
A Fast Approximation Algorithm
for Tree-Sparse Recovery

Chinmay Hegde, Piotr Indyk, Ludwig Schmidt1
Massachusetts Institute of Technology

Abstract—Sparse signals whose nonzeros obey a tree-like
structure occur in a range of applications such as image modeling,
genetic data analysis, and compressive sensing. An important
problem encountered in recovering signals is that of optimal tree-
projection, i.e., finding the closest tree-sparse signal for a given
query signal. However, this problem can be computationally very
demanding: for optimally projecting a length-n signal onto a tree
with sparsity k, the best existing algorithms incur a high runtime
of O(nk). This can often be impractical.

We suggest an alternative approach to tree-sparse recovery.
Our approach is based on a specific approximation algorithm
for tree-projection and provably has a near-linear runtime of
O(n log(kr)) and a memory cost of O(n), where r is the
dynamic range of the signal. We leverage this approach in a fast
recovery algorithm for tree-sparse compressive sensing that scales
extremely well to high-dimensional datasets. Experimental results
on several test cases demonstrate the validity of our approach.

I. INTRODUCTION

Over the last decade, the concept of sparsity has attracted
significant attention among researchers in statistical signal
processing, information theory, and numerical optimization.
Sparsity serves as the foundation of compressive sensing (CS),
a new paradigm for digital signal and image acquisition [1,
2]. A key result in CS states that a k-sparse signal of length
n can be recovered using only m = O(k log n/k) linear
measurements; when k � n, this can have significant benefits
both in theory and in practice.

However, several classes of real-world signals and images
possess additional structure beyond mere sparsity. One exam-
ple is the class of signals encountered in digital communi-
cation: these are often “bursty” and hence can be modeled
as sparse signals whose nonzeros are grouped in a small
number of blocks. A more sophisticated example is the class of
natural images. Here, the dominant coefficients in the wavelet-
domain representation can be modeled as a rooted, connected
tree [3]. These (and several other) notions of structure can
be concisely captured via the notion of a structured sparsity
model. In the CS context, structured sparsity can enable signal
recovery algorithms that succeed with merely O(k) linear
measurements [4].

Our focus in this paper is on tree-structured sparsity. Tree-
sparse data are not only interesting from a theoretical perspec-
tive but also naturally emerge in a range of applications such
as imaging and genomics [3, 5, 6]. Of particular interest to us is
the following problem: given an arbitrary signal x ∈ Rn, find
the k-sparse tree-structured signal x̂ that minimizes the error

1Authors ordered alphabetically.

‖x− x̂‖2. This problem arises in several settings including
signal / image compression and denoising [7, 8]

The optimal tree-projection problem has a rich history; see,
for example, the papers [9–11] and references therein. The
best available (theoretical) performance for this problem is
achieved by the dynamic-programming (DP) approach of [12],
building upon the algorithm first developed in [11]. For signal
length n and target sparsity k, the algorithm has a runtime of
O(nk). Unfortunately, this means that the algorithm does not
easily scale to real-world problem sizes. For example, even a
modestly-sized natural image (say, of size n = 512×512) can
only be expected to be tree-sparse with parameter k ≈ 104. In
this case, nk exceeds 2.5×109, and hence the runtime quickly
becomes impractical for megapixel-size images.

In this paper, we develop an alternative approach for tree-
projection. The core of our approach is a novel approxima-
tion algorithm that provably has a near-linear runtime of
O(n log(kr)) and a memory cost of O(n), where r is the
dynamic range of the signal. Importantly, the memory cost
is independent of the sparsity parameter k. Therefore, our
approach is eminently suitable for applications involving very
high-dimensional signals and images, which we demonstrate
via several experiments.

Our tree-projection algorithm is approximate: instead of
exactly minimizing the error ‖x− x̂‖2, we merely return an
estimate x̂ whose error is at most a constant factor c1 times
the optimal achievable error (i.e., that achieved by [12]).
Moreover, our signal estimate x̂ is tree-sparse with parameter
c2k, therefore giving us a bicriterion approximation guarantee.

At a high level, our algorithm can be viewed as an extension
of the complexity-penalized residual sum of squares (CPRSS)
formulation proposed by Donoho in [9]. We pose the exact tree
projection as a (nonconvex) sparsity-constrained optimization
problem. We perform a Lagrangian relaxation of the sparsity
constraint and, similar to Donoho, solve the relaxed problem
using a dynamic program (DP) with runtime (as well as
memory cost) of O(n). We then iterate this step O(log(kr))
times by conducting a binary search over the Lagrangian
relaxation parameter until we arrive at the target sparsity k.
A careful termination criterion for the binary search gives our
desired approximation guarantee.

