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Abstract

These are abridged lecture notes from the Spring 2017 course offering of “Principles of Data Analytics”
that I offer at Iowa State University annually. This graduate level course offers an introduction to a
variety of data analysis techniques, particularly those relevant for electrical and computer engineers,
from an algorithmic perspective. Topics include techniques for classification, visualization, and
parameter estimation, with applications to signals, images, matrices, and graphs. The material in
these lecture notes are primarily adapted from the excellent online textbook, “Foundations of Data
Science” (2016) by Blum, Hopcroft, and Kannan. Other resources used to construct these notes were
“Advanced Algorithm Design” by Arora, “Theory Gems” by Madry, and “Convex Optimization” by
Bubeck.
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Chapter 1

Introduction

Overview of 525X

This course serves as an introduction to a a variety of foundational principles in data analytics for
engineering applications.

Note that terms in bold:

• Variety: We will introduce a diverse collection of methods for solving challenges in data
analysis.

• Foundational principles: For every method we study, we will emphasize understanding its
fundamental properties: correctness, computational efficiency, potential ways to improve it,
etc.

• Engineering applications: We will illustrate the efficacy of data analytics methods in the
context of how they impact applications related to specific domains, with an emphasis on
applications from electrical and computer engineering.

The science of data processing

Why focus on the principles of data processing? And why now?

As of today, data analytics is an off-the-charts “hot” topic. Virtually every scientific, engineering,
and social discipline is undergoing a major foundational shift towards becoming more “analytics”
oriented.

There are several reasons why this is the case; the foremost being that computing devices and sensors
have pervasively been ingrained intro our daily personal and professional lives. It is easier and
cheaper to acquire and process data than ever before. Hence, it is common to hear and read pithy
newspaper headlines about data analytics, such as this:

“Why data is the new oil.” (Fortune Magazine, June 2016)
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Of course, qualitative claims of this scale must always be taken with a pinch of salt.

It is undoubtedly true that a renewed focus on data-driven analysis and decision making has had
considerable impact on a lot of fields. It is also equally true that important questions remain
unanswered, and that much of the analysis tools used by practitioners are deployed as “black-boxes”.

The only way to place data analytics on a solid footing is to build it bottom-up from the principles
upwards; in other words, ask the same foundational questions, as you would for any other scientific
discipline.

What this course is (not) about

This course addresses data analysis from a few different angles (while not exclusively dwelling upon
any single one of them):

• machine learning

• algorithm design

• statistics

• optimization

• “big data” processing

Prior knowledge/experience in any of the above topics will be a plus, but not necessary; the course
will be fairly self-contained.

Learning outcomes

At the end of 525X, we will have:

• become familiar with several commonly used methods for solving data analysis problems:
– acquisition
– compression
– retrieval
– classification
– inference
– visualization

• applied these methods in the context of several data models, including:
– vectors
– matrices
– graphs

• obtained hands-on experience for applying these methods on real-world datasets.

Good luck!
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Chapter 2

Vector representations of data

In several (most?) applications, “data” usually refers to a list of numerical attributes associated with
an object of interest.

For example: consider meteorological data collected by a network of weather sensors. Suppose each
sensor measures:

• wind speed (w) in miles per hour
• temperature (t) in degrees Fahrenheit

Consider a set of such readings ordered as tuples (w, t); for example: (4,27), (10,32), (11,47), . . . .

It will be convenient to model each tuple as a point in a two-dimensional vector space.

More generally, if data has n attributes (that we will call features), then each data point can be viewed
as an element in a d-dimensional vector space, say Rd.

Here are some examples of vector space models for data:

1. Sensor readings (such as the weather sensor example as above).

2. Image data. Every image can be modeled as a vector of pixel intensity intensity values. For
example, a 1024×768 RGB image can be viewed as a vector of d = 1024×768×3 dimensions.

3. Time-series data. For example, if we measure the price of a stock over d = 1000 days, then
the aggregate data can be modeled as a point in 1000-dimensional space.

Properties of vector spaces

Recall the two fundamental properties of vector spaces:

• Linearity: two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) can be added to obtain:

x+ y = (x1 + y1, . . . , xd + yd).
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• Scaling: a vector x = (x1, . . . , xd) can be scaled by a real number α ∈ R to obtain:

αx = (αx1, . . . , αxd).

Vector space representations of data are surprisingly general and powerful. Moreover, several tools
from linear algebra/Cartesian geometry will be very useful to us:

1. Norms. Each vector can be associated with a norm, loosely interpreted as the “length” of
a vector. For example, the `2, or Euclidean, norm of x = (x1, . . . , xd) is given by ‖x‖2 =√∑d

i=1 x
2
i . The `1, or Manhattan, norm of x is given by ‖x‖1 =

∑d
i=1 |x|i.

2. Distances. Vector spaces can be endowed with a notion of distance as follows: the “distance”
between x and y can be interpreted as the norm of the vector x− y. For example, the `2, or
Euclidean, distance between x and y is given by:

‖x− y‖2 =

√√√√ d∑
i=1

x2
i .

One can similarly define the `1-distance, etc. The choice of distance will be crucial in several
applications when we wish to compare how close two vectors are.

3. Similarities. (These are, in some sense, the opposite of distance.) Define the Euclidean inner
product between vectors x and y as:

〈x, y〉 =

d∑
i=1

xiyi.

Then, the cosine similarity is given by:

sim(x, y) =
〈x, y〉
‖x‖2‖y‖2

.

The inverse cosine of this quantity is the generalized notion of angle between x and y.

Application: Document retrieval

Let us instantiate these ideas for a concrete warmup application in data analytics. For the purpose of
this discussion, let a document refer to any collection of words in the English language (this could be
a (literal) document, or a webpage, or a book, or just a phrase, etc.) Consider the following

Problem: Given a database of n documents D = {D1, D2, . . . , Dn} and a query docu-
ment D∗, find the document in the database that best matches D∗.

For example, if you were to build a search engine over a database of webpages, D is your webpage
database, and any set of input keywords can be your query “document”.

As with most problems in data analytics, the first (and most crucial) course of action is to decide
a suitable representation of your data. Once we do that, then we can think of applying some
combination of the aforementioned linear algebraic tools.
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Stage 1: Modeling the database in a vector space

Can we somehow naturally model “documents” in English as “vectors” in some space?

There is no unique way to do this, but here is a first attempt. Let d denote the number of all words in
the English language. (This is a very large number, and depending on how you define “English word”,
this can range from 10,000 to more than half a million.) Index all English words from 1 through d.

Convert every document into a d-dimensional vector x, by simply letting the jth co-ordinate of x to
be the number of occurrences of word j in the document. (This number is also sometimes called the
“term-frequency”.)

This gives us a set of n vectors {x1, . . . , xn}, where each xi is an element of R+
d, and represents

the ith document.

This has the deficiency of throwing out context in a document. For example, consider the following
two (short) “documents”:

The quick brown fox jumped over the lazy dog.

The lazy brown dog jumped over the quick fox.

will both have the exact same vector representation, even though they are clearly different documents.
But let’s assume for now that we won’t face this ambiguity issue in actual applications.

Do the same to the query as well, so that we also obtain a query vector x∗.

Stage 2: Finding the best match

Once we have a vector representation of every document, as well as the query vector x∗, we now
have to define what “best match” means. Again, there is no unique way to do this.

In text analysis, a common measure of “best” is the cosine similarity. More precisely, we calculate,
for each i, the cosine similarity between the query vector with each other vector in the database:

cos θi =
〈x∗, xi〉
‖x∗‖2‖xi‖2

,

and output the index i∗ as __ :
i∗ = arg max

i
cos θi.

An improved approach

The above method works well, but the vector space representation is a bit brittle. Specifically, the
definition on term frequency means that certain commonly occurring words (“the”, “be”, “to”, “of”,
“and”, etc) will constitute the dominant coordinate values of each document.

This heavily inflates the influence of the co-ordinates of the vector space corresponding to these words.
However, generally these words are uninformative and their effect should be ideally minimized.
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In order to do this coherently, we define a new vector space representation. For document i, we
construct a vector xi such that the jth co-ordinate is given by:

xi(j) = tfi(j) · idf(j).

The term tfi(j) is the same as before; it represents term-frequency and counts the number of occur-
rences of word j in document i.

The term idf(j) is called the inverse-document frequency, and is defined as follows. Let nj be the
number of documents in the database which contain at least one occurrence of word j. Then,

idf(j) = log
(nj
n

)−1

= log
n

nj
.

Therefore, if a word occurred in every document, its idf value would be zero, and the word would not
contribute to the similarity calculations.

Note that the idf value is the same for all documents, and is only a property of the database under
consideration.

Concluding note

Much of the rest of this course will involve solving problems (more challenging) than the one above.
The emphasis will primarily be on Stage 2: given the “right” vector space representation of a particular
dataset, what mathematical tools and techniques are available to us for further analysis?

However, the first stage is where most of the ingenuity of data analysis arises. Indeed, choosing the
“right” representation (or features) of the data is somewhat of an art and relies heavily on domain
expertise.

(Note that there has been some preliminary, but very energetic, progress in the area of deep learning;
in deep learning, the main objective is to automate the process of choosing the “right” representation
for data.)
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Chapter 3

Nearest neighbors

We discussed a simple document retrieval system using TF-IDF as the feature representation of
the data, and cosine similarity as the measure of “goodness”. This lecture, we will generalize this
algorithm into something that we call as the Nearest Neighbor method.

The algorithm

Suppose that we have a database of data points {x1, x2, . . . , xn} ⊂ Rd, and a query data point
x0 ∈ Rd. Also suppose that we are given a distance measure d(·, ·) that measures closeness between
data points. Typical choice of distances d(·, ·) include the `2−distance (or `1-distance).

The nearest neighbor (NN) method advocates the following (intuitive) method for finding the closest
point in the database to the query.

1. Compute distances di = d(xi, x0) for i = 1, 2, . . . , n.

2. Output i∗ = arg mini∈[n] d(x0, x0).

Particularly simple! The above two steps form a core building block of several, more complicated
techniques.

Efficiency

The NN method makes no assumptions on the distribution of the data points and can be generically
applied; that’s part of the reason why it is so powerful.

To process each given query point, the algorithm needs to compute distances from the query to
n-points in d dimensions; for `1 or `2 distances, each distance calculation has a running time of O(d),
giving rise to an overall running time of O(nd).
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This is generally OK for small n (number of samples) or small d (dimension), but quickly becomes
very large. Think of n being in the 108 − 109 range, and d being of a similar order of magnitude.
This is very common in image retrieval and similar applications.

Moreover: this is the running time incurred for each new query. It is typical to possess one large
(training) database of points and make repeated queries to this set. The question now is whether we
can improve running time if we were allowed to do some type of preprocessing to the database to
speed up running time of finding the nearest neighbor.

Improving running time: the 1D case

Consider the one-dimensional case (d = 1). Here, the data points (and query) are all scalars. The
running time of naive nearest neighbors is O(n). Can we improve upon this?

Yes! The idea is to use a divide-and-conquer strategy.

Suppose the data points are given by {x1, x2, . . . , xn}. We sort the data points in increasing order to
obtain the (permuted version of the) data set {xπ1 , xπ2 , . . . , xπn}. This takes O(n log n) time using
MergeSort, etc.

Now, for each query point x0, we simply perform binary search. More concretely: assuming that n
is even, we compare x0 to the median point. xπn/2

. If x0 > xπn/2
, then the nearest neighbor to x0

cannot belong to the bottom half {x1, . . . , xπn/2−1
}. Else, if x0 < xπn/2

, then the nearest neighbor
cannot belong to the top half {xπn/2+1

, . . . , xπn
}. Either way, this discards half the number of points

from the database. We recursively apply this procedure on the remaining data points.

Eventually, we will be left with a single data point xj . We output i∗ = π−1j as the index of the
nearest neighbor in the (original) database.

Since the dataset size decreases by a factor 2 at each recursive step, the number of iterations is at
most log2 n. Therefore, the running time of nearest neighbors for each query is O(log n).

So by paying a small additional factor (O(log n)) in terms of pre-processing time, we can dramatically
speed up running time per query. This kind of trick will often be used in several techniques that we
will encounter later.

Extension to higher dimensions: kd-trees

The “binary search” idea works well in one dimension (d = 1). For d > 1, a similar idea called
kd-trees can be developed. (The nomenclature is a bit strange, since “kd” here is short for “k-
dimensional”. But to be consistent, we will use the symbol d to represent dimension.) It’s a bit more
complicated since there is no canonical way to define “binary search” in more than one dimension.

Preprocessing

For concreteness, consider two dimensions (d = 2). Then, all data points (and the query point) can
be represented within some bounded rectangle in the XY-plane.
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We first sort all data points according to the X-dimension, as well as according to the Y -dimension.

Next, we arbitrarily choose a splitting direction along one of the two axes. (Without loss of generality,
suppose we choose the X-direction.) Then, we divide the data set into two subsets according to the
X-values of the data points by drawing a line perpendicular to the X-axis through the median value of
the (sorted) X-coordinates of the points. Each subset will contain the same number of points if n is
even, or differ by 1 if n is odd.

We recursively apply the above splitting procedure for the two subsets of points. At every recursive
step, each of the two subsets will induce two halves of approximately the same size. One can imagine
this process as an approximately balanced binary tree, where the root is the given input dataset, each
node represents a subsets of points contained in a sub-rectangle of the original rectangle we started
with, and the leaves correspond to singleton subsets containing the individual data points.

After O(log n) levels of this tree, this process terminates. Done!

There is some flexibility in choosing the splitting direction in each recursive call. One option is to
choose the axis where the coordinates of the data points have the maximum variance. The other
option is to simply alternate between the axes for d = 2 (or cycle through the axes in a round-robin
manner for d > 2). The third option is to choose the splitting direction at random. Either way, the
objective is to make sure the overall tree is balanced.

The overall running time is the same as sorting the n data points along each dimension, which is
given by O(dn log n).

Making queries

Like in the 1D case, nearest neighbor queries in kd-trees can be made using a divide-and-conquer
strategy. We leverage the pre-processed data to quickly discard large portions of the dataset as
candidate nearest neighbors to a given query point.

Identical to the 1D case, the nearest neighbor algorithm starts at the root, looks at the splitting
direction (in our above example, the initial split is along the X-direction), and moves left or right
depending on whether the query point has its corresponding coordinate (in our above example, its
X-coordinate) smaller than or greater than the median value. Recursively do this to traverse all the
way down to one of the leaves of the binary tree.

This traversal takes O(log n) comparisons. Now, unlike the 1D case, there is no guarantee that the
leaf data point is the true nearest neighbors (since we have been fairly myopic and only looked at
each co-ordinate in order to make our decisions while traversing the tree.) So, we need to do some
additional calculations to refine our estimate.

Declare the data point in the leaf as the current estimate of the nearest neighbor, and calculate the
distance, ∆, between the current estimate and the query point. It is certainly true that the actual
nearest neighbor cannot be further away than the current estimate. In other words, the true nearest
neighbor lies within a circle of radius ∆ centered at the query point.

Therefore, we only need to examine the sub-rectangles (i.e., nodes of the binary tree) that intersect
this circle! All other rectangles (and points within those rectangles) are irrelevant.

Checking whether the circle intersects a given sub-rectangle is simple: since each rectangle is
specified by a split that occurred along some X- (or some Y-) coordinate (say at value α), we only
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have to check whether the difference between the splitting coordinate of the query point and α
exceeds ∆. If yes, then there is no intersection; we can safely discard the sub-rectangle (and all its
children). This intuition supports the divide-and-conquer strategy.

One can prove that the expected number of additional nodes that need to visit is given by O(log n) if
the original data is generated from certain random distributions. However, in the worst case we may
still need to perform O(n) distance calculations, which implies a worst-case running time of O(nd)
(i.e., no better than vanilla nearest neighbors.)

