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Abstract—We study the general problem of optimizing a
convex function of a matrix-valued variable subject to low-rank
constraints. This problem has attracted significant attention;
however, existing first-order methods for solving such problems
either are too slow to converge, or require multiple invocations of
singular value decompositions. On the other hand, factorization-
based non-convex algorithms, while being much faster, require
stringent assumptions on the condition number of the optimum.
In this paper, we provide a novel algorithmic framework that
achieves the best of both worlds: as fast as factorization methods,
while requiring no spectral assumptions. We instantiate our
framework for the nonlinear affine rank minimization (NLARM)
problem. For this problem, we derive explicit bounds on the
sample complexity as well as running time of our approach, and
show that it achieves the best possible bounds for both cases. We
also support our proposed algorithm via several experimental
results.

I. INTRODUCTION
We focus on the constrained optimization problem:

mLin F(L) st rank(L) <r*, (1)
where F'(L) : RP*? — R is a convex smooth function defined
over matrices L € RP*P. This problem has recently received
significant attention in machine learning, statistics, and signal
processing [1], [2]. Several applications abound, including
affine rank minimization [3], [4], matrix completion [5], robust
PCA [6]-[8], covariance/precision matrix estimation using
graphical models [9], [10], phase retrieval [11], and learning
shallow polynomial neural networks [12], [13], to name a few.

From the computational perspective, the traditional ap-
proach is to adopt first-order optimization for solving (1).
Several different approaches have been proposed in recent
years. These methods suffer from one or several of the follow-
ing problems: either their convergence rate is too slow (sub-
linear or worse); the computational cost per iteration is too
high (quadratic or worse); or they have stringent assumptions
on the spectral properties (such as the condition number)
of the solution to (1). Our goal in this paper is to propose
an algorithm to alleviate the above problems simultaneously.
Specifically, we seek an algorithm that exhibits linearly fast
convergence, computationally efficient per iteration, and at the
same time, robust to ill-conditioned problems.

A. Our Contributions

In this paper, we propose and analyze an algorithm for
solving problems of the form (1) for objective functions F'
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that satisfy the commonly-studied Restricted Strong Convex-
ity/Smoothness (RSC/RSS) conditions. Our method enjoys:

Linear convergence. We propose a fast non-convex algo-
rithm for solving of the optimization problem in (1). Specifi-
cally, we provide rigorous analysis to show that our proposed
algorithm enjoy global linear convergence (no matter how it
is initialized). Our algorithm enjoys fast per-iteration running
time as well.

No spectral assumptions. We show that our proposed
algorithm does not depend on stringent spectral assumptions
(such as condition number) on the solution to (1), therefore
making our method suitable for ill-conditioned problems.

No limitations on strong convexity/smoothness constants.
In a departure from the majority of the matrix optimization
literature, our algorithm succeeds under no particular assump-
tions on the extent to which the objective function F' is
strongly smooth/convex. (See below for details).

Putting together these ingredients, we get the first condition-
free, almost-linear time algorithm for solving problems of the
form (1).

B. Techniques

Our approach is an adaptation of the algorithm proposed
in [14], which is a projected gradient-type algorithm. The key
idea of this work is that each gradient update is projected
onto the space of matrices with rank r that is larger than r*,
the rank parameter in (1). This trick can alleviate situations
where the objective function exhibits poor restricted strong
convexity/smoothness properties; more generally, the overall
algorithm can be applied to ill-posed problems. However, the
per-iteration cost of their algorithms is cubic (O(p?)) in the
matrix dimension, due to use of multiple SVDs.!

Our approach resolves this issue by replacing the exact
SVD with a gap-independent approximate low-rank projection,
while still retaining the idea of projecting onto a larger
space. To establish soundness of our approach, we establish a
property about (approximate) singular value thresholding that
extends recent new results proved in [15], [16]. In particular,
we prove a new structural result for approximate projection
onto the space of rank-r matrices, showing that each projection

'Even if standard partial SVD routines (such as the power method) are used,
the running time scales as O(p?r/gap), where gap represents the difference
rth and (r + 1)** singular values; if the gap is small, this blows up the
running time to O(p3) or worse.



step in our algorithm is nearly non-expansive. Integrating
the above result gives linear convergence of the proposed
algorithm for a very broad class of objective functions F'(L).
Since we use approximate low-rank projections, the running
time of the projection step is (almost) linear in the size of the
matrix if 7* is constant.