We combine our approximate tree-projection algorithm with
the model-based CS framework proposed in [4]. This produces
an extremely fast CS recovery algorithm for tree-sparse sig-
nals. We present several experiments on synthetic and real-
world signals that demonstrate the benefits of our approach.

II. BACKGROUND

A. Sparsity and Structure

A signal x ∈ Rn is said to be k-sparse if no more than k
of its coefficients are nonzero. The support of x, denoted by
supp(x) ⊆ [n], indicates the locations of its nonzero entries.

Suppose that we possess some additional a priori informa-
tion about the support of our signals of interest. One way
to model this information is as follows [4]: denote the set
of allowed supports with Mk = {Ω1,Ω2, . . . ,ΩL}, where
Ωi ⊆ [n] and |Ωi| = k. Often it is useful to work with the
closure of Mk under taking subsets, which we denote with
M+
k = {Ω ⊆ [n] | Ω ⊆ S for some S ∈ Mk}. Then, we

define a structured sparsity model, Mk ⊆ Rn, as the set of
vectors Mk = {x ∈ Rn | supp(x) ∈ M+

k }. The number of
allowed supports L is called the “size” of the model Mk;
typically, L�

(
n
k

)
.

We define the model-projection problem forMk as follows:
given x ∈ Rn, determine a x∗ ∈ Mk such that ‖x− x∗‖p is
minimized for a norm parameter p. In general, this problem
can be hard, since Mk is typically non-convex. However,
several special choices of models Mk do admit polynomial-
time model-projection methods; see [13] for an overview.

B. Tree-Sparsity

Our focus in this paper is the tree-structured sparsity model
(or simply, the tree-sparsity model). We assume that the n
coefficients of a signal x ∈ Rn can be arranged as the nodes
of a full d-ary tree. Then, the tree-sparsity model comprises
the set of k-sparse signals whose nonzero coefficients form a
rooted, connected subtree. It can be shown that the size of this
model is upper bounded by L ≤ (2e)k/(k + 1) [4].

For the rest of the paper, we denote the set of supports
corresponding to a subtree rooted at node i with Ti. Then
Mk = {Ω ⊆ [n] | Ω ∈ T1 and |Ω| = k} is the formal
definition of the tree-sparsity model (we assume node 1 to
be the root of the entire signal).

The tree-sparsity model can be used for modeling a va-
riety of signal classes. A compelling application of this
model emerges while studying the wavelet decomposition
of piecewise-smooth signals and images. It is known that
wavelets act as local discontinuity detectors [5]. Since the
supports of wavelets at different scales are nested, a signal
discontuinity will give rise to a chain of significant coefficients
along a branch of the wavelet tree (see Fig. 1).

The problem of projecting onto the tree-sparsity model
has received a fair amount of attention in the literature
over the last two decades. Numerous algorithms have been
proposed, including the condensing sort-and-select algorithm
(CSSA) [10], complexity-penalized residual sum-of-squares
(CPRSS) [9], and optimal-pruning [11]. In contrast to CSSA
and CPRSS, our algorithm offers worst-case approximation
guarantees for arbitrary signals. While the optimal-pruning
approach guarantees an optimal k-sparse tree-projection by
using a dynamic program, it has a runtime of O(n2). The
recent paper [12] gives an improved version of this approach

Fig. 1. A binary wavelet tree for a one-dimensional signal. The squares
denote the large wavelet coefficients that arise from the discontinuities in the
piecewise smooth signal drawn below. The support of the large coefficients
forms a rooted, connected tree.

with a runtime of O(nk). However, this is still impractical for
high-dimensional signal processing applications.

C. Compressive Sensing
Suppose that instead of collecting all the coefficients of a

k-sparse vector x ∈ Rn, we merely record m = O(k log n/k)
inner products (measurements) of x with m � n pre-
selected vectors, i.e., we observe an m-dimensional vector
y = Ax, where A ∈ Rm×n is the measurement matrix.
The central result of compressive sensing (CS) is that under
certain assumptions on A, x can be exactly recovered from y,
even though A is rank-deficient (and therefore has a nontrivial
nullspace).

