
Field Solutions of Parametric PDEs

Biswajit Khara1, Aditya Balu1, Ameya Joshi2,
Adarsh Krishnamurthy 2, Soumik Sarkar1, Chinmay Hegde2,

Baskar Ganapathysubramanian1

1 Department of Mechanical Engineering, Iowa State University
2 Department of Computer Science and Engineering, New York University

bkhara@iastate.edu, baditya@iastate.edu, ameya.joshi@nyu.edu, adarsh@iastate.edu, soumiks@iastate.edu,
chinmay.h@nyu.edu, baskarg@iastate.edu

Sd UdGnn

(a)

D

xi

ui

R

a b

Gnn

(b)

Figure 1: (a) In our DIFFNET approach, we train a neural network to produce a discretized field solution over a
mesh. Such an approach offers a direct link to powerful PDE analysis techniques, at the cost of a larger network.
(b) In contrast, neural methods (like (Lagaris, Likas, and Fotiadis 1998; Raissi, Perdikaris, and Karniadakis 2019))
are trained to produce point predictions: Gnn : D→ R, which are easier to train, but more difficult to analyze.

Abstract

We consider mesh based approaches for training neural net-
work to produce field predictions to parametric partial dif-
ferential equations (PDEs). This is in contrast to current ap-
proaches for ‘neural PDE solvers’ that employ collocation ap-
proaches to make point predictions of PDEs. Our approach
has advantages of (a) easier handling of various boundary
conditions, and (b) ease of invoking well developed PDE the-
ory – including analysis of numerical stability and conver-
gence – on discretized domains. On the other hand, an ob-
vious disadvantage is the network size required for produc-
ing field solutions. We explore such a strategy using two loss
functions based on (i) Finite Difference Method (FDM) and
(ii) Finite Element Method (FEM) on two canonical paramet-
ric PDEs. While the FDM loss is closely related to losses used
in recent PINN type approaches, the weighted galerkin loss
(FEM loss) is akin to an energy functional that produces im-
proved solutions, satisfies a priori mesh convergence, and can
model Neumann boudary conditions. These results suggest
that mesh based neural networks are promising approaches
for parametric PDEs.

1 Introduction
Numerical methods – finite difference methods (FDM), fi-
nite element methods (FEM), spectral methods – for solving
PDEs discretize the physical domain (into cells, elements,

Copyright © 2021, for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0)

ect) and approximate the solution over this discretized do-
main using select families of basis functions (Hughes 2012;
LeVeque 2007; Trefethen 2000). There is well developed
and elegant theory that connects the discretization of the do-
main (in terms of element/cell dimension, h) and the prop-
erties of the basis functions (in terms of polynomial order,
α) with the quality of the ensuing numerical solution to the
PDE. In particular, numerical stability arguments and a pri-
ori error estimates allow users to judiciously reason about
accuracy, robustness, and convergence (Brenner and Scott
2007; Larson and Bengzon 2013). Such theoretical argu-
ments rely on the spatial discretization of the domain, and
properties of the basis functions. Here, we formulate loss
functions and networks that produce field solutions of PDEs
(Fig. (1)(a)) – to be analogous with numerical PDE solvers –
in contrast to current neural PDE solvers that predominantly
produce point estimate (Fig (1)(b)).

In recent years data-driven (Rudy et al. 2019; Tompson
et al. 2017) and data-free approaches (Raissi, Perdikaris, and
Karniadakis 2019; Kharazmi, Zhang, and Karniadakis 2019;
Sirignano and Spiliopoulos 2018; Yang, Zhang, and Kar-
niadakis 2018; Pang, Lu, and Karniadakis 2019; Karumuri
et al. 2020; Han, Jentzen, and Weinan 2018; Michoski et al.
2019; Samaniego et al. 2020) for solving PDEs have been
proposed. Most of these models are designed for pointwise
prediction, i.e., the networks in these cases simply take as in-
put x and produces an output value of u, thereby calculating
the value of u at one particular point. Some of these methods
satisfy/apply the boundary conditions exactly (Lee and Kang