Nevertheless, kd-trees are often used in practice, particularly for moderate dimensional problems.
Most modern machine learning software packages (such as scikit-learn for Python) have robust
implementations of kd-trees that offer considerable speedups over nearest neighbors.
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Chapter 4

Modeling data in high dimensions

Recall that the running time of nearest neighbors / similarity search was given by O(nd) where n is
the number of data points and d is the dimensino.

The approach that we adopted in previous lectures for speeding up nearest neighbors was to preprocess
the database and reduce the number of distance comparisons made to each given query point (i.e.,
essentially reduce n.)

An alternate approach is to reduce the dimension of the data somehow. If we were able to faithfully
obtain a new, reduced-order representation of the given dataset (that preserves nearest neighbor
information) then we could simply do vanilla nearest neighbors (or kd-trees, even) in the reduced
space and get a considerable speedup.

Of course, it is at first unclear why such a procedure is even possible.

The curse of dimensionality

This is an umbrella phrase used to represent the idea that ordinary human intuition (that is trained to
think in two or three dimensions) breaks down in higher dimensions. Basically, going to higher and
higher dimensions dramatically changes fundamental geometric quantities (such as distances, surface
areas, volumes, densities, etc), and in a very concrete sense, makes problems exponentially harder to
solve.

Geometry in high dimensions

Let us instantiate this via some counter-intuitive results about geometry in high dimensions. Let ‖ · ‖
denote the Euclidean norm. Then, a ball in d-dimensions is the generalization of a circle in 2D; a ball
of radius r centered at the origin is denoted as:

Bd(r) = {x ∈ Rd | ‖x‖ ≤ r}

14



Generally, Bd(1) is called the unit ball in d dimensions centered at the origin.

The volume of Bd(r) is given by:

vol(Bd(r)) =
πd/2

Γ(d/2 + 1)
rd,

where Γ(d/2 + 1) is the Gamma function and is equal to (d/2)! if d is even, and d!!/2(d+1)/2 if
d is odd, where !! denotes the product of all odd numbers up to a given number. (This constant is
unimportant for now; let’s just call it Cd for simplicity.)

We can view this as the higher-dimensional generalization of the notion of area of a circle (given
by πr2) or volume of a sphere (given by 4

3πr
3). The main point is to realize that the volume of a

d-dimensional ball of radius r is proportional rd.

We now prove:

Counter-intuitive result #1: Most of the volume of a radius-r ball in d dimensions is concen-
trated near its surface.

Here, “surface” refers to the set of all points with Euclidean norm exactly equal to r.

This fact is relatively easy to prove. Consider a d-dimensional ball of radius r, and also consider a
slightly smaller ball of radius (1− ε)r, where ε > 0 is some tiny constant (say, 0.01). We will show
that the bulk of the bigger ball lies outside the smaller one.

To see this, Consider the ratio of their volumes:

vol(Bd(1− ε)r)
vol(Bd(r))

=
Cd(1− ε)drd

Cdrd

= (1− ε)d

≤ exp(−εd)

where the last inequality follows from the Taylor series expansion of the exponential function.

This tells us that volume of the slightly-smaller-ball (relative to the bigger one) decays exponentially
with the dimension d.

Example: setting ε = 0.01 and d = 1, 000, we infer that 99.99546% of the volume of the unit ball in
d = 1000 dimensions is within a “shell” of width 0.01 close to the surface. Strange!

We also prove:

Counter-intuitive result #2: Most of the volume of a d-dimensional ball is concentrated near
its equator.

The equator of a ball is defined as follows: arbitrarily choose a direction in d-dimensional space.
Without loss of generality, suppose that we choose the first coordinate axis. Then, the equator is
denoted as the set of all points whose first coordinate is zero:

E = {x = (x1, x2, . . . , xd) | x1 = 0}.

i.e., the d− 1-dimensional hyperplane perpendicular to the direction we choose.
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We can prove that a thin “strip” near this equator:

S = {x = {x1, x2, . . . , xd} | |x1| ≤ 0.03}

contains over 99% of the volume of the sphere for d = 10, 000. The proof follows from fairly basic
(but messy) multi-variate integration. See Chapter 2 of the book for a formal proof.

Here is the interesting part: the above fact is true no matter how we choose the equator. E.g., if we
chose the equator as a hyperplane perpendicular to (say) the 36th coordinate axis, then the above
statement would hold for a strip close to this equator as well.

What’s more, our choice need not be a direction aligned to any one coordinate axis; any direction is
equally valid. Again, very strange!
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Chapter 5

Dimensionality reduction

In this lecture, we propose an alternate way to speed up nearest neighbors (with Euclidean distances)
using the concept of dimensionality reduction. Specifically, when d is large, we will demonstrate the
existence of a mapping f : Rd → Rk that approximately preserves Euclidean distances:

‖f(x)− f(y)‖ ≈ ‖x− y‖

for all data points x and y in the given dataset, where ‖ · ‖ denotes the Euclidean norm. In particular:

• the mapping f is oblivious to the dataset under consideration, and can indeed be constructed
independently of the data.

• k can be much smaller than the dimension d, and only depends on the number of data points n.
• f is simple to construct (in fact, it is a linear mapping.)
• there is a nice inverse relationship between the quality of approximation and the dimensionality

of the mapping: if you are willing to tolerate a bit of distortion,

Because f (approximately) preserves all Euclidean distances, one can transparently implement
nearest neighbors on the transformed data points under the mapping (as opposed to the original data).
Since the transformed data is of much lower dimension, the complexity of nearest neighbors can be
alleviated to a considerable extent.

The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss lemma is a famous result in functional analysis. The original result was
somewhat dense, but has been simplified over the years. We provide a self-contained proof.

Below, let ‖ · ‖ denote the Euclidean norm. We will prove the following:

Lemma: Let X ⊂ Rd be any set with cardinality n. Let f(x) = 1√
k
Ax, where A is a matrix of size

k × d whose entries are independently sampled from the standard normal distribution, N (0, 1). Fix
0 < ε < 1. Then, provided k > O( logn

ε2 ), the following statement holds with high probability:

(1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2
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for all x, y ∈ X .

The proof follows fairly elementary probabilistic arguments. Fix any v ∈ Rd, and consider
z = 1√

k
Av. Then, the ith coordinate of z,

zi =
1√
k

d∑
j=1

Ai,jvj

is a weighted linear combination of independently sampled normal random variables. Therefore, each
zi itself is a normal random variable. Moreover, from properties of Gaussian distributions, we have,
for each i:

E[zi] = 0, Var(zi) =
1

k

∑
j

v2
j =
‖v‖2

k

Therefore, the random variable z̄i =
√
k
‖v‖zi behaves like a normal r.v. with zero mean and unit

variance. Hence, squaring and summing over i, the random variable:

χ2
k =

k∑
i=1

z̄2
i =

k

‖v‖2
k∑
i=1

z2
i

behaves like a chi-squared random variable with k-degrees of freedom.

It is well-known that the chi-squared random variable is tightly concentrated around its mean for
large enough k; in other words, the probability that χ2

k deviates from its mean by a certain percentage
is exponentially decaying in k. More precisely:

E[χ2
k] = k,

and
Pr[|χ2

k − k| > εk] ≤ 2 exp(−k
4

(ε2 − ε3)).

The above statement can be derived by a straightforward application of Markov’s inequality.

Plugging in the expression for χ2
k in the above deviation bound, the probability that 1

k‖Av‖
2 deviates

from ‖v‖2 by more than a fraction (1± ε) is upper bounded by a “failure probability” term that is
exponentially small in terms of k.

Now, this is true for any fixed v. We instantiate v with each of the difference vectors, v = xi − xj ,
between all pairs of data points. There are

(
n
2

)
= n(n−1)

2 pairs, and we have
(
n
2

)
such deviation

inequalities, each with a tiny failure probability. By the union bound, the total failure probability is
upper bounded by the sum of the individual probabilities:

η ≤ n(n− 1)

2
2 exp(−k

4
(ε2 − ε3))

≤ n2 exp(−k
4

(ε2 − ε3))

= exp(2 log n− k

4
(ε2 − ε3)).

We can ignore the ε3 term for sufficiently small ε. Insert k = O( logn
ε2 ) to get the desired result.
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Random projections and nearest neighbors

For reasons clear from the construction, the mapping f(x) = Ax/
√
k is called a random linear

projection, or random projection for short.

The J-L Lemma motivates a simple way to accelerate the nearest neighbor algorithm. Given data
points X = {x1, x2, . . . , xn}:

1. Compute random projections {f(xi)}, i = 1, 2, . . . , n.

2. Compute the random projection of the query point f(x0).

3. Compute Euclidean distances between the (projected) query point with the (projected) data
points: di = ‖f(xi)− f(x0)‖2.

4. Output i∗ = arg mini di.

The running time of Steps 3-4 combined is given by O(nk) = O(n logn
ε2 ) (since it is basically nearest

neighbors in k dimensions). This can be significantly lesser than d, especially in situations where d is
large.

Some care should be taken in terms of correctness of the algorithm; because distances are getting
distorted, there is a possibility that the nearest neighbor in the projected space is different from that
of the original space. There are more sophisticated nearest neighbor methods (e.g., Locality Sensitive
Hashing) which take a more refined look at this issue, but we won’t discuss them here.

Moreover, we glossed over the running times of Steps 1-2. Step 1 requires multiplying each d-
dimensional data point by a k × d matrix. There are n such points. Therefore the total computational
cost is O(nkd) = O(nd logn

ε2 ) – bigger than O(nd), but this is a one-time “training” cost.

Step 2 requires multiplying a single d dimensional point by a k × d matrix. This takes O(kd) =
O(d log d/ε2). Again, not too bad as long as ε is manageable. If the inverse dependence on ε2 is
bothersome, then there exist alternative constructions of A that avoid this; see below.

Bottom line: if your data is very high-dimensional, a random projection into lower dimensional space
is often a good, quick, universal pre-processing step to reduce computational burden. This is the
reason why random projections can be used in conjunction with pretty much any other data analysis
technique that relies on pairwise distance computations between a set of data points.

Concluding notes

Some points to keep in mind:

• The above works for nearest neighbors based on Euclidean distances. Analogous results can
also be derived for similarity searches (based on inner-products).

• Gaussian random matrices are only a specific example for J-L to work, and a wide variety of
other matrix constructions exist, several with much better running times. (Note that generating
very large Gaussian random matrices poses a challenge in itself; better constructions exist.)

• Somewhat bafflingly, it is quite hard to build similar efficient dimensionality-reduction map-
pings that are suitable for preserving distances other than the Euclidean norm. (For example,
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there is no principled way to considerably reduce data dimension if we want to do NN based
on the `1-distance.) There seems to be something singular about the Euclidean distance that
enables a fairly dramatic level of dimensionality reduction.
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Chapter 6

Classification

We will now transition to classification problems, which constitute an extremely important class of
problems in data analytics.

At a high level: a classification procedure, or classifier for short, processes a given set of objects that
are known to belong to one of two (or more) classes. Then, it attempts to predict the class membership
of a new object whose class membership is unknown. (The idea of processing a new, potential unseen
object is key here.)

Classification problems arise in widespread applications ranging from automatic image tagging, to
document categorization, to spam filtering, to sensor network monitoring, to software bug detection
– you name it. It is one of the canonical pattern recognition problems. We will discuss a range of
techniques for classification, starting with one that is particularly easy to implement.

k-nearest neighbors

We study the binary classification problem. Here, and below, we will assume as input:

• A set of labeled training samples: X = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each xi ∈ Rd
represent data vectors, each yi ∈ {−1, 1} represent class labels. (Here, the ±1 don’t represent
numerical values; they could equally well be 0 or 1 with little change in the algorithms.)

• An unlabeled test data point x ∈ R. Our goal is to output the label of x, denoted by y.

A reasonable hypothesis is that data points which have opposite labels are far away in the data space,
and points with similar labels are nearby. Therefore, an obvious solution for the above problem can
be obtained via nearest neighbors.

1. Compute distances d(x, xi) for each i = 1, 2, . . . , n. Here, think of d as the Euclidean norm
or the `1 norm. (The exact choice of distance is critical.)

2. Compute the nearest neighbor to x, i.e., find i∗ = arg mini d(x, xi).

3. Output y = yi∗ .
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Therefore, this algorithm is a straightforward application of nearest neighbors. The running time (for
each test point) is O(nd).

While conceptually simple, there are several issues with such a nearest neighbors approach. First, it
is notoriously sensitive to errors and outliers. For example, in an image recognition example, say we
have a bunch of (labelled) cat and dog images, but some of the dog images are mislabeled as cats
(and vice versa). Then, a new dog image that is closest to a mislabeled dog image will also get a
wrong label assignment using the above algorithm.

The typical way to use this is via k-nearest neighbors. Find the k-nearest data points to the query x,
look at their labels, and output the majority among the labels. For convenience of defining majority,
k can be chosen to be an odd integer. (Even is fine as well, but 50-50 ties may occur and there should
be a consistent rule to break them.) This helps mitigate outliers to some extent.

The running time of the k-NN algorithm is again O(nd) for each query. This brings us to the second
issue with NN (and k-NN): the per-query running time is quadratic (i.e., it scales with both n and d).
This quickly becomes infeasible for applications involving lots of query points (e.g. imagine a spam
classification algorithm trying to label millions of messages).

Occam’s razor and linear separators

Every (deterministic) binary classification algorithm A, given a training data set X , automatically
partitions the data space into two subsets – the set of points that will be labeled as +1 and the set of
points that will be labeled as −1. These are called decision regions of the classifier. Really, the only
information you need for classification are the decision regions (the role of training data is to help
build these regions.)

The third issue with k-NN is that the decision regions are overly complex. The boundary of the two
classes using NN classifiers is an irregular hypersurface that depends on the training data.

As a guiding principle in machine learning, it is customary to follow:

Occam’s Razor: Simpler hypotheses usually perform better than more complex ones.

One family of “simple” classifiers are linear classifiers, i.e., algorithms that try to lean decision
regions with a straight line as the separating boundary. We will try to find such classifiers.

The perceptron algorithm

The perceptron algorithm was an early attempt to solve the problem of artificial intelligence. Indeed,
after its initiation in the early 1950s, people believed that perfect classification methods were not far
off. (Of course, that didn’t quite work out yet.)

The goal of the perceptron algorithm is to learn a linear separator between two classes. The algorithm
is simple and parameter-free: no excessive tuning is required. Later, we will see that the algorithm is
an instance of a more general family of learning methods known as stochastic gradient descent.
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In particular, the perceptron will output a vector w ∈ R and a scalar b ∈ R such that for each input
data vector x, its predicted label is:

y = sign(〈w, xi〉+ b).

Below, without loss of generality, we will assume that the learned separator w is homogeneous
and passes through the origin (i.e., b = 0), and that the data is normalized such that ‖x‖ ≤ 1.
Geometrically, the boundary of the decision regions is the hyperplane:

〈w, x〉 = 0

and w denotes any vector normal to this hyperplane.

We will also assume that the training data is indeed perfectly separable. (Of course, in practice we
are not guaranteed that this is the case. We will see how to fix this later.)

Input: Training samples S = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Output: A vector w such that yi = sign(〈w, xi〉) for all (xi, yi) ∈ S.

0. Initialize w0 = 0.

1. Repeat:

a. For each (xi, yi) ∈ S, if sign(〈wt−1, xi〉) 6= yi, update

wt ← wt−1 + yixi

and increment t.

b. If no change in wt after sweeping through the data, terminate.

While epoch ≤ 1, ..,maxepochs.

The high level idea is that each time a training sample xi is mislabeled, we incrementally adjust the
current estimate of the separator, w, in the direction of xi to correct for it.

Analysis of the perceptron

We now discuss algorithm correctness and efficiency.

