itself) for the location and scale parameters so that the a� ect of the presence of anomalies can be minimized.

Outlier detection is a important task in statistical analysis and signi�cant research has been performed for de-
velopment of robust models to detect outliers from noisy data streams (Pearson, 2005; Aggarwal, 2007). Interested
readers can refer to Gupta et al. (2014) for a detailed review of current outlier detection methods. In this study, we
propose to use two such modi�cations of the SND summary statistics to calculate robust location and scale parame-
ters. Speci�cally, we replace the standard deviation values by maximum absolute deviation (MAD) (Hampel, 1974)
and inter-quartile deviation (IQD) for the scale parameter (� ). For both these methods, we use median speed values
instead of mean values as location parameter (� ). Studies have shown that median,IQD, andMAD provide more
robust summary statistics compared to mean and standard deviation for data containing outliers (Pearson, 2005; Leys
et al., 2013). Thus, the two modi�ed univariate threshold computation techniques can now be expressed as:

1. MAD algorithm: � = Median (M), � = Maximum Absolute Deviation (MAD),

� p;d
s;mad = Mp;d

s � cmad � MADp;d
s (6)

2. IQD algorithm:� = Median (M), � = Inter-Quartile Distance (IQD),

� p;d
s;iqd = Mp;d

s � ciqd � IQDp;d
s (7)

The median (M), maximum absolute deviation (MAD), and inter-quartile deviation (IQD) can be calculated as
follows:

Mp;d
s = median8k

�
xp;d

k;s

�
(8)

MADp;d
s = median8k

����x
p;d
k;s � Mp;d

s

���� (9)

IQDp;d
s =

n
xp;d

k;s : Pr(X � x; 8k) = 0:75
o

�
n
xp;d

k;s : Pr(X � x; 8k) = 0:25
o

(10)

AlthoughMAD, andIQD are known to be robust to outliers, one of the major drawbacks of these statistics are they
are susceptible to “swamping” problems where non-outliers are classi�ed as outliers resulting in signi�cant number
of false alarms. This implies that if more than 50% of the data values (xk) are very similar (i.e., close to swamping
breakdown point), then IQD and MAD are both equal to zero. So, any value di� erent from median will be reported as
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an outlier. This has important consequences for incident detection because tra� c data is usually concentrated along a
particular value. For example, a freeway segment with speed limit of 70 mph will mostly report speed values around
70 mph. So, when more than 50% of speed values are equal to 70 mph, the� parameter (i.e.,MAD or IQD) will be
equal to zero and hence a speed value of even 69 mph will be reported as an outlier. This will result in signi�cant
increase in the number of false alarms.

However, in tra� c incident detection problems, we can take advantage of the fact that the capacity-reducing tra� c
incidents will signi�cantly impact the tra� c conditions and result in congested tra� c conditions. To recall, AID
algorithms relying on macroscopic tra� c data solely (instead of camera, probe vehicle trajectories or similar data
sources) can only detect incidents which impact tra� c �ow and result in signi�cant reduction in the capacity. So,
the incident alarm can be triggered only when congested conditions exist and the observed speed is lower than the
expected threshold (given by Equation 2). Federal Highway Administration guidelines state that congested conditions
occur in freeways when average speed in a road-segment is less than 45 mph (Systematics, 2005). So, the modi�ed
threshold speed value can now be written as:

� p;d
s = Min

h
45; � p;d

s � c � � p;d
s

i
(11)

One of the major advantage of these summary statistics (mean, median, MAD, and IQD) is that their computa-
tion can be easily parallelized over multiple systems thereby enabling the AID framework to handle massively large
datasets over wide tra� c network. In this study, we used Apache Pig (2018), a Hadoop MapReduce framework for
computation of the summary statistics values from raw tra� c speed data. The optimal constant parameters,csnd; cmad,
andciqd) in Equations 5, 6, and 7 respectively are determined using the incident validation data set. Also, similar
to past studies (Ren et al., 2012; Li et al., 2013), we performpersistence testbefore triggering incident alarm. This
means, incident alarm is triggered when observed speed values are lower than the threshold speed value 11 for three
consecutive intervals. This is done to reduce false alarms due to spurious noisy low speed values.

3.3. Multivariate Spatio-Temporal Threshold Denoising

Univariate threshold computation, given by Equation 11, does not take into consideration the topology of the
tra� c network or temporal correlations between the time windows. Hence, the thresholds computed can be highly
noisy and variable across contiguous roadway segments. To compensate for this, we propose to improve the quality
of the estimated thresholds using the spatio-temporal information. We leverage both the underlying topology of the
road network and the temporal coherence of the time windows, and perform denoising to obtain improved estimates
of the speed threshold values depicting the normal tra� c pattern.