1990; Lagaris, Likas, and Fotiadis 1998; Malek and Bei-
dokhti 2006) and others do that in an approximate manner
(Lagaris, Likas, and Papageorgiou 2000; Raissi, Perdikaris,
and Karniadakis 2019; Sirignano and Spiliopoulos 2018).
Many of these methods do not require a mesh, and thus rely
on collocating points from the domain randomly. The meth-
ods that approximately satisfies the boundary conditions do
so by adding a loss function with respect to the specified
boundary conditions. It has been shown by (van der Meer,
Oosterlee, and Borovykh 2020) that these losses have to be
carefully weighted, making this an non-trivial exercise in
hyper parameter tuning. This underlines the difficulty of ap-
plying the boundary conditions in a neural network-based
method (or simply neural method).

Contributions: We build upon some recent efforts that
train networks to predict the full-field solution (Paganini,
de Oliveira, and Nachman 2018; Botelho et al. 2020; Zhu
et al. 2019). The specific contributions of this paper are :

1. We present an algorithm that is bridges traditional numer-
ical methods with neural methods. The neural network is
designed to map inputs to the discretized field solution
u. However, the neural network is not responsible for en-
suring the spatial differentiability of the solution. Rather,
the discrete field solution relies on traditional numeri-
cal methods (and associated numerical differentiation and
quadrature) for construction of the loss function. Such an
approach allows natural incorporation of different bound-
ary conditions, and allows a priori error estimates.

2. We define two loss functions based on FDM and FEM.
By setting up the loss function this way, we create the
function space with appropriate differentiability and also
account for the “local” nature of the solution.

3. We demonstrate DIFFNET’s performance on linear Pois-
son equation in 2D and steady heat transfer.

2 Formulations
Consider a bounded open (spatial) domain D ∈ Rn, n ≥ 2
with a Lipschitz continuous boundary Γ = ∂D. We will
denote the domain variable as x, where the underbar de-
notes a vector or tuple of real numbers. In Rn, we have
x = (x1, x2, . . . , xn); but for 2D and 3D domains, we will
use the more common notation x = (x, y) and x = (x, y, z)
respectively.

On this domain D, we consider an abstract PDE on the
function u : Ω→ R as:

N [u; s(x, ω)] = f(x), x ∈ D (1a)
B(u, x) = g(x), x ∈ Γ (1b)

whereN is a differential operator (possibly nonlinear) oper-
ating on a function u. The differential equation also depends
on the data of the problem swhich in turn is a function of the
domain variable x and parameter ω. Thus N is essentially a
family of PDE’s parameterized by ω.

2.1 Neural approximation of the solution
Instead of seeking a mapping between the domain and an
interval on the real line (Fig. (1)(b)), we seek a mapping be-

tween the input s and the full field solution u in the discrete
spaces (Fig. (1)(a)). Sd denotes the discrete representation
of the known quantity s. Sd could be either available only
at discrete points (perhaps from some experimental data); or
in many cases, s might be known in a functional form and
thus Sd will be simply the values of s evaluated on the dis-
crete points. Therefore, if we denote a DIFFNET (see Figure
(1)(a)) network by Gnn, then Gnn takes as input a discrete
or functional representation of s and outputs a discrete so-
lution field Udθ , where θ denote the network parameters. For
example, if we consider a PDE defined on a 2D bounded
domain, then Gnn simply takes a 2D matrix containing the
values of s and gives out the solution Udθ which is also a 2D
matrix.

An untrained network, as expected, will produce a map-
ping that does not satisfy the discrete PDE; in fact, it will
show a huge error. Our goal is to bring this error down to
an acceptable level, and thereby reaching a solution that is
“close enough” to the exact solution. And we do this by de-
signing the loss function based on major ideas taken from
the classical numerical methods. This is explained next.

2.2 Loss functions inspired by numerical methods
The design of the loss function, along with the choice of the
neural mapping, forms the “heart” of our approach. As ref-
erenced before, the loss functions are based on either FDM
and FEM discretization. We discuss both of these separately
below.

FDM based loss function Suppose the set X =
(x1, x2, .., xN) ∈ Rn×N denote a collection of points in
Rn that produces a (uniform) discretization of D. Define
Si = s(xi) and Ui an approximation of the unknown u(xi).
And as usual, we also define the vectors S = (S1, S2, .., SN)
and U = (U1, U2, .., UN). On this regularly spaced stencil,
the numerical derivatives can be approximately written in
terms of finite difference formulas.