C. Stylized Application

We instantiate our framework to a practical application
that we call nonlinear affine rank minimization (NLARM).
Formally, we consider an observation model akin to the
Generalized Linear Model (GLM) [17]: y = g(A(L*)) + e,
where g denotes a nonlinear /ink function, A denotes a linear
measurement (or observation) operator, which we formally
define later, and e € R™ denotes an additive noise vector. The
goal is to reconstruct L* from y, given that L* is of rank at
most 7*. For this application, we derive the sample complexity
and the running time of MAPLE, and analyze the statistical
error rate. These results show the (near) optimality of both
sample complexity and running time without dependency on
the condition number.

II. PRIOR WORK

Solving (1) as efficiently as possible has attracted consid-
erable recent interest in the learning theory community. Most
solution approaches can be categorized into four groups.

In the first group, the non-convex rank constraint is relaxed
into a nuclear norm penalty, which results in a convex problem
and can be solved by off-the-shelf solvers such as SDP
solvers [18], singular value thresholding and its accelerated
versions [3], [19] While convex methods are well-known,
their usage in the high dimensional regime is prohibitive. The
second group replaces the rank constraint with a more tractable
non-convex regularizer instead of the nuclear norm. While this
reduces the computational cost per iteration, its convergence
rate is sub-linear [20].

Methods in the third group try to solve the non-convex
optimization problem (1) based on the factorization approach
of [21]. In these algorithms, the rank-r matrix L is factorized
as L = UVT, where U,V € RP*". Using this idea removes
the difficulties caused by the non-convex rank constraint;
however, the objective function is not convex anymore. Such
methods have recently gained in popularity in the machine
learning with provable linear-convergence guarantees [1],
[22], [23]. While these methods are currently among the fastest
available, their drawback is that they may require one or
multiple full singular value decomposition for initialization.
More crucially, their convergence rate also depends heavily
on the condition number of the optimum which makes their
sample complexity and running time blow up by a significant
amount if the problem is somehow poorly conditioned.

Separate from factorization approaches, the fourth group of
methods use non-convex low-rank projections within classical
gradient descent. The earliest such approach, called singular
value projection (SVP), was introduced by [4] for matrix
recovery from linear measurements, and was later modified for

general M-estimation problems with well-behaved objective
functions [14]. These methods require multiple invocations
of exact singular value decompositions (SVDs). A similar
algorithm was proposed by [24] for the squared loss case, and
replaced the exact SVD with an approximate one. However,
careful scrutiny reveals that their theoretical guarantees are
rather restrictive, and do not demonstrate the benefits of
approximate SVD over exact projections. Due to lack of space,
please refer the recent survey [25] and references therein for
a comprehensive discussion.

All the aforementioned groups of algorithms suffer from
one (or more) of the following issues: expensive computa-
tional complexity, slow convergence rate, and troublesome
dependency on the matrix condition number. In this paper, we
resolve these problems by a renewed analysis of approximate
low-rank projection algorithms, and integrate this analysis to
obtain a new algorithm for optimizing general convex loss
functions with rank constraints.

III. ALGORITHM AND ANALYSIS
A. Preliminaries

For convenience, all our matrix variables will be of size
p X p, but our results extend seamlessly to rectangular matrices.
We use ||A||2 and | A||F for the spectral and Frobenius norm
of a matrix A, respectively. For any subspace W C RP*P, we
denote Py as the orthogonal projection operator onto it. Our
analysis will rely on the following definition [14], [26]:

Definition 1. A function [ satisfies the Restricted Strong
Convexity (RSC) and Restricted Strongly Smoothness (RSS)
conditions if for all Li,Ly € RP*P such that rank(L;) <
r,rank(Lg) < r, we have:

S = Lull < £(L2) — (L)
M,
—(Vf(L1), Ly = L) < <FllLe = Lalf - @)

where m, and M, are called the RSC and RSS constants
respectively.