The per-iteration complexity of the algorithm is O(nd): we need to sweep through each of the n data
points xi, compute the d-dimensional dot-product 〈w, xi〉 and compare its sign with the true label.

The algorithm makes an update only when a training sample is mislabeled, and hence terminates only
when every point is labeled correctly. So it might seem that the number of iterations can be very large.
We will provide an upper bound for this.

For any given dataset and a separator w, define the margin as the minimum projection distance
between any data point to the hyperplane 〈w, x〉 = 0 i.e.,

γ = arg min
i∈1,...,n

|〈w, xi〉|.

23



The optimal separator is defined as the vector w∗ that maximizes γ over all valid separators. Without
loss of genelarity, assume that the Euclidean norm of w∗ is 1.

We prove that the perceptron will terminate after 1/γ2 updates.

First, consider the quantity 〈wt, w∗〉, i.e., the dot-product between the current estimate and the
optimal separator. If the label yi is positive, then 〈wt+1, w∗〉 = 〈wt + xi, w∗〉, which by linearity of
the dot-product is larger than 〈wt, w∗〉 by at least γ (by definition of the margin). The same result
holds if the label is negative; easy to check.

Therefore, after each update step, 〈w,w∗〉 increases by at least γ.

Next, consider the quantity ‖wt‖2 = 〈wt, wt〉. After each update, this quantity changes to

‖wt+1‖2 = 〈wt+1, wt+1〉
= 〈wt + xi, wt + xi〉
≤ ‖wt‖2 + ‖xi‖2

≤ ‖wt‖2 + 1,

since we have assumed that ‖xi‖ ≤ 1 for all i.

Putting the two together, we have, after T update steps:

〈wT , w∗〉 ≥ γT

and
‖wT ‖2 ≤ T → ‖wT ‖ ≤

√
T .

By the Cauchy Schwartz inequality and the fact that ‖w∗‖ = 1, we know that

〈wT , w∗〉 ≤ ‖wT ‖‖w∗‖ = ‖wT ‖.

Therefore,
γT ≤

√
T → T ≤ 1/γ2.
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Chapter 7

Kernel methods

The perceptron algorithm is simple and works well. However, it (provably) works only when the data
is linearly separable. If not, its performance can be poor.

Datasets in applications can be far more complicated. Consider the case of two dimensional data
(d = 2). We will consider a toy hypothetical example where the data corresponds to measurements
that you collect from a pair of sensors observing a system at various instants. The goal is to classify
the system state as properly functioning or not.

Two examples of non-separable acquired measurements for this application are as follows:

• XOR-distributed data: Let’s say that the system is properly functioning if both sensor readings
are consistent, i.e., they are both positive-valued, or both-negative valued. Therefore, the
“+”-labeled examples all lie in the first and third quadrants, while the “-”-labeled examples all
lie in the second and fourth quadrants. Here, the ideal classifier is given by:

y = sign(x1x2)

• Radially-distributed data: Let’s now say that the system is properly functioning if the Euclidean
norm of the sensor readings is smaller than some amount. Therefore, the “+” examples all lie
within a circle of radius R from the origin, and “-” examples lie outside this circle. Here, the
ideal classifier is given by

y = sign(x2
1 + x2

2 −R2)

In both cases, no linear separator of the form y = sign(w1x1 + w2x2 + b) can separate the two
classes. The perceptron algorithm would fail on such datasets.

The key idea in kernel methods is to map the given data to a different (typically, higher-dimensional)
feature space:

x→ φ(x)

using some nonlinear function φ(·).

For example, in the above two dimensional examples, suppose we transformed each data point into
six-dimensional space using the feature mapping:

x = (x1, x2)→ φ(x) = (1, x1, x2, x1x2, x
2
1, x

2
2).
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Then we find that in the new feature space, both the XOR and the circle examples are perfectly
separable. (Exercise: find a separating hyperplane for these two examples by explicitly writing out a
suitable w for each case.) If we ran the perceptron on these new examples, it would perfectly work.

The kernel trick

Two immediate questions are:

How to choose the feature mapping function φ?

This is tricky to answer, and is heavily dataset dependent. The short answer is to use all possible
features that you can think of. (The risk here is that you might overfit.)

For example, given the data vector (x1, x2, . . . , xd), common features include:

• the original features as is;

• a quadratic function of the features x2
1, x

2
2, . . . , x

2
d, x1x2, x2x3, . . . , xixj , . . .. These are par-

ticularly useful for classifying datasets which have circles, ellipses, parabolas, or other conic
surfaces as separating surfaces.

• any polynomial combination of the features xα1
1 xα2

2 . . . xαd

d , where αi ≥ 0 is an integer and∑r
i α

i ≤ r.

• nonlinear features of the co-ordinates, such as sin(xi), cos(xi), or any combinations of the
above.

• other domain specific features. For example, in image classification applications, the input
features correspond to pixel intensity values, and there are standard features (such as corners,
edges, etc) that can be computed from the input pixel intensities.

The process of mapping input feature vectors x into a higher-dimensional space φ(x) is known as
lifting. Lifting only increases separability if carefully designed. However, this leads to the second
question:

Is this procedure computationally efficient?

Even in simple cases, the computational complexity of lifting into a higher-dimensional space can
quickly become untenable. In the above sensor examples, we created 6 features from d = 2 features.
For general d-dimensional data, this number rises to 1 + 2d+

(
d
2

)
(the constant offset 1, the original

features, squares of the original features, and all pairwise combinations.) This is already O(d2), and
infeasible for d very large.

In general, if we wanted all degree r polynomial features, the dimension of the lifted feature space is
O(dr). How do we deal with such large feature spaces?

A particularly simple solution can be achieved via the kernel trick. The key is to realize that in
the higher-dimensional space, the only computations that we perform on the data is a bunch of
dot-products. (For example, in the perceptron algorithm we only need to check a bunch of times the
sign of 〈w, x〉) for different x.

Therefore, in most cases we do not need explicitly compute the features (however high-dimensional
they are); all we need is a mechanism to compute dot products. The kernel trick is merely the
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observation that for certain feature mappings, the dot-product in the feature space can be computed
efficiently.

Formally: given a feature mapping x→ φ(x), the kernel inner product of a pair of vectors is given
by:

K(x, z) = 〈φ(x), φ(z)〉

For certain feature mappings, the kernel inner product is efficiently computable. Consider the
quadratic kernel:

(x1, x2, . . . , xd)→ (1,
√

2x1, . . . ,
√

2xd, x
2
1, . . . , x

2
d, . . . ,

√
2xixj , . . .)

(The
√

2 factors are for convenience only and do not affect computation using perceptrons, etc. The
net result is that the corresponding co-ordinates of the learned w vectors will be scaled by 1/

√
2.)

The kernel inner product is:

K(x, z) = 1 + 2x1z1 + . . . 2xdzd + x2
1z

2
1 + . . . x2

dz
2
d + . . . 2xixjzizj + . . .

But one can check that this is equal to:

K(x, z) = (1 +

d∑
i=1

xizi)
2

= (1 + 〈x,w〉)2.

Therefore, even though the feature space is O(d2) dimensional, the kernel inner product can be
computed using O(d) operations.

Similarly, for polynomial features of degree r, one can compute the kernel inner product using the
formula:

K(x, z) = (c+ 〈x, z〉)r.

Essentially, the kernel inner product K(x, z) measures how similar x and z are in the lifted feature
space, just as how the standard inner product (dot product) 〈w, z〉 measures how similar x and z are
in the original space. Therefore, algorithmically, one can simply replace all occurrences of 〈,̇·〉 by
K(·, ·), and we are done!

We do not have to go through the intermediate, expensive step of writing down the transformation
φ(·). In other words, instead of choosing good feature spaces (specified by φ), we instead implicitly
seek feature spaces by looking for good kernel inner products (specified by K(·, ·)).

One example of a popular kernel inner product is given by the Gaussian radial basis function:

K(x, z) = exp(−‖x− z‖
2
2

σ2
)

where σ is the bandwidth parameter. This is an example of a kernel for which the implicit feature
mapping φ is infinite-dimensional, yet the kernel inner product is straightforward to compute and
requires O(d) time.
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Chapter 8

The kernel trick

Recall the main message of kernel methods: (i) if data is not linearly separable, one can make it
so by “lifting” into a (very) high dimensional space and creating several new nonlinear features;
(ii) however, this causes severe computational challenges; (iii) to resolve this, we use kernel inner
products K(x, z) (instead of standard inner products 〈x, z〉) wherever possible in order to perform
efficient computations.

This idea is surprisingly powerful, and can be useful in most machine learning algorithms that
primarily rely on inner products. The overall approach is sometimes call the kernel trick.

Choice of kernels

Choosing a “good” kernel for a given task can be a challenge. Not all functions K(·, ·) can be chosen
as kernels. The main criteria that we need to maintain are:

• Efficient computation: K(x, z) must be efficiently computable for any x, z.

• Symmetry: K(x, z) = K(z, x) for all x, z ∈ Rd.

• Dot product property: there exists a feature mapping φ such that K is equal to the dot product
in the feature space, i.e., K(x, z) = 〈φ(x), φ(z)〉.

The first two are fairly easy to verify; the last one is not. A result in applied linear algebra, known as
Mercer’s Theorem, states that a function K(·, ·) is a legitimate kernel if for any set of n data points
x1, x2, . . . , xn, the symmetric n× n matrix M formed using the formula:

Mi,j = K(xi, xj)

is positive-semidefinite; i.e., it has no negative eigenvalues.

However, this is not easy to check either since this has to hold for all subsets of n points in the data
space. Bottom line: be careful while choosing kernels.

Popular choices include quadratic kernels, polynomial kernels, and Gaussian RBF kernels (that we
discussed previously.) Each of these can be shown to be valid kernels using Mercer’s Theorem, and
each of them take O(d) time to compute for d-dimensional vectors.
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The kernel perceptron algorithm

Let us instantiate the kernel method for learning nonlinear separators using the perceptron algorithm.

Let us say that an oracle gives us the “right” kernel that implicitly maps the data into a higher-
dimensional feature space, x→ φ(x). We need to learn a separator w in this feature space.

Input: Training samples S = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Output: A vector w such that yi = sign(〈w, φ(xi)〉) for all (xi, yi) ∈ S.

0. Initialize w0 = 0.

1. Repeat:

a. For each (x, y) ∈ S, if sign(〈wt, φ(x))〉) 6= y, update

wt ← wt−1 + yφ(x).

b. If no change in wt after sweeping through the data, terminate.

While epoch ≤ 1, ..,maxepochs.

There is a catch here, though. The above algorithm involves computations with φ(xi); however, this
can be expensive.

We resolve this using two observations:

• At each time instant, the estimate wt is a linear combination of vectors φ(xi), where xi is
some list of training vectors. This is a consequence of line 1b in the algorithm, since that is the
way we constructed wt. Call this list L. Therefore,

wt =
∑
i∈L

αiφ(xi).

The αi can be positive or negative, depending on how many times the data point xi in the list
has appeared in one of the updates to w, and what its label is.

• Therefore, while checking for consistency of the sign in Line 1a, the dot product with φ(x) can
be evaluated as follows:

〈wt, φ(x)〉 = 〈
∑
i∈L

αiφ(xi), φ(x)〉

=
∑
i∈L

αi〈φ(xi), φ(x)〉

=
∑
i∈L

αiK(xi, x).

Therefore, the dot product in Line 1a can be replaced by the kernel inner product.

The above two observations tell us that there is no need to ever compute φ(x) explicitly; instead, we
just store the list of data points whose linear combination synthesizes wt at each time instant, update
this list as necessary, and test for consistency by using the kernel trick.

The running time of the kernel perceptron, therefore, is similar to that of the original perceptron
– O(nd) – assuming that (i) computing the kernel inner product K(·, ·) is as easy as computing
standard inner products, and (ii) the margin γ does not change much.
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Multilayer networks

Kernels provide one approach to resolve the nonlinear separability problem in realistic datasets. There
is a second way (in fact, which predate kernels).

Ignore kernels for a moment. We know that a single perceptron provides a single (linear separator,
i.e., divides any given feature space into two half-spaces. For any given input data point, testing
with w indicates which class the point belongs to. The decision boundary between the classes is a
hyperplane.

Suppose that we now consider the output of two perceptrons acting on the same data. Therefore, for a
given input x, we have outputs:

y(1) = sign(〈w(1), x〉),
y(2) = sign(〈w(2), x〉).

Now imagine a third perceptron w3 that combines (pools) these outputs, i.e.,

y = sign(w
(3)
1 y(1) + w

(3)
2 y(2)).

Clearly, y is a nonlinear function of the input x. If we start drawing decision boundaries checking
which x gave rise to positive y, and which ones gave rise to negative y, then the boundaries are
extremely nonlinear depending on w(1), w(2), w(3).

Three extensions to this basic idea:

• Why stop at two perceptrons w(1), w(2)? We can imagine any number of such “first-level”
perceptrons.

• Why stop at a single pooling perceptron? We can imagine multiple such pooling combinations,
corresponding to different outputs. We can call this set of perceptrons the “output layer”, and
the set of first-level perceptrons the “hidden layer”.

• Lastly, why stop at a single hidden layer? We can repeat this idea several times, creating several
hidden layers of perceptrons; each layer combining the outputs of the previous layer, as well
as serving as inputs to the next. One can show that using a sufficient number of such hidden
layers, one can reproduce any nonlinear separating surface.

A nice visualization of this idea can be found here.

http://playground.tensorflow.org

Try varying the number of perceptrons, hidden layers, etc for the various datasets (using the original
feature space). Now try the same using kernels, and see what happens. Are there any benefits in
using combinations of both?

Aside

The idea behind multi-layer perceptron-based classification methods is biologically inspired. A
perceptron (at least functionally) behaves like a single neuron. At a very basic systems level, A
neuron can be modeled as a bunch of dendrites (corresponding to input features), weights associated
with each dendrite, and an axon (corresponding to the output). If an input “matches” the weights of
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the neuron (i.e., the inner product is high) then the output is going to be high; else, it is going to be
low. Learning the weights of the perceptron is akin to training the neuron according to how it reacts
to most inputs.

A multi-layer network is a generalization of this idea, reflecting the fact that nervous systems (and
brains) are not composed of isolated neurons, but rather consists of millions (or billions, or hundreds
of billions) of neurons stacked together.

Of course, while all this conceptually makes some sense, the elephant in the room is how we can
algorithmically learn the individual perceptrons. We won’t discuss this in much more detail right now
– that can be the focus of an entire course altogether – but later we will discuss some basic building
blocks that constitute these learning techniques.

To an extent, this question of learning neural networks is as yet an unanswered mystery. The crisp
algorithms and analysis that we provided for perceptron learning is absent for this more general
problem, except for certain restrictive results.

The entire field of neural network learning attempts to provide answers to these questions. It began
as a collection of biologically-inspired heuristic algorithms, and largely remains so. More currently,
the advent of deep learning has shown that in fact despite the lack of methods can be used to give
excellent results in a wide variety of engineering applications.
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Chapter 9

Support Vector Machines

The issue with the classifiers that we have discussed so far – both with linear and nonlinear separators,
with or without kernelization – is that they are brittle, and do not always provide robust separators.

For example, if the data is separable, the perceptron returns a separator (one among the infinitely
many separators that exist.) How can we get the best separator?

To answer this question, we pose the perceptron as an optimization problem. Suppose the (training)
data D = {(xi, yi)}ni=1 is separable via a separating hyperplane (specified by w) that passes through
the origin. The only condition is that yi = sign(〈w, xi〉).

Therefore, the perceptron can be interpreted as solving a feasible solution to the problem:

Find w

s.t. yi〈w, xi〉 ≥ 0, i = 1, . . . , n.

(Above and henceforth, “s.t.” is short for “subject to constraints”).