Dru(xi) ≈
k2∑

j=−k1

cj(h)Uj (2)

whereD is a differential operator, r is the order or derivative,
c’s are known values (depends on the grid spacing h) and Ui
as explained above. k1 and k2 are some integers that follows
the choice of the stencil. Using the expressions of these finite
difference formulas, we can then write the discrete PDE at
each of the points in X . By writing N such equations, we
obtain an N -dimensional linear system. For a linear PDE,
this is easily written as:

ai1U1 + ai2U2 + . . .+ aiNUN = fi, i = 1, 2, ..., N int

(3a)

bi1U1 + bi2U2 + . . .+ biNUN = gi, i = 1, 2, ..., N bc

(3b)

Combining the interior and boundary equations, we can
write down the matrix form,

A U = f (4)

Page 2 of 7

The residual vector RFDM can then be defined as:

RFDM = A U − f (5)

The loss is then defined as the 2-norm of the residual vec-
tor,

LFDM = ‖RFDM‖2 (6)

FEM based loss function The FEM loss involves the
weakening of the PDE using an appropriate weighting func-
tions. As in the FDM case, we conside a discretization of the
domain D into a finite number of non-overlapping elements
denoted byQi, i = 1, 2, . . . , nel such that ∪neli Qi = D. The
unknown solution can be approximated as:

uhθ =

N∑
i=1

φi(x)(Ui)θ (7)

where φi are the finite element basis functions.
This approximation is plugged into the PDE, after which

we invoke Galerkin’s method. That is, multiply the PDE
with a test function and reduce the differentiability require-
ment on uh via integration by parts 1:∫

Ω

v
[
N (uhθ ; s)− f

]
dx = 0 ∀v ∈ V (8)

Which results in this following (standard FEM) form

B(v, uhθ)− L(v) = 0 ∀v ∈ V (9)

where B(v, uhθ) is the bilinear form that encodes the PDE,
while L(v) is the linear form that encodes the load and
boundary conditions. By choosing the test function to be the
(unknown) solution, uhθ , we get an energy functional whose
minima is the solution

J(uhθ) =
1

2
B(uhθ , u

h
θ)− L(uhθ) (10)

This energy functional accounts for the PDE as well as all
Neumann (and Robin) conditions. This serves as our loss
function.

2.3 Applying boundary conditions
In DIFFNET, the Dirichlet boundary conditions are applied
exactly. The query result Udθ from the network pertains only
to the interior of the domain. The boundary conditions need
to be taken into account separately. There are two ways of
doing this:

• Applying the boundary conditions exactly (this is possible
only for Dirichlet conditions in FEM/FDM; and the zero-
Neumann case in FEM)

• Taking the boundary conditions into account in the loss
function, thereby applying them approximately.

1For completeness, we assume uhθ ∈ V ⊂ H1(D) where
H1(D) denotes the Hilbert space of functions on D that have
square integrable first derivatives,

Algorithm 1 Algorithm for an instance of a PDE

Require: Sd, (Udθ)bc, α and TOL
1: Initialize Gnn
2: for epoch← 1 to max epoch do
3: (Udθ)int ← Gnn(Sd) . “int” stands for interior

nodes
4: (Udθ)← (Udθ)intχint + (Udθ)bcχb
5: loss = L(Udθ)
6: θ ← optimizer(θ, α,∇θ(loss))
7: end for

We take the first approach of applying the Dirichlet con-
ditions exactly (subject to the mesh). Since the network ar-
chitecture is well suited for 2d and 3d matrices (which serve
as adequate representation of discrete field in 2d/3d on reg-
ular geometry), the imposition of Dirichlet boundary condi-
tions amounts to simply padding the matrix by the appropri-
ate values. A zero-Neumann condition can be imposed by
taking the “edge values” of the interior and copying them as
the padding. A nonzero Neumann condition is slightly more
involved in the FDM case since additional equations need to
be constructed; but if using FEM loss, this can be done with
another surface integration on the relevant boundary.