Let U, be the set of all rank-r matrix subspaces of RP*P. We
will exclusively focus on low-rank approximation algorithms
that satisfy the following two properties:

Definition 2 (Approximate tail projection). Let € > 0. Then,
T : RPXP — U, is an approximate tail projection algorithm
if for all L € RP*P T returns a subspace Z = T (L) that
satisfies: ||L — PzL||r < (1 + €)||L — L.||r, where PzL =
ZZTL, and L, is the optimal rank-r approximation of L in
the Frobenius norm.

Definition 3 (Per-vector approximation guarantee). Let L €
RP*P, Suppose there is an algorithm that satisfies approximate
tail projection such that it returns a subspace Z with basis
vectors zi,%s,...,%, and approximate ratio €. Then, this
algorithm additionally satisfies the per-vector approximation
guarantee if |ul LLTw; — 2, LL" z;| < €0, where u;’s are
the eigenvectors of L.



Algorithm 1 MAPLE

Inputs: rank r, step size 7, approximate tail projection 7°
Outputs: Estimates L
Initialization: 1.0 < 0, t — 0
while ¢t < 7T do
L =T (Lt —nVF(LY))
t—t+1
end while
Return: L = L7

In this paper, we focus on the randomized Block Krylov
SVD (BKSVD) method for implementation of 7. This algo-
rithm has been proposed by [27] which satisfies both of these
properties with probability at least 99/100. However, one can
alternately use a recent algorithm called Lazy-PCA [28] with
very similar properties. For constant approximation factors
¢, the running time of these algorithms is given by O(p*r),
independent of any spectral properties of the input matrix.

As we discussed above, our goal is to solve the optimization
problem (1). The traditional approach is to perform projected
gradient descent: L'*! = P.(L'—nVF(L!)), where P.
denotes an exact projection onto the space of rank-r matrices,
and can be accomplished via SVD. However, for large p, this
incurs cubic running time and can be very challenging. To
alleviate this issue, one can instead attempt to replace the
full SVD in each iteration with a tail-approximate low-rank
projection; it is known that such projections can computed
in O(p?logp) time [29]. This is precisely our proposed
algorithm, which we call Matrix Approximation for Low-
rank Estimation (MAPLE), is described in pseudocode form
as Algorithm 1. This algorithm is structurally very similar
to [14], [24]. However, the proof of [14] requires exact low-
rank projections, and [24] is specific to least-squares loss
functions and with weak guarantees which scales up the
running time to O(p3). A key point is that our algorithm uses
approximate low-rank projections with parameter  such that
r > r*. As we show in Theorem 5, the combination of using
approximate projection, together with choosing a large enough
rank parameter r, enables efficient solution of problems of
the form (1) for any (given) restricted convexity/smoothness
constants M, m.

In our implementation of MAPLE, we invoke the BKSVD
method for low-rank approximation mentioned above®. As-
suming BKSVD as the approximate low-rank projection of
choice, we now prove a key structural result about the non-
expansiveness of 7. This result, to the best of our knowledge,
is novel and generalizes a recent result reported in [15], [16].
Please see [30] for the proof of all theoretical results.

Lemma 4. Forr > (14

)r* and for any matrices L, L* €

2We note that since the BKSVD algorithm is randomized while the defini-
tions of approximate tail projection and per-vector approximation guarantee
are deterministic. Fortunately, the running time of BKSVD depends only
logarithmically on the failure probability, and therefore an additional union
bound argument is required to precisely prove algorithmic correctness of our
method.

TABLE 1: Comparison of MAPLE with existing methods for
NLARM. & denotes the condition number of L*, and 9 denotes the
final optimization error. Sample complexity of all the algorithms is
given by n = O(pr™). We have presented for each algorithm the best
known running time result with bounded £ assumpﬂon

Algorithm Running Time

Convex [3] O(%)

NC-Reg [20] o)

Factorized [23]  O((p*r* + p” log p)r*log(%) + p®)
SVP [14] O(p’log(3))

MAPLE O(p*r*log plog(%))

RP*P with rank(L*) = r*, we have

2
V1—er—r*
where T : RP*P — U,. denotes the approximate tail projection

defined in Definition 2 and ¢ > 0 is the corresponding
approximation ratio.