However, recall that the margin of the separator is given by

γ = min
i
|〈w, xi〉| = min yi〈w, xi〉,

when the separator w is constrained to have unit Euclidean norm (‖w‖ = 1). The parameter γ
represents a lower bound on the projection distance of each point to the separator. In other words,
there is a “dead zone” of width γ around the optimal separator in which no data point can be present.

We would like this “dead zone” to be as large as possible. Therefore, to obtain the perceptron with
the highest possible margin, we solve the optimization problem:

w∗ = arg max
w,γ

γ

s.t. yi〈w, xi〉 ≥ γ, i = 1, . . . , n,

‖w‖ = 1.

Without going too deep into optimization theory, we note that the above problem is somewhat
challenging. The objective function as well as the n data constraints are linear functions in the
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variables w, γ, and linear functions are generally considered to be friendly for optimization purposes.
The problem arises with the Euclidean norm constraint ‖w‖ = 1, which happens to be non-convex.
Non-convex optimization problems are not easy to solve.

We resolve this issue as below using a simple change of variables. Let us write w̄ = w/γ. Then,
‖w̄‖ = 1/γ, and maximizing γ is the same as minimizing ‖w̄‖, or equivalently, minimizing 1

2‖w̄‖
2.

Therefore, we can drop the unit norm constraint, and rewrite the above optimization problem as:

w∗ = arg min
w̄

1

2
‖w̄‖2

s.t. yi〈w̄, xi〉 ≥ 1, i = 1, . . . , n.

For simplicity of notation, we will just replace w̄ by w as the variable in the optimization problem.

The solution is called the support vector machine (SVM), and the above problem is called the primal
SVM problem. The reason for this name will be explained below when we discuss duality.

The primal SVM problem is an optimization problem with n linear constraints and a quadratic
objective function in d variables. This is an example of a convex optimization problem. Specifically,
such problems are called quadratic programs (QP) and the specific form can be solved fairly efficiently
using QP solvers. We won’t go too much further into the precise details of how to solve a QP – but
the best running time is given by:

min(O(nd2), O(nd2)).

SVMs and dual interpretation

The origin of the name “support vectors” is a bit involved. If you are not interested in some gory
optimization details, skip ahead to the end of this section; if you are, then read on.

Let us step back a bit and consider a more general optimization problem with d-dimensional variables
and n inequality constraints.

min
x
f(x)

s.t. gi(x) ≥ 0.

We will call this the primal problem, or P for short, and denote its optimum as xP .

Define a vector α ∈ Rn. The Lagrangean of this problem is defined as the new function:

L(x, α) = f(x) +

n∑
i=1

αigi(x).

The αi’s are called the Lagrangean multipliers.

The quantity
F (x) = max

αi≤0
L(x, α)

is a function of x. Observe if that if x violates any one of the i primal constraints in P , then gi(x) is
negative, and by choosing the corresponding αi as an arbitrary large negative number, F (x) can be
made arbitrarily large. On the other hand, if x satisfies all the primal constraints, the value of gi(x)
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is non-negative; hence, the maximum value of L(x, α) is obtained by setting all the αi to zero and
F (x) = f(x).

Therefore, the optimal value of P can be re-written as:

min
x

max
αi≤0

L(x, α)

Now, consider a slightly different operation on L, except that the “min” and “max” have been
interchanged; first, we minimize L(x, α) over x:

G(α) = min
x
L(x, α)

and then maximize with respect to α, with the constraints that αi ≤ 0:

max
α

G(α)

s.t. αi ≤ 0.

Call the above problem the dual problem, or D for short, and denote its optimum as αD. Therefore,
we basically solve the optimization problem:

max
αi≤0

min
x
L(x, α).

By flipping the order of the “min” and “max”, a natural question is whether the optimal answers will
be same or different. However, two important results can be proved:

• Result 1: a property called Slater’s condition asserts that for usual convex functions f and
g, strong duality holds, i.e., the x (and corresponding α) obtained by the two procedures are
indeed the same.

• Result 2: another property called complementary slackness says that the optimal multipliers αi
will be non-zero only if the corresponding constraints gi(x) hold with equality at the optimum,
i.e., gi(xP ) = 0.

Again, we won’t go into details of why the above are true; take a convex optimization class if you are
interested to learn more.

How does all this connect to SVMs?

Observe that the primal SVM problem is an instance of P . Let us write out the Lagrangean:

L(w,α) =
1

2
‖w‖22 +

n∑
i=1

αi(yi〈w, xi〉 − 1).

Now, let us construct the dual. The inner “min” optimization can be solved by taking the derivative
of L with respect to w and setting to zero. We get:

∇wL(w∗, α) = 0, i.e.,

w∗ +

n∑
i=1

αiyixi = 0, or

w∗ = −
n∑
i=1

αiyixi.
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The overall optimization is completed by figuring out the solution to the dual problem, which is given
by plugging in this value of w∗ into L and maximizing over non-positive α. After a bit of algebra,
we can simplify this to:

max
α

−
n∑
i=1

αi +

n∑
i,j=1

yiyjαiαj〈xi, xj〉

s.t. αi ≤ 0, i = 1, 2, . . . , n.

This problem is called the dual SVM problem. Again, similar to the primal SVM, the objective
function is a quadratic function of the dual variables α, while the constraints are linear functions of α.

The above insights let us make the following observations:

The optimal separating hyperplane w is a linear combination of the data points xi,
weighted by the labels yi and the corresponding dual variables.

and:

Due to Result 2, the values of αi are only non-zero if the corresponding data points xi
exactly achieve the margin, i.e., they are the ones closest to the decision boundary.

Therefore, the data points which induce non-zero dual multipliers αi are the ones which influence the
final separating hyperplane, and are called the support vectors. This is in fact the origin of the term
“support vector machine”.

Therefore, to perform a classification on a new, unseen data point x, we only need to store the set of
support vectors, S, i.e., the non-zero αi and the corresponding xi. The predicted label of x is:

y = sign

(∑
i∈S

αi〈x, xi〉

)
.

Extensions

The convex optimization frameworks of the SVM (both the primal and the dual) leads to two
interesting extensions:

1. The dual problem only involves inner products 〈xi, xj〉 between data points. This naturally
motivates a kernel version of SVM by replacing the standard inner product with a kernel inner
product K(·, ·):

max
α
−

n∑
i=1

αi +

n∑
i,j=1

yiyjαiαjK(xi, xj),

s.t. αi ≤ 0, i = 1, 2, . . . , n.

Kernel SVMs are the robust analogue of kernel perceptrons, and depending on the choice of
kernel used, can handle more complicated nonlinear decision boundaries. The corresponding
prediction can be perfomed, similarly as above, by only using the support vectors:

y = sign

(∑
i∈S

αiK(x, xi)

)
.
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2. Suppose the data is close to linearly separable, except for some errors and outliers. For such
problems, we consider a relaxed version of the primal SVM problem:

min
w,s

1

2
‖w‖2 + λ

n∑
i=1

si

s.t. yi〈w, xi〉 ≥ 1− si,
si ≥ 0.

The variables {si} are called slack variables, and a non-zero value of si implies that xi violates
the margin condition, i.e., it is allowed to cross over into the “dead zone” (or even the decision
boundary). Of course, we don’t want too many such points to violate the margin, so we penalize
the sum of the si’s in the objective function. Here, λ is a user-defined weight parameter that
trades between the violating data points and the final margin. This formulation is called the soft-
margin primal SVM, and the original one (without slack variables) is called the hard-margin
primal SVM.
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Chapter 10

Regression

Classification is a special case of a more general class of problems known as regression.

As before, we have training data points {(x1, y1), (x2, y2), . . . , (xn, yn)} and there is some (un-
known) functional relationship between xi and yi – except now, the label yi can be any real number.
(In classification, the labels were assumed to be ±1). The goal in regression is to discover a function
f such that yi ≈ f(xi).

In the simplest case, we assume a linear model on the function (i.e., the value yi is a linear function
of the features xi). In this case, the functional form is given by:

yi ≈ 〈w, xi〉, i = 1, . . . , n.

where w ∈ Rd is a vector containing the regression coefficients. We need to figure out w from the
data. Linear models are simple, powerful, and widely used.

Solving linear regression

The typical way to solve regression problems is to first define a suitable loss function with respect to
the model parameters, and then discover the model that minimizes the loss. A model with zero loss
can perfectly predict the training data; a model with high loss is considered to be poor.

The most common loss function is the least-squares loss:

L(f) =
1

2

n∑
i=1

(yi − f(xi))
2

For linear models, this reduces to L(w) = 1
2 (y − 〈w, x〉2. For conciseness, we write this as:

L(w) =
1

2
‖y −Xw‖2

the norm above denotes the Euclidean norm, y = (y1, . . . , yn)T is an n× 1 vector containing the y’s
and X = (xT1 ; . . . ;xTn ) is an n× d matrix containing the x’s, sometimes called the “design matrix”.
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The gradient of L(W ) is given by:

∇L(w) = −XT (y −Xw).

The above function L(w) is a convex (in fact, quadratic) function of w. The value of w that minimizes
this (say, w∗) can be obtained by setting the gradient of L(w) to zero and solving for w:

∇L(w) = 0,

−XT (y −Xw) = 0,

XTXw = XT y, or

w = (XTX)−1XT y.

The above represents a set of d linear equations in d variables, and are called the normal equations. If
XTX is invertible (i.e., it is full-rank) then the solution to this set of equations is given by:

w∗ =
(
XTX

)−1
XT y.

If n ≥ d then one can generally (but not always) expect it to be full rank; if n < d, this is not the
case and the problem is under-determined.

Computing XTX takes O(dn2) time, and inverting it takes O(d3) time. So, in the worst case
(assuming n > d), we have a running time of O(nd2), which can be problematic for large n and d.

Gradient descent

We discuss a different way to solve for the optimal model without inverting a system of linear
equations using gradient descent. This is a very useful primitive in all types of prediction problems
beyond linear regression.

If we want to minimize any function, a canonical way to do it is to start at a given estimate, and
iteratively move to new points with lower functional value.

Similarly, the idea in gradient descent is to start at some estimate wk, and iteratively adjust it by
moving in the direction opposite to the gradient of the loss function at wk, i.e.,

wk+1 = wk − αk∇L(wk).

The parameter αk is called the step size, and controls how far we descend along the gradient. (The
step size can be either constant, or vary across different iterations). If we have reached the optimal
value of w then∇F (w) = 0 and there will be no further progress.

For the least-squares loss function, we have:

wk+1 = wk + αkX
T (y −Xwk)

= wk + αk

n∑
i=1

(yk − 〈wk, xi〉)xi.
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It is known that gradient descent will converge eventually to a (local) minimizer of L; moreover, if L
is nicely behaved (e.g. if it is convex), then it will in fact converge to a global minimizer. For the
least-squares loss, this is indeed the case.

Observe that the per-iteration computational cost is O(nd), which can be several orders of magnitude
lower than O(nd2) for large datasets. However, to precisely analyze running time, we also need to
get an estimate on the total number of iterations that yields a good solution.

There is also the issue of step-size: what is the “right” value of ak? And how do we choose it?

Analysis

Some facts from linear algebra (stated without proof):

• A n× n matrix A is said to have an eigenvalue λ (in general, a complex number) if there is a
vector v ∈ Rn such that Av = λv.

• A n × n symmetric matrix A has n real-valued eigenvalues. They can be either positive or
negative, and lie in some interval of the real line (l, L).

• IfA is of the formXTX , then all eigenvalues ofA are non-negative andA is said to be positive
semi-definite (psd).

• The eigenvalue of A that has maximum absolute value (say L) satisfies the relation:

‖Ax‖2 ≤ |L|‖x‖

for all x ∈ Rn.

• If l and L are the minimum and maximum eigenvalues of a symmetric matrix A, then the
eigenvalues of the matrix I − αA lie between 1− αL and 1− αl.

• As a consequence of the above two facts, for any matrix A and any vector x, we have:

‖(I − αA)x‖2 ≤ max(|1− αl|, |1− αL|)‖x‖2

Let us call this Fact 1.

We now can analyze gradient descent for the least squares loss function. From the definition of
gradient, we know that for any two estimates w1 and w2:

∇L(w1)−∇L(w2) = XTX(w1 − w2).

Let all norms below denote the Euclidean norm. Suppose that the optimal w is denoted as w∗; by
definition, the gradient vanishes here and ∇L(w∗) = 0. Suppose l and L are the minimum and
maximum eigenvalues of XTX . Since XTX is psd, they both are non-negative.
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Then, consider the estimation error at iteration k + 1:

‖wk+1 − w∗‖ = ‖wk − αk∇L(wk)− w∗‖
= ‖wk − w∗ − αkL(wk)‖
= ‖wk − w∗ − αk(L(wk)− L(w∗))‖ (definition of w∗)

= ‖wk − w∗ − αk(XTX(wk − w∗))‖
= ‖(I − αkXTX)(wk − w∗)‖ (Fact 1)

‖wk+1 − w∗‖ ≤ max(|1− αkl|, |1− αkL|)‖wk − w∗‖.

The above inequality is nice, since it tells us that the error at iteration k + 1 is at most ρ times the
error at iteration k, where:

ρ = max(|1− αkl|, |1− αkL|).

If ρ < 1, the estimate will converge exponentially to the optimum. The smaller ρ is, the faster the
rate of convergence. We now choose αk to make the above quantity to be as small as possible, and
simple calculus gives us the value to be:

αk =
2

L+ l

and the convergence property becomes:

‖wk+1 − w∗‖ ≤
L− l
L+ l

‖wk − w∗‖.

By induction on k, we can conclude that:

‖wk+1 − w∗‖ ≤
(
L− l
L+ l

)k
‖w1 − w∗‖ = ρk‖w1 − w∗‖.

We can initialize with w1 = 0 (or really, anything else) – either way, the error decreases exponentially
in k. In other words, only a logarithmic number of iterations are required to make the estimation
error smaller than some desired target.

So, takeaway points:

1. Gradient descent converges very quickly to the right answer

2. provided the step size is chosen correctly; more precisely

3. the “right” step size is 2/(L+ l) where L and l are the biggest and smallest eigenvalues of the
design matrix XTX .

4. In practice, one just chooses the step size by hand. In general it shouldn’t matter very much as
long as it isn’t too large (and makes ρ bigger than 1); in this case, the answer will diverge.

5. Provided convergence occurs, the number of iterations required to push the estimation error
below some desired parameter ε is given by:

T = log1/ρ

(
‖w∗‖2
ε

)
.

which can be much smaller than either n or d, depending on how small we set ε.
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Chapter 11

Regression (contd)

We will discuss two extensions of gradient descent.

Stochastic gradient descent

One issue with gradient descent is the uncomfortable fact that one needs to compute the gradient.
Recall that the gradient descent iteration for the least squares loss is given by:

wk+1 = wk + αk

n∑
i=1

(yi − 〈wk, xi〉)xi

So, per iteration:

• One needs to compute the d-dimensional dot products

• by sweeping through each one of the n data points in the training data set.

So the running time is Ω(nd) at the very least. This is OK for datasets that can fit into memory.
However, for extremely large datasets, not all the data is in memory, and even computing the gradient
once can be a challenge.

A very popular alternative to gradient descent is stochastic gradient descent (SGD for short). This
method is picking up in popularity since dataset sizes have exponentially grown in the last few years.

The idea in SGD is simple: instead of computing the full gradient involving all the data points, we
approximate it using a random subset, S, of data points as follows:

wk+1 = wk + α′k
∑
i∈S

(yi − 〈wk, xi〉)xi.

The core idea is that the full gradient can be viewed as a weighted average of the training data points
(where the ith weight is given by yi − 〈wk, xi〉), and therefore one can approximate this average by
only considering the average of a random subset of the data points.
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The interesting part of SGD is that one can take this idea to the extreme, and use a single random data
point to approximate the whole gradient! This is obviously a very coarse, erroneous approximation of
the gradient, but provided we sweep through the data enough number of times the errors will cancel
themselves out and eventually we will arrive at the right answer.