First, we obtain a “heatmap” of the threshold speeds calculated using Equation 11. Figure 1 shows a sample
speed threshold heatmap. The road segments are arranged according to their corresponding mileage, along with
temporally consecutive time windows to form the heatmap. We argue that the spatially and temporally coherent time
windows are likely to exhibit similar thresholds. So, we formulate our objective as to obtain a coherent, smoothed
threshold heatmap by performing denoising of the raw heatmap. In this study, we used two speci�c procedures of
image denoising techniques — bilateral �lter and total variation — to obtain the denoised threshold map which can
be used for improved incident detection performance. We chose these denoising techniques since they are known to
preserve the edges during denoising. This is important given the fact the sharp edges in threshold heatmaps often
indicate the regions of recurrent congestion (as shown in Figure 1) and preserving the edges will help to di� erentiate
the recurrent congestion from non-recurrent congestion events such as tra� c incidents. We discuss each of the two
threshold denoising procedures next.

3.3.1. Bilateral Filter based Threshold Denoising
Bilateral �ltering (Tomasi and Manduchi, 1998) is a popular image denoising technique which preserves edges

while smoothing. In the most basic formulation, each pixel in an image is replaced by the average of its neighbors,
keeping into account the geometric closeness (spatial and temporal correlations) along with the photometric similarity
(speed threshold values). As stated in Section 3.1, the multivariate time series can be represented as a third-order
tensorx 2 Rn� N� D

+ , whereD denotes di� erent days of the week (producing di� erent heatmaps),n refers to the total
number of nodes in the graph, andN denotes the length of the time series. So, each threshold heatmap can be
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Figure 1: Sample speed threshold heatmap (mph)

represented as an image (a second-order tensor,I : � 2 Rn� N0

+ ). Since we divide the time of the day into 15-minute
time windows, soN0 = (60=15) � 24 = 96.

The Bilateral Filter, denoted byBF [:], can be de�ned as a function that takes in an imageI as input, and returns
an imageBF[I ] whosepth pixel intensity is given by:

BF[I ]p =

P

q2S
G� s (kp � qk)G� r

�
Ip � Iq

�
Iq

P

q2S
G� s (kp � qk)G� r

�
Ip � Iq

� (12)

whereS andR denotes the space domain (set of possible pixel locations in an image) and range domain (set of
possible pixel values) respectively.G� s is a two-dimensional spatial Gaussian kernel whileG� r is a range Gaussian
kernel where� s and� r are the spatial and range �ltering parameters for the image I. The kernel can be represented
as:

G� (x) =
1

2�� 2
exp

 
�

x2

2� 2

!
(13)

Thus,G� s (kp � qk), which de�nes the spatial distance, decreases in�uence of spatially distant pixels compared
to the positionp. The parameter� de�nes the extension of the neighborhood. Similarly,G� r

�
Ip � Iq

�
decreases

in�uence of q pixels with color intensities di� erent from that ofp (Ip).
The range parameter� r di� erentiates bilateral �lter from Gaussian �lter which only takes into consideration

spatial (location) closeness for smoothing. As� r increases, the bilateral �lter converges to a Gaussian blur �lter. As
� s increases, larger features are smoothed. Both spatial and range weights are multiplied in bilateral �lter; thus, no
smoothing occurs even if one weight approaches zero. For example, a narrow range Gaussian combined with large
spatial Gaussian will produce limited smoothing in spite of large spatial extent. The contours are maintained by the
range weight. This will help the bilateral �lter to remove noisy thresholds from the heatmap while maintaining the
sharp edges formed by recurrent congestion patches. Please refer to Paris et al. (2007) for a detailed review.
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3.3.2. Total Variation based Threshold Denoising
Total variation (TV), �rst proposed by Rudin et al. (1992), has been used extensively for image denoising problems

since they are known to denoise the image without smoothing the object boundaries. Many algorithms have been
developed in the past for total variation based image denoising. Rodr�́guez (2013) provides a detailed review of the
di� erent methods developed for TV-denoising. In this study, we adopted the algorithm proposed by Chambolle (2004)
for solving the minimization problem of total variation of an image. As explained in Section 3.3.1, the image can be
expressed as a second-order tensor, given byI : � 2 Rn� N0