IT(L) - L% < (1 n ) 1L - L3,

Using the above lemma, we provide our main theory sup-
porting the statistical and computational efficiency of MAPLE.

Theorem 5 (Linear convergence of MAPLE). Assume that
the objective function F(L) satisfies the RSC/RSS condi-
tions with parameters Mo, i~ and moyyp+. Define v =

1+ \/7 \/‘% Let J; denotes the subspace formed by

; torttl
the span of the column spaces of the matrices L, L'T1,

and L*, the solution of (1). In addition, assume that r >
1Cj€ (%;Tif:) r* for some C7 > 2. Choose step size as
n as 7114;‘12 <n< 1+\/j where o = x/ﬁ\/rw for
some o= O(r/r*) > 1. Then MAPLE outputs a sequence of

estimates Lt such that:

1L = L*||p < pllL' = L*||p + v0l|Ps, VE(L)l|F, (3)

where p = 1/\/1 + M3 m? = 2mapgen < 1.

The above theorem implies that no matter how large R is,
its effect is balanced by v through factor p in (3) by choosing
r > r*. Theorem 5 also guarantees the linear convergence
to L* up to the statistical property of L*, VF (L") p,
which determines the quality of the estimation.

B. Stylized Application: Nonlinear Matrix Recovery

Consider the nonlinear observation model y = g(A(L*)) +
e, where A is a linear operator, A : RP*P — R"™ parametrized
by n full rank matrices, A; € RP*? such that (A(L*));, =
(A;, L*) for i = 1,...,n. Also, e denotes an additive sub-
gaussian noise vector with i.i.d., zero-mean entries that is also
assumed to be independent of A (see [30] for more details).
If g(x) = =, we have the well-known matrix sensing problem
for which a large number of algorithms have been proposed.



The goal is to estimate the ground truth matrix L* € RP*? for
more general nonlinear link functions. In this paper, we assume
that link function g(z) is a differentiable monotonic function,
satisfying 0 < p1 < ¢'(x) < o for all x € D(g) (domain of
g). This assumption is standard in statistical learning [17] and
in nonlinear sparse recovery [26], [31], [32]. Also, as we will
discuss below, this assumption will be helpful for verifying
the RSC/RSS condition for the loss function that we define as
follows. We estimate L* by solving the optimization problem:
: IR
min F(D)= 5304 I) -l D)
s.t.  rank(L) <,

where © : R — R is chosen such that Q'(z) = g(z). * Due
assumption on the derivative of g, we see that F'(L) is a convex
function (actually strongly convex), and can be considered as
a special case of general problem in (1). We assume that the
design matrices A;’s are constructed as follows. Consider a
partial Fourier or partial Hadamard matrix X’ € R"*P* which
is multiplied from the right by a diagonal matrix, D, whose
diagonal entries are uniformly distributed over {—1,—}—1}1’2.
Call the resulting matrix X = X'D where each row is denoted
by X! € RP”. If we reshape each of these rows as a matrix,
we obtain “measurement” (or “design”) matrices A; € RP*P
for « = 1,...,m. This particular choice of design matrices
A;’s is because they support fast matrix-vector multiplication
which takes O(p?log(p)). The following theorem gives the
upper bound on the term, ||P;, VF(L*)||r, as a “statistical
error” term, and is zero in the absence of noise.

Theorem 6. Consider the observation model y = g(AL*)+e
described above. Let the number of samples scale as n =
O(pr polylog (p)), then with high probability, for any given
subspace J C RP*P: we have for t =1,...,T:

1+ 52r+r*
NG

where 0 < d9,1,« < 1 is a constant that depends on A.

[PsVEL)|F <

ell2, )

Putting together Theorem 5 and statistical bound in (5), by
starting from L% = 0, MAPLE provides an estimate of L* with
an error ¥ of within O(log(%)) iterations. Next, we verify the
assumption of RSC/RSS in Theorem 5.