Here is the full SGD algorithm.

Input: Training samples S = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Output: A vector w such that yi ≈ 〈w, xi〉 for all (xi, yi) ∈ S.

0. Initialize w0 = 0.

1. Repeat:

a. Choose i ∈ [1, n] uniformly at random, and select (xi, yi).

b. Update:
wk+1 ← wk + αk(yi − 〈wk, xi〉)xi

and increment k.

While epoch ≤ 1, ..,maxepochs.

The algorithm looks similar (structurally) to that of the perceptron. That is because the perceptron
is essentially an SGD algorithm! (In the textbook, there is more details about precisely what loss
function the perceptron is trying to minimize.)

We won’t analyze SGD (bit messy) but will note that the step-size cannot be constant across all
iterations (as in full GD). A good choice of decaying step size is the hyperbolic function:

αk = C/k.

One can see that the per-iteration cost of SGD is only O(d) (assuming that the random selection
can be done in unit-time). However, there is a commensurate increase in the number of iterations;
suppose that after T iterations, the error drops to ε:

‖wT − w∗‖ ≤ ε.

Then an upper bound on T is given by O(1/ε).

In comparison with GD (running time of O(nd log(1/ε)), SGD seems quite a bit faster O(d/ε);
however, if we want ε to be very close to zero (i.e., we seek the best possible model for the data) then
the opposite is true.

Of course, keep in mind that obtaining the best possible model fit may not be the best thing to do,
since the model could be over-fitted to the training data. So there are both computational as well as
statistical reasons why you might want to choose SGD for regression problems.

SGD is very popular, and lots of variants have been proposed. The so-called “mini-batch” SGD trades
off between the coarseness/speed of the gradient update in SGD versus the accuracy/slowness of the
gradient update in full GD by taking small batches of training samples and computing the gradient
on these samples. Other variants include Stochastic Average Gradients (SAG), Stochastic Mirror
Descent (SMD), Stochastic Variance Reduced Gradients (SVRG) etc.
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Logistic regression

We will now use regression algorithms to solve classification problems. Classification can be viewed
as a special case of regression where the predicted values are binary class labels – {±1} (or {0, 1}).
Indeed, one can solve classification in this manner by simply fitting linear (or nonlinear) regression
models to the data points, and rounding off the predicted value to the closest label.

However, this is not conceptually very satisfying. Suppose we develop a linear model w (using
regression) for a classification problem, and for a new data point x, we obtain a predicted value of
y = 〈w, x〉 = −18950. Do we round this to -1 or 1? (They are both basically the same distance away
from y.)

The way to resolve this issue is as follows. Instead of finding a model f such that:

yi = f(xi),

we will instead find a model f such that:

P (yi = 1|xi) = f(xi).

Here, P (yi = 1|xi) is the probability that the label of yi is 1 given that the data point is x.

In a binary classification problem, the probability that the label of yi is 0 is given by:

P (yi = 0|xi) = 1− f(xi).

The two equations can be combined into one by using the general expression:

P (yi|xi) = (f(xi))
yi (1− f(xi))

1−yi .

The above expression is also called the likelihood of yi given xi.

Given n independent data points, the likelihoods will multiply. Therefore, the likelihood of a set of n
labels, y ∈ {±1}n, given a set of data points x1, x2, . . . , xn is given by:

P (y|X) =

n∏
i=1

(f(xi))
yi (1− f(xi))

1−yi .

Instead of products, it is easier to calculate sums – so we take logarithms on both sides. The (negative)
log-likelihood is given by:

L(f) = −
n∑
i=1

yi log f(xi) + (1− yi) log(1− f(xi)).

The goal is to find the model f that minimizes the negative log likelihood (NLL) of the observed data.

A popular choice for f is the logistic function, where the probability function f is chosen as:

f(x) =
1

1 + e−〈w,x〉
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The function σ(z) = 1/(1+e−z) is an S-shaped function called the sigmoid, and the logistic function
is its multidimensional extension. Plugging this into the NLL function, we get:

L(w) =

n∑
i=1

li(w),

where

li(w) = −
(
yi log

1

1 + e−〈w,xi〉
+ (1− yi) log

e−〈w,xi〉

1 + e−〈w,xi〉

)
.

Solving logistic regression using GD

Despite its non-intuitive structure, the logistic function was carefully chosen; the sigmoid function
satisfies the identity:

1− σ(z) = σ(−z).

Moreover, the derivative of σ(z) is:
σ(z)(1− σ(z)).

Using the two facts (and some calculus), one can derive the gradient update rule as:

wk+1 = wk + α

n∑
i=1

(yi −
1

1 + e−〈w,xi〉
)xi,

which, again, is remarkably similar to the update rules for linear regression as well as perceptron.
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Chapter 12

Singular Value Decomposition

We will develop a third (and better) way to solve linear regression problems using the Singular Value
Decomposition. This is a very powerful numerical method that is useful for all sorts of data analysis
problems, including data visualization and compression (which we will discuss next class).

Arrange the data points as the n× d matrix X = [xT1 ;xT2 ; . . . xTn ]. Let r be the rank of this matrix.
In general, r can be as large as min(n, d).

Then, one can show that X can be written as:

X =

r∑
i=1

σiuiv
T
i

= UΣV T ,

where U = [u1, u2, . . . , ur] is an n× r matrix, Σ = diag(σ1, σ2, . . . , σr) is a diagonal r× r matrix,
and V = [v1, v2, . . . , vr] is a d× r matrix.

Moreover, the factors U,Σ, V possess the following properties:

1. U and V are orthonormal. The columns of U , ui ∈ Rn are of unit norm and are pairwise
orthogonal: ‖ui‖2 = 1 and 〈ui, uj〉 = 0 for i 6= j. The vectors ui are called the left singular
vectors of X .

2. Similarly, the columns of V , vi ∈ Rd (alternately, the rows of V T ) also are unit norm and
pairwise orthogonal: ‖vi‖2 = 1 and 〈vi, vj〉 = 0 for i 6= j, The vectors vi are called the right
singular vectors of X .

The above conditions imply that $UˆT U = V TV = Ir×r, where Ir×r is the identity matrix with r
rows and columns.

4. Σ is diagonal, and the diagonal elements are all positive. These are called the singular values
of X . It is typical to arrange the singular values in decreasing order:

σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

Any matrix X can be factorized according to the above specifications. This is called the singular
value decomposition (or SVD) of X .
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The above definition is sometimes called the “skinny SVD”. Other times, (assuming n > d), one fills
out additional singular values σr, σr+1, . . . , σn that are equal to zero, and additional corresponding
right and left singular vectors, so that the expression for X becomes X =

∑n
i=1 σiuiv

T
i . This is

called the “full” SVD. But it should be clear that there is no effect of the extra zero terms. There are
several other equivalent definitions.

It is interesting (although not too hard to show using linear algebra) that any real-valued matrix can be
decomposed into 3 factors having the exact structure as described above. It is even more interesting
that there exist efficient algorithms to find these factors. But we will hold off on algorithms for a bit
and discuss why the SVD is important.

Properties of the SVD

Two key properties of the SVD are as follows:

1. If A = UΣV T is a square matrix (n = d) and full-rank, then its inverse is given by: A−1 =
V Σ−1UT .

2. (Best rank-k approximation.) Given a matrix X = UΣV T , the best rank-k approximation of
X:

Xk = arg min
B
‖B −X‖2F , rank(B) = k,

i.e, the rank-k matrix Xk that is closest to X in terms of the Frobenius norm is given by:

Xk =

k∑
i=1

σiuiv
T
i .

3. The ith right singular vector vi is the ith eigenvector of XTX; precisely, one can show that
XTXvi = σ2vi.

Again, the above facts are not too hard to prove (see Chap 3 of the textbook).

The second property offers a natural mechanism to compress a set of data points. Instead of storing
the data in terms of an n × d matrix (nd numbers total), one can instead simply store the vectors
[u1, . . . , uk], v1, . . . , vk and σ1 (nk + dk + k numbers total). For k � n, d this can be significant;
moreover, one is guaranteed that the reconstructed data Xk using these vectors is the best possible
representation in terms of the Frobenius norm.

Here, we are leveraging the fact that the singular values are arranged in decreasing order. The first
singular value (and corresponding right and left singular vectors) u1, σ1, v1 are the most important
components of the data; followed by u2, σ2, v2; and so on. Including more components into the
expression for Xk gets closer to the data, and therefore the parameter k controls the tradeoff between
the size of the representation versus reconstruction error.

Solving linear regression

The first property gives us a closed-form expression for solving linear regression.

46



Recall that that the expression for the optimal linear regressor (assuming that n > d and XTX is
full-rank) is given by:

wopt = (XTX)−1XT y.

However, XTX = V ΣTUTUΣV T = V Σ2V T , and XT = V ΣUT . Simplifying, we get:

wopt = V Σ−1UT y.

Why would this for be beneficial over explicitly computing the inverse of XTX and multiplying?
Primarily, the inverse could be poorly conditioned, whereas computing the SVD is (usually, depending
on the method used) numerically stable.

The power method

There are various algorithms of computing the SVD, all of which take cubic (min(O(nd, nd2))
running time. This is cubic since it is a degree-3 polynomial in the parameters n and d. Not too
efficient if n and d are large.

However, for several applications we will only be interested in obtaining the first few singular vectors
and singular values of the matrix. For such situations, a quick (and algorithmically efficient) way to
approximate the SVD is via the third property listed above. The first right singular vector v1 satisfies
the invariant:

XTTv1 = αv1.

Therefore, repeatedly multiplying v1 by XTX shouldn’t change the value. This intuition is leveraged
in the so-called Power method for computing the SVD.

Input: Data X = {x1, . . . , xn}

Output: Top singular vectors and values (u1, v1, σ1)

0. Initialize z0 = 0, t = 0

1. Repeat until convergence:

a.
zt+1 = XTXz

b.
v1 = zt+1/‖zt+1‖2.

c.
σ1 = ‖Xvt+1‖, u1 = Xv1/σ1

d. Increment t.

The running time of the above algorithm can be analyzed as follows:

• per-iteration, the main cost is multiplying with the matrices X and XT ; this can be done in
(nd) time. For sparse data matrices, i.e., matrices with lots of zeros in them, this can further
be sped up. This is one of the main reasons the power method is so widely used.
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• the total number of iterations can be upper bounded by log(nd) σ1

σ1−σ2
, i.e., inversely propor-

tional to the gap between the first and second singular values. Provided this gap isn’t too large,
the power-method

The power method described above returns the top singular vectors and value. Likewise, the top-k
singular vectors and values can be obtained using a similar technique known as the block power
method. Several other efficient SVD algorithms (with various properties) are also known, and fast
SVD methods are an active ongoing area of research in the algorithms community.
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Chapter 13

Nonnegative matrix factorization
(NMF)

PCA is well-established and some version of PCA has been around for close to a century now.
However, there are several other techniques for exploratory data analysis with all kinds of acronyms -
CCA, LDA, NMF, DL, etc - which we won’t cover in great detail here. But let us give one example.

One drawback of PCA is that the principal directions and/or scores are not particularly interpretable.
Imagine, for example, computing the principal components of a collection of images. Image data are
typically positive-valued data since they represent light intensity values. If we interpret the principal
directions, i.e., the right singular vectors of the data matrix:

X =
∑
i

σuiv
T
i

as “building blocks” of the data, then each data point (image) can be viewed as a synthesis of some
combination of these principal directions.

However, singular vectors are orthogonal by definition, and therefore all their coordinates cannot be
all nonnegative. In other words, we are trying to represent positive-valued data (images) in terms of
building blocks that are not necessarily image-like.

A different type of decomposition

Let us focus on positive-valued data. Instead of the SVD, we will attempt to factorize any given data
matrix as:

X = WH

where W is a n× r coefficient matrix and H is an r × d basis matrix. The restriction that we will
impose is that H (and consequently, W ) are both positive-valued. If this is possible, then such a
factorization is called nonnegative matrix factorization (NMF).

(Aside: There are several types of matrix factorization techniques – beyond SVD/eigenvalue decom-
position and NMF – that impose various types of assumptions on the factors.)
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In general, computing the NMF of a matrix is hard (unlike computing the SVD, which supports
efficient algorithms). In fact, polynomial-time algorithms are known only when the data matrix
satisfies certain restrictive conditions, and the majority of NMF methods are heuristic. However, the
methods work fairly well, and the net advantage is that the basis elements (rows of H) are (typically)
more interpretable.

We describe a heuristic method to perform NMF. Given a data matrix X and a rank parameter r, we
will (try to) solve the optimization problem:

min
W,H
‖X −WH‖2

s.t. W ≥ 0, H ≥ 0.

where W ∈ Rn×r and H ∈ Rr×d.

The positivity constraints on W and H are convex. Convex constraints are typically easy to handle.
The difficulty lies in the objective function: it is bilinear in the variables W and H , and therefore is
non-convex overall.
In order to (try to) solve the problem, we will adopt a technique known as alternating minimization.

The basic idea is that conditioned on one of the variables, the optimization problem becomes convex
in the other variable, and can be solved using techniques such as gradient descent. For example, at
the kth estimate, if we fix W = Wk, then the problem of estimating H reduces to:

min
H
‖X −WkH‖2

s.t. H ≥ 0.

This subproblem can be solved using projected gradient descent. Repeat the following update step
until convergence:

H ← P+(H − ηWT
k (X −WkH)).

In words, the algorithm proceeds by descending along the the gradient of the objective function,
followed by projecting onto the set of positive matrices (i.e., set all the negative entries of the matrix
to 0.) Eventually, we get an estimate of H which we will call Hk+1.

Now, if we fix H = Hk+1, the problem of estimating W reduces to:

min
W
‖X −WHk‖2

s.t. W ≥ 0.

To solve this subproblem, repeat until convergence:

W ← P+(W − η′(X −WHk)HT ).

Eventually, we will converge to an estimate that we denote as Wk+1. We use this to obtain Hk+2 and
so on. Alternate between the two subproblems sufficiently many times.

There is no guarantee that this will produce the global optimum of the bilinear optimization problem
(and it is often the case that it will get stuck at a local optimum.)

The per-iteration cost of each subproblem in the above algorithm is dominated by the process of
multiplying an n× d matrix with a d× r or with an r × n matrix, which incurs a running time of
O(ndr). However, analyzing the number of iterations is incredibly challenging.
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Connections with clustering

There are some subtle connections between NMF and clustering algorithms. Suppose that we try
to solve the above problem, but also constrain the rows of W to be indicator vectors (i.e., zeros
everywhere except a single nonzero entry that is equal to 1.) Then, the product WH is nothing but
the basis vectors in H listed in some order with possible duplicates, and the objective function:

‖X −WH‖2

measures the (cumulative) error between the data points and the corresponding basis vectors.

For this special situation, finding the NMF solution is the same as finding a set of r representative
vectors in the data space (H), and the corresponding mapping between each data point to one of these
representatives (W ). We call this special problem k-means clustering, and will discuss it in detail
later.

Applications

NMF has been used in several applications, including:

• Face images: Given a collection of centered face images, NMF gives a “parts”-based decompo-
sition of each image, where the basis vectors (semantically) correspond to different portions of
a human face.

• Topic models: Given a dataset of n documents (represented by d-dimensional TF-IDF features),
NMF produces a topic model for each document. The idea is that if we decompose the document
matrix X as:

X = WH

then each document is a linear combination of a small number of topics, represented in TF-IDF
format as the rows of H . This is a natural interpretation, since any given document only
consists of a small number of semantically meaningful “topics”. A short demo of this idea
is given as a Python example at: https://medium.com/towards-data-science/improving-the-
interpretation-of-topic-models.
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Chapter 14

Clustering

We will move onto a different type of unsupervised learning problem known as clustering.