+ . DenotingX = Rn� N0

+ andY = X � X, for anyu 2 X, the
gradientr u 2 Y is given by

(r u)i; j =
�
(r u)x

i; j ; (r u)y
i; j

�
(14)

with

(r u)x
i; j =

8
>><
>>:
ui+1; j � ui; j if i < n;
0 if i = n;

(15)

(r u)y
i; j =

8
>><
>>:
ui; j+1 � ui; j if j < N0;
0 if j = N0;

(16)

Then, the discretized total variation can be de�ned as

J (u) =
X

1� i� n;
1� j� N0

���(r u)i; j

���
Y

(17)

where the standard Euclidean scalar product is given by

hp;qi Y =
X

1� i� n;
1� j� N0

p1
i; j

q1
i; j

+ p2
i; j

q2
i; j

for all p; q 2 Y, p =
�
p1; p2

�
andq =

�
q1; q2

�
. Then, Equation 17 can be written as

J (u) = sup
n
hp; r ui Y : p 2 Y;

���pi; j

��� � 18i; j
o

(18)

Now, a discrete divergence operator div:Y ! X can be introduced8p 2 Y and8u 2 X de�ned by,

h� divp; r ui X = hp; r ui Y

It can be easily shown that the div is given by

(divp)i; j =

8
>>>>><
>>>>>:

p1
i; j � p1

i� 1; j if 1 < i < n;

p1
i; j if i = 1;

� p1
i� 1; j if i = n;

+

8
>>>>><
>>>>>:

p2
i; j � p2

i; j� 1 if 1 < j < N0;

p2
i; j if j = 1;

� p1
i; j� 1 if i = N0;

(19)

From the de�nition of divergence operator and Equation 18, we can write

J (u) = sup
v2KF

hu; vi X

whereKF is given by
n
divp :: p 2 Y;

���pi; j

��� � 18i; j
o
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It can be shown that determination of nonlinear projection� 1
� KF

( f ) leads to solving the following constrained
minimization problem (Chambolle, 2004; Duran et al.).

min
�
k� divp � f k2

X : p 2 Y;
���pi; j

���2 � 1 � 0; 8i; j
�

(20)

From Karush-Kuhn-Tucker optimality conditions (Hiriart-Urruty and Lemaréchal, 1993; Ciarlet, 1982), we get:

�r (� divp � f )i; j + � i; j pi; j = 0 (21)

where either
���pi; j

��� < 1, � i; j pi; j = 0, andr (� divp � f )i; j = 0; or
���pi; j

��� = 1 and� i; j pi; j > 0. Thus,

� i; j pi; j =
���r (� divp � f )i; j

���

Chambolle proposed a semi-implicit gradient descent algorithm for solving the minimization problem. For de-

noising parameter� , tolerance parametert, time-step� , and while max
8i; j

� ����pn+1
i; j � pn

i; j

����
�

> t,

pn+1
i; j =

pn
i; j + � (r (divpn � f /� ))i; j

1 + �
���(r (divpn � f /� ))i; j

���
(22)

Chambolle (2004) showed that the algorithm converges for� � 1=8. In this study, we choset = 0.0002 and our
objective is to determine the optimal denoising parameter� . Interested readers can also refer to Duran et al. for a
detailed description of Chambolle's algorithm.

3.4. Overall AID framework

The �owchart of the proposed AID algorithm framework is shown in Figure 2. Historical tra� c data are processed
weekly in MapReduce for univariate speed thresholds computation of 15-minute windows for each segment and day-
of-week. The speed thresholds can be generated using SND, MAD or IQD method. Next, the thresholds are used
to generate speed threshold heatmaps for each road and direction. These heatmaps are denoised using total variation
or bilateral �lter. The thresholds are matched with real-time speed data and when speed is less than threshold for 3
consecutive intervals, incident alarm is triggered. This persistence test is performed to reduce false alarms generated
due to spurious noise in real-time data, similar to the study of Li et al. (2013).

3.5. Performance Measures

Incident detection performance has been evaluated in terms of the performance measures used in past studies
(Parkany and Xie, 2005; Ren et al., 2012; Li et al., 2013). This involves determination of 4 performance measures:

1. Detection Rate (DR) is the ratio of number of incidents detected by AID algorithm to the total number of
incidents occurred.