Theorem 7 (RSC/RSS conditions for MAPLE). Let the
number of samples scaled as n = O(pr polylog(p)). Also,

assume that % < Cy(1— €)% for some Cy,w > 0 and
€ > 0 denotes the approximation ratio in algorithm 1. Then
with high probability, the loss function F(L) in (4) satisfies
RSC/RSS conditions with constants May .+ > p1(1 —w) and
Moyie < po(1 4+ w) in each iteration.

Sample complexity. By Theorem 7, the sample complexity
of MAPLE algorithm is given by n = O(pr polylog(p))
in order to achieve a specified estimation error. This sample
complexity is nearly as good as the optimal rate, O(pr).

3The objective function F'(L) in (4) is standard; see [32] for a discussion.

Time complexity. Each iteration of MAPLE needs to
compute the gradient, plus an approximate tail projection to
produce a rank-r matrix. Computing the gradient involves one
application of the linear operator A for calculating A(L), and
one application of the adjoint operator, i.e., A*(y — g(A(L)).
Let Ty and T .. denote the required time for these
operations, respectively. On the other hand, approximate tail

2
projection takes O (%) operations for achieving the

approximate ratio € According to [27]. Thanks to the linear
convergence of MAPLE, the total number of iterations for
achieving 1 accuracy is given by Tjyer = O (log (%))
Now define m = % Hence, the overall running time scales
2 ok __4 *
as T = O (Tt + T,y + 752 :klog”) (log 7HL19”F)> by
the choice of r according to Theorem 5. If we assume that the
design matrices A;’s are implemented via a Fast Fourier Trans-

form, computing T},,,1¢ = T, ., takes O(p?log p) operations.

mult
As aresult, T = O ((p2 logp + pzr*f/zlogp) (log “L;“F)).

In Table I, for g(z) = x and defined operator A, we
summarize the (asymptotic) running time of several algorithms
with a constant ratio of M /m for all the algorithms.

IV. EXPERIMENTAL RESULTS

We provide some experiments that show the efficiency of
MAPLE compared to existing approaches. Due to lack of
space, we refer to [30] for more synthetic simulations as
well as real data experiments. Here, the link function is set
to g(z) = 2z + sin(x); this function satisfies the derivative
conditions discussed above. We construct the ground truth
low-rank matrix L* with rank r* by generating a random
matrix U € RP*"" with entries drawn from the standard
normal distribution. We ortho-normalize the columns of U,
and set L* = UDU” where D € R” *"" is a diagonal matrix
with Dy = x(L*), and Dj; = 1 for j # 1. After this, we
apply a linear operator A on L*, ie., A(L*); = (A;, L")
where the choice of A; has been discussed above. Finally,
we obtain the measurements y = g(A(L*)). When reporting
noise robustness, we add a Gaussian noise vector e € R™ to
g(A(L*)). In Panel (a) and (b) of Figure 1, the running time
of the four algorithms are compared. For this experiment, we
have chosen p = 1000, and the rank of the underlying matrix
L* to be 50. We also set the projected rank as » = 50. The
number of measurements is set to n = 4pr. We consider a
well-conditioned matrix L* with x(L*) = 1.1 for (a) and
k = 20 for (b). Then we measure the relative error in
estimating of L* in Frobenius norm in log scale versus the
CPU time takes for 200 iterations for all of the algorithms.
We run the algorithms for 15 Monte Carlo trials. As we can
see, when & is small, FGD has comparable running time with
MAPLE (plot (a)); on the other hand, when we have ill-posed
L*, FGD takes much longer to achieve the same relative error
(plot (b)). Finally, we consider the noisy scenario in which the
observation y is corrupted by different Gaussian noise level.
The parameters are set as p = 300, » = 10, 25, 40 for MAPLE
and 10 for the others, r* = 10, n = 7pr, and k = 2. The
plot in Panel (c) shows the averaged over 50 trials of the
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2x + sin(x). (a) and (b) Average of the relative error in estimating L*. Parameters:
= 1.1. (b): k(L™) = 20. (c) Average of the relative error with different noise level.

Fig. 1: Comparisons with of algorithms with g(z) =
p = 1000, r* = r = 50, and n = 4pr. (a): k(L")
Parameters: p = 300, k = 2, andn = Tpr.
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