The high-level goal in clustering is as follows: given a set of unlabeled data points belonging to two
or more classes, can we automatically figure out the class labels? Imagine, for example, an unordered
set of senator voting records, and automatically trying to figure out the party identities from their
voting records alone.

Clustering algorithms are numerous and widely studied. We will study a couple of representative and
popular methods.

k-means

Below, ‖ · ‖ denotes the Euclidean norm.

Suppose we are given a set of data points X = {x1, x2, . . . , xn}. We are also given an integer
parameter k > 1. Our aim is to produce a partition of the data, i.e., disjoint subsets (called clusters)
S1, . . . , Sk such that

X = S1

⋃
S2

⋃
. . . Sk

as well as a set of k cluster centers µ1, . . . , µk ⊂ Rd such that the following objective function is
minimized:

F ({S1, . . . , Sk}, {µ1, . . . , µk}) =

k∑
j=1

∑
xi∈Sj

‖xi − µj‖2.

The above objective function minimizes the sum of (squared) distances from each data point to its
nearest cluster center, and is sometimes called the k-means objective function.

Notice that this is an optimization problem involving both discrete and continuous variables. In
general, solving such “mixed-integer” optimization problems is very challenging and there are no
black-box solution approaches (typical approaches such as gradient descent or convex relaxation are
difficult to define.) Let us see if we can somehow overcome this issue.
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Warmup: When the clusters are known

First, suppose that an oracle provided us the “right” cluster labels, i.e., we know the true S1, . . . , Sk,
and need to only optimize over the cluster centers. However, observe that the objective function
decouples into k separate terms, each term of the form:∑

xi∈Sj

‖xi − µj‖2

that only involves the optimization variable µj . This problem admits a closed form solution, since
some elementary algebra shows that the above term is equal to: ∑

xi∈Sj

‖xi − µ‖2
+ |Sj |‖µ− µj‖2

where µ is the mean of the data points within the cluster. Clearly the above term is minimized when
µj = µ. Therefore, the optimal cluster center µj is given by:

µj = µ =
1

|Sj |
∑
xi∈Sj

xi.

Of course, this method works only if we somehow got the “right” clusters (which is the whole point
of clustering in the first place.) In general, there are kn possibilities of choosing the cluster labels, so
cycling through all possibilities would take exponential running time.

Lloyd’s algorithm

So instead of guessing S1, . . . , Sk, we will instead alternate between estimating the cluster labels
and the cluster centers.

Given the (estimate of) labels, we know how to estimate the centers (as described above.) Given the
(estimate of) the centers, we can estimate the cluster labels by simply mapping each data point to the
nearest cluster center in the data space. This can be done using the nearest neighbor algorithms that
we discussed in the early lectures.

This type of alternating procedure is called Lloyd’s algorithm, which was originally proposed for a
similar problem in data compression known as vector quantization. The full algorithm is as follows.

0. Initialize cluster centers {µ1, µ2, . . . µk} ⊂ Rd.

1. For each i, assign xi to the nearest cluster center:

j∗ = arg min
j∈[k]
‖xi − µj‖.

This induces a disjoint partition of the data into subsets S1, . . . , Sk.

2. For each subset Sj , update the cluster centers:

µj =
1

|Sj |
∑
xi∈Sj

xi.
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3. Go to Step 1; repeat until there is no decrease in clustering objective function F .

Initialization

There are both minor and major issues in the above description of k-means. One minor issue is that
clusters might become empty if a given center does not get assigned any data point. But this can be
handled by arbitrarily initializing new cluster centers.

The major issue in k-means is initialization. Indeed, it is known that k-means can get stuck at
arbitrarily bad local optima. Imagine, for example, a very simple data set with n = 4 points in d = 2
dimensions:

X = {(−x, 0.5), (−x,−0.5), (x, 0.5), (x,−0.5)}

where x is some very large positive number. Clearly, the “right” clusters here are:

S1 = {(−x, 0.5), (−x,−0.5)}, S2 = {(x, 0.5), (x,−0.5)}.

with optimal cluster centers (−x, 0) and (x, 0).

However, suppose we are careless and initialize µ1 = {(0, 0.5)} and µ2 = (0,−0.5). Then, Step 1
gives us cluster labels 1, 2, 1, 2 for the four data points respectively, and Step 2 gives us back the µi’s
that we started with. So the algorithm terminates in 1 step, but has clearly converged to the wrong
answer.

To resolve this, several “smart” initialization strategies for k-means have been proposed. A commonly
used initialization procedure is the k-means++ method by Arthur and Vassilvitskii (2007), who
propose picking k initial points that are far away from each other. More precisely, the algorithm does
the following:

0. Pick µ1 as a data point x ∈ X chosen uniformly at random, set T = µ1.

1. For i = 2, . . . , k, pick µi as x ∈ X chosen randomly with probability proportional to
minµj∈T ‖x− µj‖, update T ← T

⋃
µi.

Interestingly, this type of initialization comes with provable quality guarantees; one can show that just
the initialization itself is a pretty good way to cluster the data (without running subsequent iterations
of k-means), and further updates with Lloyd’s algorithm can only improve the quality. But we won’t
go into further details here.
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Chapter 15

Clustering (contd)

The k-means algorithm is useful for clustering data that is separable, i.e., the clusters are compact
and belong to well-separated parts of the data space.

On the other hand, data clusters can often be non-separable. Imagine, for example, data points that
lie on two concentric circles. Here, the “natural” clusters are the two clusters, but k-means will not
give any useful information.

Here, we discuss a new algorithm for clustering non-separable data which can resolve this issue. We
call it spectral clustering, and it is one among several data analysis techniques that leverages ideas
from algorithmic graph theory.

Graphs, etc.

First, some basics. Recall that a graph G = (V,E) consists of a set of nodes V , and edges between
nodes E. The nodes can represent any collection of objects, and edges can represent relations defined
on these objects. Typically, we denote the number of nodes as n, and the number of edges as m.

e.g. Nodes can be people in a social network, and edges can represent friendships. Alternately, nodes
can be spatial locations in a road network, and edges can represent road segments. Alternately, nodes
can be IP addresses, and edges can represent communication links. You get the picture.

Depending on whether the edges have arrows (directions) or not, the graph can be directed or
undirected. (If the relation is symmetric, the graph is undirected; and if not, it is directed.)

Optionally, edges can have weights; stronger relations can be represented using heavier weights, and
vice versa.

Every graph with n nodes can be written down using an n× n matrix known as an adjacency matrix
A. Suppose the graph G is unweighted. Then, the adjacency matrix A is such that Aij = 1 if there
is an edge from node i to node j, and Aij = 0 otherwise. If G is weighted, then Aij can be a
nonnegative real number that represents the edge weight between i to j.
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The degree of a node in an undirected graph is the number of edges connected to that node. If we
store all the degrees in a length-n vector of integers deg(V ), then it is not hard to see that:

deg(V ) = A1n,

where 1n is the all-ones vector of size n × 1. The exact same definition of $$ can be used for a
weighted graph; in this case, deg(V ) is a vector of real numbers.

(If a graph is directed, then we can define the in-degree of a node as the number of incoming edges,
and the out-degree as the number of outcoming edges. But we will defer these notions for later.)

The graph Laplacian of G is defined as the n× n matrix:

L = D −A,

where D = diag(deg(V )).

The graph Laplacian has several interesting properties. Observe that for any graph:

L1n = D1n −A1n

= deg(V )−A1n

= 0.

In words, the Laplacian matrix of any graph always has an eigenvalue equal to zero, with the
corresponding eigenvector being the all-ones vector.

In fact, it is not very hard to prove that any graph Laplacian only has non-negative eigenvalues, i.e., it
is positive semidefinite. Consider any vector v ∈ Rn. Let nbr(i) denote the set of neighbors of node
i. Then, the vector Lv is such that:

(Lv)i =
∑
j

L(i, j)vj

= deg(vi)vi −
∑

j∈nbr(j)

vj

=
∑

j∈nbr(i)

(vi − vj).

Therefore, the quantity vTLv is given by:

vTLv =

n∑
i=1

vi

 ∑
j∈nbr(i)

(vi − vj)


=
∑
i

∑
j∈nbr(i)

v2
i − vivj

=
1

2

∑
i

∑
j∈nbr(i)

2v2
i − 2vivj

=
1

2

∑
(i,j)∈E

(vi − vj)2

≥ 0.
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The above derivation is true no matter how we choose v. Suppose we set v to be any eigenvector of
L; then the above derivation shows that the corresponding eigenvalue is non-negative. In general, the
set of eigenvalues of the Laplacian are also known as the spectrum of the graph.

The above derivation also shows another interesting fact. Suppose the graph contained two discon-
nected components (pieces), and v is any vector that is piecewise constant, e.g., vi is +1 if i belongs
to the first component, and −1 if i belongs to the second component. In that case, vTLv = 0 as well.
Therefore, the graph will have the two smallest eigenvalues as zero, with the first zero corresponding
to the all-ones vector, and the second zero being the above piecewise constant vector.

In general, the number of zero eigenvalues denotes the number of connected components in the graph.

Spectral clustering

OK, how does all this relate to clustering? Suppose we are given a dataset X containing data points
from two clusters, but we don’t know the cluster memberships of the points and wish to deduce them
automatically.

The high level idea is to denote data points as nodes in a hypothetical graph G. The goal is to
construct a graph G with a suitable set of edges such that (i, j) is an edge only if i and j belongs to
the same cluster. Of course, since we do not know the clusters a priori, we do not have access to the
true edges!

However, we can guess that nearby data points can belong to the same cluster. Nearness can be
captured via any similarity measure, e.g., using a user-defined kernel matrix. If we were lucky and
the graph only contained intra-cluster edges, there would be exactly two pieces to the graph and the
second eigenvector would be piecewise constant across these two pieces.

In reality, there might be extra spurious edges that connect points belonging to different clusters.
These could be modeled as “noise”; but as long as the noise is small the clusters can still be deduced.

Overall, the spectral clustering algorithm works as follows. Suppose we have a dataset containing n
data samples {x1, . . . , xn}.

1. Construct a graph G with n nodes.

2. Construct the adjacency matrix of G using weights Wij = K(xi, xj) for i 6= j.

3. Construct a graph Laplacian L = D −W .

4. Construct the eigenvector v corresponding to the second smallest eigenvalue of L.

5. Partition the nodes into S1 and S2 such that S1 = {v : v > 0} and S2 = {v : v < 0}.

The above algorithm involves computing the kernel weights (which has a computational cost of
O(n2d)) and performing the eigenvalue decomposition (which has a computational cost of O(n3)).
Therefore, the overall running time scales as:

max(O(n2d), O(n3)).
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Chapter 16

Clustering (contd)

Both the k-means and spectral clustering algorithms assume that we know the number of clusters in
the data. However, in several exploratory data analysis problems, this is not known beforehand.

Indeed, clusters can manifest themselves at multiple scales. Imagine, for example, trying to cluster
unlabeled genetic data of several flora and fauna, automatically. At a very coarse scale, there are two
clusters. However, at the next we can think of clustering the flora/fauna according to genus, species,
and so on.

A third type of clustering approach, known as Hierarchical clustering resolves this issue in a
completely different way. The idea is to greedily form data clusters based on local correlations
between the data points. This type of clustering is extensively used in data analysis problems
encountered in biology and bioinformatics.

Hierarchical clustering

There are two types of hierarchical clustering methods. Both are conceptually very simple:

1. Top-down clustering: we model all data points as belonging to one large cluster, and recursively
partition the data to incrementally create additional clusters of smaller sizes, each sub-cluster
containing data points that are nearby one another.

2. Bottom-up clustering: we initialize each data point as its own cluster, and recursively merge
clusters that are nearby each other to form bigger clusters; this is repeated until all points
eventually coalesce into one cluster.

The second type of hierarchical clustering is more common; we will exclusively use this approach
(which is also known as agglomerative clustering.) Mathematically, if X = {x1, . . . , xn}, then the
algorithm proceeds as follows:

• Initialize the n clusters as singleton sets C1 = {x1}, . . . , Cn = {xn}.

• Until one cluster remains, repeat:
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merge clusters C and C ′ such that the distance d(C,C ′) is minimized over all pairs of
clusters C,C ′.

Cluster distances

In the above algorithm, we haven’t defined how we define the notion of distance d(·, ·) between
clusters. There are three ways to do so, and different choices lead to different clustering algorithms:

1. We define the cluster distance as the minimum distance between a point belonging to one
cluster and a point belonging to the second cluster, i.e.,

d(C,C ′) = min
xi∈C

min
xj∈C′

‖xi − xj‖.

If this notion of cluster distance is used, then the associated hierarchical clustering algorithm is
known as single-linkage clustering. Single-linkage tends to produce “chain”-like clusters in the
output.

2. We define the cluster distance as the maximum distance between a point belonging to one
cluster and a point belonging to the second cluster, i.e.,

d(C,C ′) = max
xi∈C

max
xj∈C′

‖xi − xj‖.

If this notion of cluster distance is used, then the associated hierarchical clustering algorithm is
known as complete-linkage clustering. Complete-linkage tends to produce compact clusters of
roughly equal diameters.

3. We define the cluster distance as the average distance between a point belonging to one cluster
and a point belonging to the second cluster, i.e.,

d(C,C ′) =
|C||C ′|

∑
xi∈C

∑
xj∈C′

‖xi − xj‖.

If this notion of cluster distance is used, then the associated hierarchical clustering algorithm is
known as average-linkage clustering. In bioinformatics and genetics, this is sometimes called
the UPGMA (unweighted pair group method with arithmetic mean) algorithm.

In the above description, we have used the Euclidean norm as a measure of distance between
individual data points, but really any distance measure can be used here instead.

Dendrograms

A nice way to visualize hierarchical clustering methods is via a dendrogram. A dendrogram is a
binary tree with n leaves (typically arranged at the bottom), with leaf nodes representing data points
(singleton clusters). Each merge operation can be represented by merging nodes into a supernode.
There are n− 1 merge operations, and therefore the root (denoted at the top of the dendrogram) will
eventually comprise all n data points.

The clustering at any intermediate iteration can be immediately deduced by cutting the branches of
the tree at a fixed horizontal level; the remaining connected components of the pruned tree indicates
the clusters at that given iteration.
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Chapter 17

Nonlinear dimensionality reduction

The next few lectures will deal with challenges where the size of the available data (either in terms of
data dimension d or number of samples n) is very large.

Dimensionality reduction is an umbrella term used to handle cases where d is large. The idea is to
somehow decrease the dimension of the data, while preserving (to the extent possible) the essential
information preserved in the data. (Here, the meaning of “essential information” depends on the
specific scenario being studied.)

Advantages of dimensionality reduction include:

• Data compression.

• Accelerating downstream data processing tasks (nearest neighbor classification, etc.).

• Data visualization. It is much more convenient to plot/visualize/explore data that is two- or
three-dimensional.

For the above reasons, dimensionality reduction methods are often used as pre-processing techniques
in large-scale data analysis problems.

Preliminaries

Note that both PCA as well as random projections (e.g., Johnson-Lindenstrauss) can be viewed as
dimensionality reduction techniques. However, both are linear dimensionality reduction techniques;
in random projections, we linearly project each data sample onto random vectors, while in PCA, we
linearly each data sample onto the principal directions.

However, linear projections are not appropriate in cases where the data points lies on a curved surface
in the data space. Imagine, as a toy example, a large set of data points in 3 dimensions (d = 3) lying
on the surface of a sphere. Suppose we wish to reduce the dimensionality to d = 2, which we can do
using for, e.g., computing the top two principal components.