Numerous algorithms for signal recovery from compressive
measurements have been developed. Of special interest to us
are iterative support selection algorithms, e.g. CoSaMP [14].
Such algorithms can be modified to use any arbitrary struc-
tured sparsity model when given access to a model-projection
oracle [4]. These modified “model-based” recovery algorithms
offer considerable benefits both in theory and in practice. For
the tree-sparsity model, a modified version of CoSaMP prov-
ably recovers tree-sparse signals using m = O(k) measure-
ments, thus matching the information-theoretic lower bound.

III. TREE-SPARSE APPROXIMATION

Recall that the main goal in tree-projection is the following:
for a given signal x ∈ Rn, minimize the quantity ‖x− xΩ‖p
over Ω ∈ Mk for a given 1 ≤ p < ∞.2 In this paper, we are
interested in the following related problem: find a Ω̂ ∈ Mk′

with k′ ≤ c2k and∥∥x− xΩ̂

∥∥
p
≤ c1 min

Ω∈Mk

‖x− xΩ‖p . (1)

We highlight two aspects of the modified problem (1): (i)
Instead of projecting into the model Mk, we project into
the slightly larger model Mk′ . (ii) Instead of finding the
best projection, we provide a multiplicative guarantee for the
approximation error.

We propose an approximation algorithm that achieves (1).
First, we approach the modified problem via a Lagrangian
relaxation, i.e., we relax the sparsity constraint and keep the
requirement that the support Ω forms a connected subtree:

arg min
Ω∈T1

‖x− xΩ‖pp + λ|Ω| . (2)

2Our approximation algorithm also solves the `∞-version of the tree-
sparse approximation problem (and, in this case, even identifies the optimal
projection, not only a provably good one). Since the focus in model-based
compressive sensing usually lies on p = 1 or p = 2, we limit our proofs here
to `p-norms with p <∞.

Note that the parameter λ controls the trade-off between the
approximation error and the sparsity of the recovered support.
Second, we use a binary search to find a suitable value of λ,
resulting in an overall recovery guarantee of the form (1).

A. Solving the Lagrangian relaxation
We first transform the problem in (2) into a slightly different

form. Note that (2) is equivalent to arg maxΩ∈T1
‖xΩ‖pp−λ|Ω|.

We can now rewrite this problem as

arg max
Ω∈T1

∑
i∈Ω

yi (3)

where yi = |xi|p−λ. Hence the goal is to find a rooted subtree
which maximizes the sum of weights yi contained in the
subtree. In contrast to the original tree approximation problem,
there is no sparsity constraint, but the weights associated with
nodes can now be negative.

Problem (3) is similar to the CPRSS formulation proposed
by Donoho [9]. However, our technical development here is
somewhat different because the underlying problems are not
exactly identical. Therefore, we summarize our approach in
Alg. 1 and outline its proof for completeness.
Theorem 1. Let x ∈ Rn be the coefficients corresponding to a
tree rooted at node 1, and let p ≥ 1. Then FINDTREE(x, λ, p)
runs in linear time and returns a support Ω̂ ∈ T1 satisfying∥∥x− xΩ̂

∥∥p
p

+ λ|Ω̂| = min
Ω∈T1

‖x− xΩ‖pp + λ|Ω| .

Proof: As above, let yi = |xi|p − λ. For a support
Ω ∈ [n], let y(Ω) =

∑
i∈Ω yi. Futhermore, we denote

the total weight of the best subtree rooted at node i with
b∗i = max

Ω∈Ti

y(Ω). Note that b∗i = max(0, yi +
∑
j∈children(i) b

∗
j)

because we can choose nodes in the subtrees of i indepen-
dently. A simple inductive argument shows that after the call
to CALCULATEBEST(1, x, λ, p), we have bi = b∗i for i ∈ [n].

Similarly, a proof by induction shows that after a call
to FINDSUPPORT(i), we have y(Ωi) = b∗i . So the sup-
port Ω̂ returned by FINDTREE(x, λ, p) satisfies y(Ω̂) =
maxΩ∈T1 y(Ω) . This implies the guarantee in the theorem.

The time complexity follows from the fact that the algorithm
makes a constant number of passes over the tree.