DR =
Total number of detected incidents
Total number of actual incidents

� 100% (23)

2. False Alarm Rate (FAR) is used for penalizing false calls and is de�ned as the ratio of number of false alarms
reported to total number of AID algorithm application. For example, if tra� c data is reported at one-minute
interval for a particular segment and AID algorithm is applied for each record, then the number of algorithm
application is equal to 60. Thus, if 5 records out of them is reported as false calls, thenFAR is equal to
[(5=60) � 100] % = 8:3%

FAR=
Total number of false alarm cases

Total number of algorithm applications
� 100% (24)
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Figure 2: Illustration of the AID algorithm framework

3. Mean Time to Detect (MTT D) takes into consideration the latency involved in the AID algorithm. It is de�ned
as the average of time elapsed between actual start of the incident and time when the incident is �rst detected
by the algorithm.

MTT D =
Total time elapsed between detecting incidents

Total number of incidents detected
(25)

4. Performance Index (PI), given by Equation 26, brings together all 3 performance measures (DR, FAR, and
MTT D) into a single measure to �nd out the overall performance of the AID algorithm.PI is believed to be
one of the best possible measure to re�ect the performance of AID during model selection (Ren et al., 2012).
Minimizing PI is the optimization objective used during cross-validation. SinceDR can be 100% orFARcan
be 0% during training, thePI measure is slightly modi�ed with the constants (1.01 and 0.001) to handle such
cases, similar to (Ren et al., 2012).

PI =
�
1:01�

DR
100

�
�

� FAR
100

+ 0:001
�

� MTT D (26)

4. Data Description

The data used in the study comprises tra� c speed data and crash data from Interstate Freeways I-80/35 and I-
235 of the Des Moines region, in Iowa, USA. The Des Moines region experiences the majority of Iowa's freeway
congestion (62% of slow tra� c events) along with one of the highest concentration of tra� c incidents within the state
(Kapsch, 2016). Hence, it is a challenging task to separate tra� c incidents from recurring congestion events in such a
network and develop a reliable AID framework.

The study period extended from April, 2017 to October, 2017. A total of 210 lane-blocking tra� c incidents were
reported during this period in the study region. The incident reports were obtained from the Tra� c Management
Center records in Ankeny, Iowa. The incident reports included information on the location of the incident (latitude,
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Figure 3: Study region in Des Moines, Iowa

longitude, road, direction), start and end-time of the incidents, and also the incident type. The following incident
classes were included in this study: 1-vehicle crash, 2-vehicle crash, 3+ vehicle crash, stalled vehicle, and debris.
Construction reports and slow tra� c events (not associated with any tra� c incidents) were excluded from the incident
database. All the incidents were manually veri�ed with the cameras installed in the freeways.

High-resolution probe-based tra� c speed data, provided by INRIX (INRIX, 2018) is used in this study. The entire
road network is divided into approximately 0.5 miles long segments and average speed data is reported in 1-minute
interval. Since quality of probe-based speed data depends on the number of probe vehicles available, INRIX reports
two parameters, con�dence score and c-value, to denote the reliability of each tra� c record. Con�dence score can
take 3 values: 10, 20, and 30. Con�dence score of 30 indicates that only real-time probe vehicles are used for reporting
real-time speed. On the other hand, con�dence score 10 indicates historical tra� c speed data and is used to report
tra� c speed of a segment due to unavailability of probe vehicles. When a mix of real-time probe data and historical
speed data is used, then con�dence score of 20 is reported. C-value is an additional reliability parameter provided
by INRIX only when con�dence score is 30. C-value can range from 0-100 and provides a relative measurement of
number of probe-vehicles used for real-time speed report. Since tra� c incident detection requires real-time speed
reports, we used tra� c speed data corresponding to con�dence score of 30 and c-value greater than 30, as suggested
by Haghani et al. (2009). Since the study region has considerably high tra� c volume (annual average daily tra� c of
70,000 vehicles in 2017), hence more than 98% of the tra� c speed records used in this study were real-time.

5. Results

The �rst step for incident detection is the determination of speed thresholds from the previous 8 weeks of historical
tra� c data. This involves determination of the optimum threshold constantc for each the 3 methods, SND, MAD,
and IQD (see Equations 5, 6, and 7 respectively). Figure 4 shows the variation of the di� erent performance measures
(DR, FAR, MTT D, andPI) for di� erent values of the threshold constant (c) for the 3 AID methods (SND, MAD,
and IQD). We also experimented with 2 weeks, 4 weeks, and 12 weeks of historical data for threshold computation.
However, 8 weeks historical data were found to be optimum and hence used throughout this study.
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