However, since the data surface is nonlinear, projecting the data along any given 2D plane in the 3D
space irrevocably distorts the geometry of the data points. Therefore, new methods are required.
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We have already (extensively) discussed one class of methods to deal with nonlinear data sets: kernel
methods. Fortuitously, most of the analysis methods we have discussed have kernelized variants.
For example, we can do a kernel PCA instead of PCA. These usually involve figuring out a way to
express PCA computations in terms of inner products of the data points, and replacing these with
general (kernel) inner products.

Below, we discuss a few ways to extend this type of idea beyond just kernel methods.

Multidimensional Scaling

The high level idea is as follows. Consider a data matrix X = [x1, x2, . . . , xn]T . Instead of the data
matrix, suppose we only consider the inner product matrix of size n× n:

P = XXT .

Given only this matrix, what can we do? Observe that since X = UΣV T , we have:

P = UΣ2UT .

So there is no chance of recovering the principal directions of X from P alone. However, we can
calculate the principal scores; this is because the eigenvectors of P are precisely the original left
singular vectors, and the eigenvalues are precisely the square of the original singular values.

Kernel PCA would replace the matrix P with a more general matrix K, where

Kij = 〈φ(xi), φ(xj)〉,

is an arbitrary kernel inner product, and proceed as above.

However, let us now suppose that we do not even compute inner products, but merely have access to
pairwise distances between data points, i.e., we consider the n× n matrix of (squared) distances ∆ij

such that:
∆ij = ‖xi − xj‖2.

Problems like this arise in several instances in visualization. For example, one could have a network
of n sensors whose geographical positions are unknown; however, one can measure (or estimate)
pairwise distances between sensors via recording received signal strengths (RSS), or some other kind
of range measurements. The goal is to visualize the map of these sensors.

What can do with the distance matrix? Observe that:

‖xi − xj‖2 = 〈xi, xi〉+ 〈xj , xj〉 − 2〈xi, xj〉.

Therefore,
∆ij = Pii + Pjj − 2Pij .

This is a set of n2 variables on the left, and n2 variables on the right. With some algebra, we can
solve for Pij to get:

Pij = −1

2

∆ij −
1

n

n∑
i=1

∆ij −
1

n

n∑
j=1

∆ij +
1

n2

n∑
i=1

n∑
j=1

∆ij

 .
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In concise form, if I is the identity matrix and 1 is the all-ones vector of length n, then:

P = −1

2
(I − 1

n
11T )∆(I − 1

n
11T ).

The above operation that maps ∆ to P is called centering. From the centered matrix of distances, we
perform an eigendecomposition to reconstruct the principal scores of the data.

Therefore, the above derivation has shown that we can recover the principal scores of the matrix just
from the pairwise distances of the data points alone!

In order to visualize the data points, we can plot the top 2 or 3 principal scores as a scatter plot, just
like we would do in PCA.

The above procedure is called multidimensional scaling (or MDS). While the above derivation holds
for pairwise Euclidean distances between data points, one may also perform MDS for non-Euclidean
distances, or in general replace the distance matrix by a different matrix that captures a generic form
of (dis)similarity between data points.
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Chapter 18

Isomap

In MDS, we followed two basic steps:

1. Compute (or obtain in some other way) the matrix of pairwise Euclidean distances between
data points.

2. Center this matrix.

3. Perform an eigendecomposition.

Overall, the algorithm takes O(n3) time for n data points, provided the distance matrix is given.

The above intuition can be extended in various ways. One modification of MDS, called Isomap, was
the first of several approaches developed for manifold learning, that came about in the early 00’s.

Manifold models

The high level idea of Isomap is that pairwise Euclidean distances between data points do not always
reflect the “true” (intrinsic) distance. Imagine, for example, data points lying on a semicircle in 2D
space:

xi = (cos(iδ), sin(iδ))

for i = 1, 2, . . . , n = π/δ.

The Euclidean distance between x1 and xn is 2, but the “true” distance is best measured by traversing
along the underlying curve (the semicircle), which in this case equals π. Therefore, there is a
distortion of π/2 ≈ 160% in our estimate of the “true” distance vs. the estimated distance between
the data points.

Observe that this type of distortion only appears when the underlying hypersurface – in our case, the
semicircle – from which the data points arise is nonlinear.

Such a hypersurface is called a manifold, and can be used to model lots of datasets. In general, if
there are k independent degrees of freedom that control the data samples, then the set of data points
can be modeled by a k-dimensional manifold. Examples of manifolds include images of a pendulum
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swinging from one end to another (one degree of freedom – the angle of the pendulum), or images of
an object rotating in space (three angular degrees of freedom.)

Mathematically, we can write:

xi = f(θi), i = 1, 2, . . . , n,

where we don’t immediately have access to θi, but would like to measure distances between data
points as θi − θj .

Manifold learning

In general, how do we compensate for this distortion? The high level idea is that longer distances
along a curve can be approximated by adding up a sequence of smaller distances, provided that the
curve is smooth enough (which is more or less the same idea as in Riemannian integration.)

The way to fix this issue is via a clever graph-based technique.

1. First, we construct a graph with n nodes (representing data points), edges connecting nearby
data points (e.g., all pairs of data points whose Euclidean distance is below some threshold
value ε), and edge weights corresponding to the corresponding Euclidean distances. The
hypothesis is that the edge distances are sufficiently small that they are roughly equal to the
true distances.

2. Next, we compute shortest paths between all pairs of data points in the graph. There are
numerous algorithms for computing shortest paths on a graph – Dijkstra’s algorithm, Floyd-
Warshall, etc – we can use any one of them. This produces a distance matrix ∆, which
represents an approximation to the set of “true” parameter distances between data points.
The original paper by Tenenbaum, De Silva, and Langford in 2000 precisely analyzes the
approximation error vs. number of samples vs. smoothness of the underlying manifold.

3. Finally, we feed this distance matrix into MDS, and compute the top few principal scores (as in
PCA) to visualize the data.

Isomap is surprisingly powerful. In particular, it can be effectively used to explore unla-
beled/unorganized sets of images that can be modeled as a function of a small number of unknown
parameters (e.g., a bunch of aerial images of a region from a unmanned aerial vehicle (UAV); here,
each image is a function of the spatial location of the UAV).
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Chapter 19

Random walks

In this lecture, we will develop several tools for data analysis based on concepts from graph theory.
One powerful class of tools involve random walks on graphs. At a high level, a random walk over a
graph is a random process that starts at a given vertex, selects a neighbor to visit next, and iterates.
Random walks are widely applied in situations ranging from physics (Brownian motion) to stochastic
control to web analytics to the text suggestion engine on your smartphone.

The term “random walk” is mainly used in the context of graphs; however, random walks are widely
used in several branches of data analysis and statistics that don’t necessarily speak the same language.
In fact, there is a one-to-one correspondence between terms in different fields:

• Random walks↔Markov chains

• Nodes↔ states

• Undirected graphs↔ time reversible

• strongly connected↔ persistent

etc.

Basics

Consider a graph G = (V,E) consisting of n nodes. A random walk is a process that can be
parameterized by two quantities:

1. An initial distribution p0 over the n nodes. This represents how likely we are to begin at any
node in the graph. Since p0 is a distribution, observe that:

p0(i) ≥ 0,

n∑
i=1

p0(i) = 1.

i.e., we can write down this distribution as an n-dimensional vector with non-negative entries
that sum up to 1.
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2. A transition probability matrix M of size n× n. If Xt denotes the random variable recording
the state at time t, then

Mij = Prob(Xt+1 = vj |Xt = vi).

This value is positive iff there is an edge between i and j; else it is zero. Since the rows of M
denote conditional probabilities, we have:∑

j

Mij = 1.

By the expression for conditional probability, we can show that the probability of state i at time t,
denoted by pt, satisfies the recursion:

pt = MT pt−1.

A key concept in random walks is the stationary distribution, which is defined by:

p∗ = lim
t→∞

pt.

Of course, this limit needs to exist for this quantity to be well defined. But if does, then the stationary
distribution satisfies the fixed point equation:

p∗ = MT p∗,

or equivalently,
(I −MT )p∗ = 0.

One can think of I −MT as the Laplacian matrix of the (weighted) graph underlying the random
walk, and p∗ being the eigenvector of the Laplacian matrix whose eigenvalue is zero.

The PageRank algorithm

The reason for Google’s early success was the development of the PageRank algorithm for web
search. It happens to be a nice application where random walks arise in an unexpected manner.

The setup is standard: the user enters a query, the search engine finds all pages relevant to this query,
and returns the list of these pages in some order. The key here is how to choose the ordering.

The first two steps are conceptually doable. The simplest idea (and one that was used in the mid
90’s) was to represent each website as a document, perform a nearest neighbor procedure over the
database of websites to a given query (similar to what we did in Lecture 1), and return the k nearest
neighbors for some k. Of course, there are several issues – how to choose the features, how to do
kNN efficiently etc but the basic idea is the same.

The last part is hard. Suppose we have several matches. How do we ensure that the most relevant
matches are shown first? How to even define “most relevant”?

The core idea of PageRank is to defer the question of relevance to the structure of the web itself. One
can imagine the web as some gigantic directed graph. The high level idea is that websites that have a
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high number of incoming links (edges) are most likely authoritative, and hence should be assigned a
high “relevance score”.

(A second, and more subtle, idea in PageRank is that the relevance score of each website is constant,
i.e., decoupled from the semantic content of the query. This is a bit harder to justify, but we will punt
on this for now.)

Attempt 1

So, if the web has n pages, the goal is to produce a score vector v ∈ Rn that measures the relevance
of each page. What are useful “relevance scores”? A first attempt is just simply count the incoming
edges. If A is the adjacency matrix of the web, then the relevance score for all webpages is to declare
the score of each webpage in terms of in-degree:

v(i) =

n∑
j=1

Aij or,

v = AT1n,

where 1n is the all-ones vector.

This works, but is susceptible to manipulation since there could be webpages that simply consist of
links to a large number of other webpages, and therefore are not very informative.

Attempt 2

There are two ways of fixing this. One way is to inversely weight the contribution of each incoming
edge by the out-degree of the source of the edge. The second way is to use a recursive definition, and
weight each incoming edge by the score of the source of the source of the edge. Overall, we get:

v(i) =

n∑
j=1

Aij
1

dj
v(j),

or:
v = ATD−1v,

where D is a diagonal matrix consisting of the out-degrees of each node in the graph. If any node
in the graph has zero outgoing edges, we will add self-loops to all nodes so that the above vector is
well-defined.

The above expression for v motivates the following interpretation: the stationary distribution of the
random walk over the web graph with transition matrix W = D−1A. Imagine a random surfer
starting from a fixed page, and randomly clicking links to traverse the web. Intuitively, the limiting
distribution of this random walk is going to be concentrated in webpages with a large number of
incoming links.
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Final algorithm

The PageRank algorithm makes an extra assumption: instead of a “random surfer” model, it assumes
the “bored surfer” model where there is a small probability α that the surfer can stop clicking and
teleport to a page chosen uniformly at random. In equations, we get:

v(i) = (1− α)

n∑
j=1

AijD
−1v(j) + α

1

n
.

or:

v =

(
(1− α)ATD−1 +

1

n
1n1n

T

)
v.

Convince yourself that:

G =

(
(1− α)ATD−1 +

1

n
1n1n

T

)
is a valid transition matrix for a random walk. This is sometimes called the “Google matrix” and
empirically the value of α is set to be 0.15.
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Chapter 20

Random walks and electrical
networks

This lecture explores the connections between random walks and electrical networks. More precisely,
we will see how natural electrical quantities such as potential differences, currents, and resistances
have analogous interpretations in the analysis of random walks on undirected graphs.

Below, we will assume that our underlying graph G = (V,E) is an undirected graph with unit
edge weights. Moreover, the graph is connected so that the stationary distribution is unique and
well-defined.

Quantities of interest in random walks

A key quantity of interest in random walks is that of convergence, i.e., how quickly the random walk
converges to the stationary distribution. Three quantities are of interest:

• the hitting time from u to v, Hu,v, is the expected number of hops required to traverse from
node u to node v in the graph. The hitting time is not symmetric – it can take on average longer
to reach from u to v than vice versa.

• the commute time between u and v, Cu,v , is the expected number of hops required to traverse
a “round trip” from node u to node v back to node u. The commute time is given by Cu,v =
Hu,v +H(v, u). Unlike the hitting time, the commute time is a symmetric quantity.

• the cover time for u, Cu, is the expected number of hops starting from u to visit all nodes in
the graph.

The hitting time, commute time, and cover time, encode key structural information about the edges of
the graph. A well-connected graph (i.e., lots of paths from every node to every other node) will have
low values of hitting, commute, and cover times in general. Several further examples are given in
Chapter 5 of the textbook.
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The hitting time Hu,v can be estimated via the following argument (which is a bit hand-wavy, but
can be made rigorous with some effort). Every path from u to v must pass through a neighbor of u.
Therefore, the expected number of hops from u to v satisfies the relation:

Hu,v = 1 + average({Hw,v : w is a neighbor of u})

or,

Hu,v = 1 +
1

du

∑
(u,w)∈E

Hw,v,

where du is the degree (number of neighbors) of u. For fixed v, this is a set of n− 1 linear equations
in n− 1 variables, and can be solved by standard methods.

Connections to electrical networks

Now, consider the following alternate setup. Instead of the graph G = (V,E), let us imagine a
network of |E| unit resistors connected according to the edges of G. Recall the electrical laws
governing this network:

1. Kirchhoff’s current law: the sum of currents into any node equals zero.

2. Kirchhoff’s voltage law: the sum of potential differences around any loop in the network equals
zero.

3. Ohm’s law: the current through any edge equals the potential difference across the edge divided
by the resistance of the edge.

We will show that familiar electrical quantities have connections with the quantities defined above.
To see this, let us conduct a very different thought experiment. Given the above electrical network, at
each node x in the network, inject dx units of current (where dx is the degree of x). Therefore, in
total we are injecting: ∑

x∈V
dx = 2|E|

units of current in this network. The above expression follows since the sum of degrees of nodes in a
graph equals twice the number of edges in the graph, according to the familiar Handshaking Lemma
from graph theory.

By Kirchhoff’s Law, we cannot just inject current; we have to remove it somewhere. Let us remove
all of the 2|E| units of current from node v. By principle of superposition of electric currents, this
action is equivalent to the following: we inject dx units of current into every node x other than v, and
remove 2|E| − dv units of current from v.

Now, the above injection of current induces potential differences. Since potentials are equivalent up
to global shifts, we can set the “ground voltage” φv = 0 without loss of generality. Further, since
current flows from higher potential to lower potential, the potentials φx for every other node in the
network is positive.
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Now, let us apply Kirchhoff’s current law to u. We have:

du =
∑

(u,w)∈E

current(u→ w)

=
∑

(u,w)∈E

φu − φw
1

(Ohm)

=
∑

(u,w)∈E

φu −
∑

(u,w)∈E

φw

= duφu −
∑

(u,w)∈E

φw.

Since φv = 0, we can write everything in terms of potential differences φx,v = φx − φv = φx for
any x in the graph. Therefore,

φu,v = 1 +
1

du

∑
(u,w)∈E

φw,v.

Curiously, we observe that the above system of linear equations governing φu is exactly the same as
those governing Hu,v . In other words, the hitting time can be interpreted as the potentials induced by
setting up an appropriate set of current flows in a given graph, i.e.,

φu,v = Hu,v.

It is interesting that the quantity on the left is purely obtained through electrical laws, while the
quantity on the right is purely a statistical object that arises in the analysis of random walks.

One more curiosity. Call the above “Scenario 1”. Now, construct “Scenario 2” as follows. It is the
same as above, except that

i. we extract dx units of current out of each node in the graph.

ii. to conserve current, we inject
∑
x dx = 2|E| units of current into the graph into node u.

Therefore, the analysis of Scenario 2 is identical to the one above, except that the role of v before is
now played by u, and that all directions of current are reversed. Therefore, by a similar reasoning as
above, we have the new potential difference between u and v given as:

φ′u,v = Hv,u.