B. Binary search over λ
Next, we use Alg. 1 in order to achieve the desired ap-

proximation guarantee (1). Since the Lagrangian relaxation (2)
gives us only indirect control over the sparsity k′, we perform
a binary search over λ to find a suitable value. Alg. 2 contains
the corresponding pseudo code. In addition to x, k, c, and p,
the algorithm takes an additional parameter δ, which controls
the maximum number of iterations of the binary search.
Theorem 2. Let x ∈ Rn be the coefficients corresponding to
a tree rooted at node 1. Moreover, let c > 1, δ > 0, and p ≥ 1.
Then TREEAPPROX(x, k, c, p, δ) returns a support Ω̂ ∈ M+

ck

satisfying∥∥x− xΩ̂

∥∥
p
≤
(

1 +
1

c− 1
+ δ

)1/p

min
Ω∈Mk

‖x− xΩ‖p .

Algorithm 1 (FINDTREE) Solving the Lagrangian relaxation
1: function FINDTREE(x, λ, p)
2: CALCULATEBEST(1, x, λ, p)
3: return Ω̂← FINDSUPPORT(1)

4: function CALCULATEBEST(i, x, λ, p)
5: bi ← |xi|p − λ
6: for j ∈ children(i) do
7: CALCULATEBEST(j, x, λ, p)
8: bi ← bi + bj

9: bi ← max(0, bi)

10: function FINDSUPPORT(i)
11: if bi = 0 then
12: Ωi ← {}
13: else
14: Ωi ← {i}
15: for j ∈ children(i) do
16: Ωi ← Ωi ∪ FINDSUPPPORT(j)

17: return Ωi

Algorithm 2 (TREEAPPROX) Tree-sparse approximation
1: function TREEAPPROX(x, k, c, p, δ)
2: if there is a Ω̂ ∈Mk with supp(x) ⊆ Ω̂ then
3: return Ω̂
4: xmax ← maxi∈[n]|xi|, xmin ← mini∈[n],xi>0|xi|
5: λl ← xpmax, λr ← 0, ε← δ xp

min

k
6: while λl − λr > ε do
7: λm ← λl+λr

2

8: Ω̂← FINDTREE(x, λm, p)
9: if |Ω̂| ≥ k and |Ω̂| ≤ ck then

10: return Ω̂
11: else if |Ω̂| < k then
12: λl ← λm
13: else
14: λr ← λm
15: return Ω̂← FINDTREE(x, λl, p)

Moreover, the algorithm runs in time O(n(log k
δ+p log xmax

xmin
)),

where xmax = maxi∈[n]|xi| and xmin = mini∈[n],xi>0|xi|.
Proof: We analyze the three cases in which TREEAPPROX

returns a support. First, note that the condition in line 2 can
be checked efficiently: connect all nonzero entries in x to the
root node and denote the resulting support with Ω̂. If |Ω̂| ≤ k,
we have Ω̂ ∈ M+

k and x ∈ Mk. Otherwise, x /∈ Mk and the
tail approximation error is greater than zero.

Second, if the algorithm returns in line 10, we have |Ω̂| ≤
ck and Ω̂ ∈ T1 (Theorem 1). Hence Ω̂ ∈ M+

ck. Moreover,
Theorem 1 implies∥∥x− xΩ̂

∥∥p
p

+ λm|Ω̂| ≤ min
Ω∈Mk

‖x− xΩ‖pp + λm|Ω| .

Since |Ω̂| ≥ k = |Ω| for Ω ∈ Mk, we have
∥∥x− xΩ̂

∥∥
p
≤

minΩ∈Mk
‖x− xΩ‖p.

Finally, consider the return statement in line 15. Let Ωl
and Ωr be the supports corresponding to λl and λr, re-
spectively. Moreover, let ΩOPT ∈ Mk be a support with

‖x− xΩOPT
‖p = minΩ∈Mk

‖x− xΩ‖p. We use the shorthands
tl = ‖x− xΩl

‖pp, kl = |Ωl|, and the corresponding definitions
for tr, kr, tOPT , and kOPT . Note that throughout the binary
search, we maintain the invariants kr ≥ ck and kl ≤ k. The
invariants also hold before the first iteration of the binary
search due to our initial choices for λl and λr (λ = 0 implies
yi ≥ 0 and λ = xpmax implies yi ≤ 0, both for all i ∈ [n]).

From Theorem 1, we have tr + λrkr ≤ tOPT + λrkOPT .
This implies

λr(kr − kOPT) ≤ tOPT − tr
λr(ck − k) ≤ tOPT

λr ≤
tOPT

k(c− 1)
.

At the end of the binary search we have λl − λr ≤ ε, giving

λl ≤
tOPT

k(c− 1)
+ ε . (4)

Theorem 1 also implies tl+λlkl ≤ tOPT +λlkOPT . Together
with (4), we get

tl ≤ tOPT + λlk

≤ tOPT +
tOPT

c− 1
+ εk

≤ tOPT

(
1 +

1

c− 1

)
+ δxpmin

≤
(

1 +
1

c− 1
+ δ

)
tOPT .

The last line follows from the fact that x /∈ Mk and hence
tOPT ≥ xpmin. Taking the p-th root on both sides gives the
guarantee in the theorem.

Each iteration of the binary search runs in linear time
(Theorem 1). The difference λl − λr initially is xpmax and
is then halved in every iteration until it reaches ε. Hence the
total number of iterations is at most

log
xpmax

ε
= log

xpmaxk

δxpmin

= log
k

δ
+ p log

xmax

xmin
.

In practical applications, δ, p, xmax, and xmin can be con-
sidered constants, which gives a running time of O(n log k).
In follow-up work, we remove the dependence on xmax

xmin
and

give an algorithm running in O(n log n) time while achieving
the same approximation guarantee [15].

C. Tree-Structured CS Recovery
Our tree-projection algorithm TREEAPPROX (Alg. 2) is use-

ful in a number of contexts. Here, we leverage the algorithm
in model-based compressive sensing.

Using the framework of [4], we combine TREEAPPROX
with CoSaMP. Alg. 3 summarizes our proposed CS recovery
method. The algorithm closely resembles the tree-CoSaMP
algorithm developed in [4], except that the model-projections
(in lines 5 and 7) are implemented using the approximate
projection method TREEAPPROX. In our experiments below,
we will use TREEAPPROX with approximation parameter
c = 1.1 and norm parameter p = 2. In [15], we give a full
recovery scheme for the tree-sparsity model using approximate
projection algorithms.

Algorithm 3 (TREE-COSAMP) Signal recovery
1: function TREE-COSAMP(y, k,A, t)
2: x̂0 ← 0
3: for i← 1, . . . , t do
4: v ← AT (y −Ax̂i−1)
5: Γ← supp(x̂i−1) ∪ TREEAPPROX(v, 2k, c, 2, δ)
6: zΓ ← A†Γy, zΓC ← 0
7: Ω← TREEAPPROX(z, k, c, 2, δ)
8: x̂i ← zΩ

9: return x̂← x̂i

CoSaMP SPGL1

Exact tree Approx. tree

Fig. 2. CS recovery of a 1D signal using various algorithms (signal
parameters: n = 1024, k = d0.04ne = 41, m = d3.5ke = 144). Both
tree-based algorithms accurately recover the ground truth signal.

IV. NUMERICAL RESULTS

We now demonstrate the considerable benefits gained by
our approximate tree-projection algorithm in the context of
compressive sensing (CS). All experiments were conducted on
a laptop computer equipped with an Intel Core i7 processor
(2.66 GHz) and 8GB of RAM. Corresponding code is available
on http://people.csail.mit.edu/ludwigs/code.html.

First, we run model-CoSaMP with the exact tree projection
approach in [12], as well as Alg. 3, on a piecewise polynomial
signal. Such signals are well-modeled as tree-sparse in the
wavelet domain [3]. The signal is of length n = 1024 and is
exactly tree-sparse with sparsity parameter k = d0.04ne = 41.
We record m = d3.5ke = 144 random Gaussian measure-
ments and perform CS recovery. For comparison, we also
include recovery results using CoSaMP and `1-minimization.

As predicted by our theoretical results, Fig. 2 demonstrates
that Alg. 3 achieves accurate signal recovery, while standard
CS approaches offer worse recovery quality. In fact, the perfor-
mance of Alg. 3 is comparable to that of model-CoSaMP with
exact projections. Figure 3 demonstrates a similar improve-
ment in the case of a much larger signal. For this experiment,
the input signal is a tree-sparse image of size n = 512× 512
with sparsity parameter k = 0.04n ≈ 10,000, and we use
m = 3.3k ≈ 35,000 random Fourier measurements.