Now, we apply principle of superposition again to add up Scenario 1 and Scenario 2. All currents and
potentials are linearly added up. Therefore, the resultant potential difference between u and v is:

φ′′u,v = φu,v + φ′u,v = Hu,v +Hv,u

and the only currents in and out of the network being 2|E| units of current into u and 2|E| units of
current out of v.

Therefore, by Ohm’s Law, the effective resistance between u and v is given by

φ′′u,v
current(u→ v)

=
Hu,v +Hv,u

2|E|
=
Cu,v
2|E|

.

Therefore, the commute time between u and v is nothing but the effective resistance between u and v
multiplied by the total number of edges in the network.
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Applications

Long story short: several tools/techniques from electrical analysis can be used to quickly reason about
random walks. Here is a simple toy example known as Gambler’s Ruin which is often encountered in
economics. Suppose a gambler enters a casino and places an indefinitely long sequence of bets worth
$1. He wins an extra $1 at each step if he wins the bet and loses the $1 otherwise. Suppose there is
an equal probability of either event happening.

The gambler decides to go home either if he wins N =$1 million, or goes broke. The question is: if
the gambler starts off with $i, how long is he expected to stay in the casino?

We model this problem as an instance of a random walk, where the nodes (states) represent the
amount of money (in dollars) that the gambler currently possesses. The walk starts off at i, and
terminates at either 0 or N = 1, 000, 000. The graph in this case is simple: it is a chain graph with
N + 1 nodes and N edges. Instead of computing transition matrices and solving for conditional
probabilities, one can quickly identify the quantities of interest as the hitting times between i and
0, or i and N . By invoking the connections made above, one can solve it using ordinary electrical
circuit theory.
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Chapter 21

Streaming algorithms

Thus far, all the techniques that we have discussed assume that the data to be analyzed fits into
memory and that we are free to compute/manipulate it as we please.

This is not always the case, particularly in the era of big data. In applications such as surveillance,
climate monitoring, and communications, a variety of data sources – sensors, video cameras, network
routers – are in “always on” mode, and continuously generate data of various modalities. Within
a short period of time, the amount of data gathered can run into tera- or even peta-bytes, and
representing and storing such data can be a severe challenge. Traditional analytics approaches
(regression, classification, etc.) can be prohibitive.

What if we were asked to process a large corpus of data, but were only given enough space to store a
tiny fraction of it? This is the type of problem addressed via streaming algorithms. Precisely, the data
is assumed to be in the form of a stream of elements:

x1, x2, x3, . . . , xn,

where for convenience it is assumed that the data can be well-represented by some finite (countable)
space, e.g., 64-bit floating point numbers. However, the amount of memory available to the data
processor is much smaller than the number of data points sayO(logc n), where c is some tiny constant.
Think of n being 1020 or similar, while the memory availability being in the order of a few kilobytes.

Further, assume that new samples are arriving at a very fast rate, so we do not have the luxury to wait
very long for our analysis method to finish. Therefore, in addition to small memory, the per-item
processing time of each element is also very small. In particular, it is not possible to touch data points
more than once. (This automatically rules out iterative methods such as gradient descent, which
revisits the available data points several times.)

At first glance, this kind of data analysis task looks impossible; how can we perform meaningful
calculations on the data in such resource constraint situations? Fortunately, a couple of key ideas
come into play:

1. Sketching. Instead of storing all of the data, we construct summaries or sketches of the data
that support efficient analysis/inference via post-processing.

2. Sparsity. Often, the data is sparse and only a small fraction of its entries are significant/relevant.

73



3. Randomness. Lastly, we will use a powerful idea often used in algorithms for large-scale
data analysis: we will let our methods be randomized. (We have already seen the power of
randomization in speeding up algorithms, cf. stochastic gradient descent over vanilla gradient
descent.)

A warmup: the missing element problem

Here is a toy problem that illustrates the idea of a sketch.

Let us say we have a stream of m numbers:

a1, a2, . . . , an

where each ai is a distinct number in [0, n]. Therefore, from the pigeon hole principle there is exactly
one element from [0, n] that is missing from the stream. How do we efficiently identify that element?

The simple way is to initialize an all-zero counter array for each element i (say c[i]), and increment
c[i] whenever we observe an element i in the stream. Our final estimate of the missing element is
given by that i∗ for which c[i∗] = 0.

However, this is inefficient (since the array consumes O(n) space.) Can we build a smarter algorithm
that uses lesser memory? Yes. Instead of a counter, we will simply maintain the running sum:

Si =

i∑
j=1

ai.

This can be done in a streaming fashion: we initialize S0 as zero, and at each appearance of a new
element ai for 1 ≤ i ≤ n, we update:

Si ← Si−1 + ai.

Finally, we output:

i∗ =
n(n+ 1)

2
− Sn.

The above algorithm is certifiably correct for all inputs (since i∗ does not appear in the final expression
for S.) Moreover, since Sn can be at most n(n+ 1)/2, the maximum amount of space required to
store Sn is log(n(n+ 1)/2) = O(log n) bits of memory. Done!

The above algorithm is simple, but illustrates a basic idea in streaming algorithms. The quantity Si is
the sketch of the stream; it summarizes the contents of the stream into one number that is sufficient to
solve the entire problem. The algorithm post-processes the sketch (in this case, a simple subtraction)
in order to produce the desired answer. Moreover, the sketch can be stored using only logarithmic
amount of memory.

The distinct elements problem

Let us now discuss a more realistic problem that is encountered in web-based applications. Say, for
example, the data elements xi represent a stream of IP addresses pinging a server, and the goal is to
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detect the number of distinct IP addresses in the stream (or the number of “uniques”; this quantity is
often of interest to advertisers.)

As above, let us suppose that n is very large; so is m, the number of all potential IP addresses (also
called the “namespace”).

The naive algorithm stores a count array c[i] for each i in the namespace, and increment c[i] each time
element i is observed in the stream. At any given time we can simply count the number of nonzero
entries of c (also called the “`0 norm” of c) and declare that to be the number of unique elements.
However, this is inefficient for large m (since it requires at least O(m) bits of memory.)

A (somewhat) different method stores a list of all items seen thus far. Each item in the namespace
can be represented using O(logm) bits, and therefore the overall algorithm requires O(n logm) bits.
This is very inefficient for large n.

A far better, and particularly nice, algorithm by Durand and Flajolet proposes the following sketching-
based method. The idea is to not store the count vector c[i], but rather a sketch of c as follows. This
technique uses randomization.

First, we will solve a somewhat simpler decision version of the problem: suppose we guess the
number of distinct elements as T , we will design an algorithm that will tell us (with high probability)
whether or not the true answer is within some fraction (say 90 % smaller or larger) than T . If such an
algorithm can be constructed, then we can simply call this algorithm with some geometric series of
guesses between 0 and m, and one of these instances will give us a “yes” answer.

The algorithm proceeds as follows. Fix some parameter T > 0 to be specified soon. The algorithm
selects a random subset S ⊂ {1, 2, . . . ,m} such that:

Prob(i ∈ S) = 1/T.

independently for each i. Then, we maintain

XS =
∑
i∈S

c[i].

Intuitively, XS aggregates the counts of all the elements of S seen in the stream. Since S is chosen
randomly, if T = 3 (say) then on average 1/3 of the set of distinct elements falls into S. In general
if α is the number of distinct elements of the stream, then by independence, roughly α/T of these
elements fall into S and are tracked by XS .

This gives us a way to guess α. If α� T then most likely XS is going to be nonzero. If α� T then
most likely XS is going to be zero. This can be formalized as follows. Let p be the probability that
XS = 0. This can only happen if each of the distinct elements of the stream fails to fall into S. The
failure probability is 1− 1/T and there are α such elements, so that:

p = (1− 1/T )α ≈ e−α/T .

Therefore, by simple algebra:

• if α > (1 + ε)T then p < 1/e− ε/3.

• if α < (1 + ε)T then p > 1/e+ ε/3.
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Of course, we have no way to precisely measure this probability p from only one counter XS – it
could be high or low depending on the specific trial. Therefore, we now use a commonly used trick
in randomized algorithms. We repeat the above procedure several times in parallel, i.e., we select k
copies S1, S2, . . . , Sk, and store counters

XS1
, XS2

, . . . , XSk

as above, and let Z as the total number of counters that are zero. By linearity of expectation, we have:

E[Z] = kp,

where p, as we calculated above, is the probability that any one counter is zero. Suppose we set
k = O( 1

ε2 log( 1
η )). By Chernoff’s inequality on the tail probability of binomial random variables,

we get that with probability 1− η:

• if α > (1 + ε)T then Z < k/e− ε.

• if α < (1− ε)T then Z > k/e− ε.

Therefore, the overall algorithm will look at the number of zero counters, and compare with k/e. If
this number is within k/e± ε, the algorithm will output YES, else will output NO.

Therefore, we have produced a randomized algorithm that, with probability 1− η, will tell us whether
or not the number of distinct elements in the stream is within a fraction 1 +±ε of the true answer.
This is the decision version of the distinct elements problem. To obtain the estimation version (i.e.,
guess the actual number of distinct elements), we run the above module several times in parallel with
parameters

T = 1, (1 + ε), (1 + ε)2, . . . , n.

The number of such T ’s is log1+ε n ≈ log n/ε. Therefore, the total amount of memory required by
the entire algorithm is given by:

O(
log n

ε

1

ε2

1

η
).
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Chapter 22

Streaming algorithms (contd)

We now discuss the frequent elements problem in data streams. The goal is to efficiently identify which
items occur the most frequently. Applications of this problem arise in web analytics, monitoring,
surveillance, etc.

Finding the majority element

Let us start simple. Suppose there are n voters in an election with m candidates. We observe the
votes in a stream:

x1, x2, x3, . . . , xn.

How do we determine who wins the majority vote (>50%), if such an element exists?

The naive way is to form a count array c[i] of size m, and update counts each time we observe a vote
for a particular candidate. The total space requirement is given by O(m log n). In the end, we look at
the maximum of this array and output the corresponding index.

Is there a more efficient algorithm? Yes – provided we weaken the requirements a little. Let us say
we are satisfied with one of two scenarios:

• if there is a candidate with more than 50% of the vote, then the algorithm has to identify that
candidate.

• if there is not, then the algorithm can report any one candidate.

Here is a particularly nice algorithm called Boyer’s method to solve this problem:

1. Initialize single counter c to 1, and store cand = x1.

2. For each subsequent xi, i ≥ 2:

a. If xi = cand, increment c.

b. If xi 6= cand and c > 0, decrement c.

c. If xi 6= cand and c = 0, update cand = xi and increment c.
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3. Output cand as the majority element.

The above algorithm only requires log n + logm memory; log n bits to store c, and logm bits to
store cand. Again, c here can be viewed as the sketch (or summary) of the stream that lets us solve
the problem.

Why should this work? The high-level idea is that if there is a majority element MAJ , then every
occurrence of a non majority-element can be matched with an occurrence of a majority-element. The
counter c keeps track of how many matches have happened; if there indeed exists a majority-element,
then it has occurred more than 50% of the time, c will be bigger than 0, and the eventual value of
cand will necessarily be MAJ .

Note that if there exists no majority element in the stream, then the algorithm could output any
arbitrary element and cand could be arbitrarily far from being the majority. In general there is no
easy way to detect whether we are in Scenario 1 or 2. Therefore, in principle one has to go over the
stream once again and count the occurrences of cand to confirm whether it indeed is the majority
element.

Heavy hitters

One can modify this algorithm to not just detect the majority element, but also to detect a set of most
frequently occurring elements in a stream.

Let us define a heavy hitter as any element that that occurs with frequency greater than εn for some
parameter ε > 0. (The case ε = 0.5 corresponds to the majority element problem described above.)
The goal is to detect all heavy hitters, if they exist.

An algorithm by Misra and Gries proposes the following approach:

1. Maintain a list of d1/εe candidates + counters f1, f2, . . .. Initialize everything to null.

2. For each new element (say s) encountered in the stream:

a. If s already occurs in the list of candidates, increment its corresponding counter.

b. If s does not occur in the list of candidates and the list is not full (i.e., there are less than
d1/εe candidates) then add to the list and increment its counter by 1.

c. If s does not occur in the list (which is full) then decrement all counters by one. If any
counter becomes zero, then eliminate the candidate from the list.

The above algorithm generalizes the idea that we used in detecting the majority element. Moreover,
one can show the following correctness property:

• Each counter reports a list of candidates-counts (s, fs) such that if the true count of s is given
by cs, then the estimated count fs satisfies:

cs − εn ≤ fs ≤ cs.

• Moreover, if any element t does not occur in the list, then necessarily its count ct satisfies:

ct ≤ εn.
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The above two properties tell us that all heavy hitters (if they exist) will definitely be in the output of
the algorithm, and all elements that are not in the output cannot be heavy hitters. There can never be
false negatives; however, there could be false positives (if there are no heavy hitters in the stream
then the output can be arbitrary.)

As a nice by-product, this algorithm also gives us a way to approximate count values up to some
additive error εn.

Higher frequency moments

Distinct elements/heavy hitters/frequent elements all involve computing/testing for some properties
of the count vector of a stream.

A more general class of problems involve estimating frequency moments. Higher order moments
such as variance, kurtosis, etc give us important statistics about streams. They also enable efficient
estimation of space/memory requirements in all kinds of database applications.

The simplest example is that of the second moment. Consider a stream with m items containing
frequency counts c1, c2, . . . , cm. We already know that c1 + c2 + . . . cm = n. In order to estimate
the variance of frequency counts, the goal is to efficiently calculate:

F2 = c21 + c22 + . . . c2m.

Once again, naive method: estimate all the ci’s by keeping count of each element. This takes
O(m log n) space — bad!

Alternately, we could use the above heavy hitters algorithm (by Misra-Gries) and approximate the
value of each count by obtaining the quantities f1, f2 . . . , f(1ε). This is certainly space-efficient.
However, since each count is only approximated up to an error εn, the total error in estimating F2

can be as high as mε2n2. This can be very bad unless ε is very, very small – which means we need
lots of counters in Misra-Gries to get good estimates.

Here is a better algorithm by Alon, Matias, and Szegedy. It uses randomness in a very clever manner
(similar to how we used it to solve the distinct elements problem.)

Suppose we pre-select a set of i.i.d. random Bernoulli variables:

a1, a2, . . . , am

such that:
Pr(ai = 1) = Pr(ai = −1) = 1/2.

Now, we maintain the quantity:

Z = a1c1 + a2c2 + . . . amcm.

Note that this can be maintained in a streaming fashion; we initialize Z = 0 and each time we see
element i, we update Z ← Z + ai.

At the end of the stream, we output F2 = Z2. That’s it!
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Why should this be a good idea? Observe that Z is a random variable (since ai are chosen at random).
Moreover, the expected value of Z2 is:

E[Z2] = E[(a1c1 + a2c2 + . . . amcm)2]

= E[
∑
i

a2
i c

2
i + 2

∑
i>j

aiajcicj ]

= E[
∑

c2i + 2
∑
i>j

aiajcicj ]

=
∑

c2i + 2
∑
i>j

E[aiaj ]cicj

=
∑

c2i ,

since E[aiaj ] = E[ai]E[aj ] = 0.

Therefore, Z2 is an unbiased estimator of F2. However, since it is only a single estimator, it can have
a high variance. Fortunately, via some tedious but straightforward calculation, one can estimate the
variance of Z2 as no greater than 2F 2

2 . Therefore, we can simply keep k = O(1/ε2) copies of Z
in parallel (with a different set of random ai’s for each Z) and in the end output the average of all
the Z ′is. A simple application of Chebyshev’s inequality shows that this new average of the Z ′is is
sufficient to estimate F2 up to (1± ε) accuracy.
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