Figure 4 plots the results of a Monte Carlo experiment that
quantifies the performance of the different recovery algorithms
in terms of the number of measurements m. The input test

CoSaMP (SNR=12.5dB) SPGL1 (SNR=22.7dB)

Exact tree (SNR=101.4dB) Approx. tree (SNR=99.2dB)
Fig. 3. CS Recovery of a 2D image using various algorithms (signal
parameters: n = 512 × 512, k = 0.04n ≈ 10,000, m = 3.3k ≈ 35,000).
Both tree-based algorithms accurately recover the ground truth image.

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Oversampling ratio m/k

Pr
ob

ab
ili

ty
of

re
co

ve
ry

Exact tree
Greedy tree
Approx. tree
CoSaMP
SPGL1

Fig. 4. Comparison of CS recovery algorithms. The probability of recovery
is with respect to the measurement matrix and generated using 100 trial runs.

signal is a piecewise polynomial signal, similar to the one in
Fig. 2. Each data point in this plot was generated by averaging
over 100 sample trials using different measurement matrices.
For this plot, “successful recovery” was defined as the event
when the `2-error of the final signal estimate was within 5%
of the `2-norm of the original signal. The success probability
of Alg. 3 almost matches the performance of model-CoSaMP
with the exact tree-projection.

Table I demonstrates the computational efficiency of our
tree-projection algorithm. Using the wavelet coefficients from
Fig. 3 as input, our tree-projection algorithm is more than
two orders of magnitude faster than the exact tree-projection
algorithm (400× speedup). Moreover, the tree-projection step
is not a bottleneck in the overall recovery algorithm since the
time spent on multiplying with A and AT (at least one FFT
each) dominates the runtime of our algorithm.

We also compare our algorithm with the greedy tree ap-
proximation algorithm described in [3]. While the greedy
algorithm offers good recovery and runtime performance in
the noiseless setting (see Fig. 4 and Table I), it is susceptible

Algorithm Exact tree Approx. tree Greedy tree FFT
Runtime (sec) 4.4175 0.0109 0.0092 0.0075

TABLE I
RUNTIMES OF VARIOUS ALGORITHMS ON INPUT DATA FROM FIG. 3

(A SINGLE RUN OF THE PROJECTION ALGORITHM WITHOUT COSAMP).
THE TIMES ARE AVERAGED OVER 10 TRIALS. n ≈ 260,000, k ≈ 35,000.

Input signal Greedy tree

Exact tree Approx. tree

Fig. 5. Tree projection for an input signal with shot noise (n = 1024). In
order to simplify the example, we show the results of a single tree-projection
without compressive sensing recovery. The greedy algorithm fails to find a
good support while our approximation algorithm matches the output of the
exact tree-projection algorithm.

to shot noise (Fig. 5). In contrast, our algorithm has rigorous
approximation guarantees and demonstrates robust behavior
similar to the exact tree-projection algorithm.

ACKNOWLEDGEMENTS
This work was supported by grants from the MITEI-Shell program, the

MADALGO center, and the Packard Foundation.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, 2006.
[2] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, 2006.

[3] R. Baraniuk, “Optimal tree approximation with wavelets,” in Proc. SPIE
Ann. Meeting: Wavelet Apps. Signal Imag. Proc., 1999.

[4] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Inform. Theory, 2010.

[5] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.
[6] S. Kim and E. Xing, “Tree-guided group LASSO for multi-task regres-

sion with structured sparsity,” in Proc. Intl. Conf. Mach. Learning, 2010.
[7] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet

coefficients,” IEEE Trans. Sig. Proc., 1993.
[8] M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-based statistical signal

processing using Hidden Markov Models,” IEEE Trans. Sig. Proc., 1998.
[9] D. Donoho, “CART and best-ortho-basis: a connection,” Annals of Stat.,

1997.
[10] R. Baraniuk and D. Jones, “A signal-dependent time-frequency repre-

sentation: Fast algorithm for optimal kernel design,” IEEE Trans. Sig.
Proc., 1994.

[11] M. Bohanec and I. Bratko, “Trading accuracy for simplicity in decision
trees,” Mach. Learning, 1994.

[12] C. Carter and A. Thompson, “An exact tree projection algorithm for
wavelets,” IEEE Sig. Proc. Let., 2013.

[13] M. Duarte and Y. Eldar, “Structured compressed sensing: From theory
to applications,” IEEE Trans. Sig. Proc., 2011.

[14] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
2009.

[15] C. Hegde, P. Indyk, and L. Schmidt, “Nearly linear-time model-based
compressive sensing,” in ICALP, 2014, to appear.