2.4 Calculation of derivatives and integration
The derivatives in FDM are calculated by in-built convolu-
tion operations. DIFFNET takes an image representation of
the input field and returns another image for the solution.
Thus, the vector Udθ is represented as a matrix (or image)
in the code. There is an advantage of using this representa-
tion, which is that the derivative calculations can be made
very fast using convolution operations. The stencil size de-
termines the size of the kernel, and the FDM difference co-
efficients form the elements of the kernel. This convolution
is only performed within the loss function, and thus has no
relation to the convolutional neural network that is used to
approximate the solution. See Figure (2) and (3) for exam-
ple.

The same goes for the integration process in FEM. The
full domain integration (i.e.,

∫
D) is nothing but the sim-

ple sum of the integration over the individual elements (i.e.,∑Nel

i=1

∫
Di). This integration over an individual element is

in turn the simple weighted sum of the integrand evaluated
at the Gauss quadrature points. This evaluation at a single
Gauss point can be represented as convolution. Thus, if there
are 4 Gauss points in each element, then 4 convolution op-
erations will evaluate the integrand at those points for each
element. After that, we only need to sum across Gauss points
first, then followed by a sum across elements. See Figure (4)
and (5) for example.

2.5 Model architecture for DIFFNET

Due to the structured grid representation of Sd and similar
structured representation of Udθ , deep convolutional neural
networks are a natural choice of network architecture. The
spatial localization of convolutional neural networks helps

Page 3 of 7

e

d

c

b

a

1 2 3 4

Figure 2: A 5× 4 grid for applying finite difference method.

a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4

d1 d2 d3 d4

e1 e2 e3 e4



∗
0 1

h2 0

1
h2

−4
h2

1
h2

0 1
h2 0


=

z1 z2

z3 z4

z5 z6




(Udθ)M K (∆hU
d
θ)M

Figure 3: (Udθ)M ∈ R5×4 is the matrix view of Udθ ∈
R20, K ∈ R3×3 is the 5-point Laplacian kernel; and
(∆hU

d
θ)M ∈ R3×2 is the matrix view of the discrete Lapala-

cian ∆hU
d
θ ∈ R6. This figure shows the calculation of the

discrete derivatives using convolution operations. Specifi-
cally, it shows the calculation of the 5-pt Laplacian at the
(3, 2) location of the grid shown in Figure (2). We have,
z3 = +b2

(
1
h2

)
+ c1

(
1
h2

)
+ c3

(
1
h2

)
+ d2

(
1
h2

)
− c2

(
4
h2

)
is the discrete Laplacian value calculated at (3, 2). The con-
volution results in a Laplacian matrix that is reduced in size.
To keep the size same, padding can be applied on (Udθ)M .
This is discussed in (2.3).

1
2

3
4

e

d

c

b

a
1 2 3 4

Figure 4: (Left) A single 2D element in FEM, with black
dots denoting “nodes” and red dots denoting 2 × 2 Gauss
quadrature points. (Right) A finite element mesh, with 4× 3
linear elements and 5×4 nodes. Each of these elements con-
tains Gauss points for integration to be performed within that
element. Within each element, the “first” quadrature point
(marked “1” on left) is marked green, and others red.

Algorithm 2 Algorithm for parametric PDE

Require: Sd, (Udθ)bc, α and TOL
1: Initialize Gnn
2: for epoch← 1 to max epoch do
3: for mb← 1 to max mini batches do
4: Sample Sdmb from the set
5:
6: (Udθ)int,mb ← Gnn(Sdmb)
7: . “int” stands for interior nodes
8: (Udθ)mb ← (Udθ)int,mbχint + (Udθ)bcχb
9: lossmb = L(Udθ)

10: θ ← optimizer(θ, α,∇θ(lossmb))
11: end for
12: end for

a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4

d1 d2 d3 d4

e1 e2 e3 e4



∗
N1 N2

N3 N4

 =

• • •
• • •
• • •
• • •




(Udθ)M KGP1 ((Udθ)GP1
)M

Figure 5: Quadrature quantity evaluation in FEM context.
(Udθ)M is the matrix view of the nodal values.KGP1 is ker-
nel containing the basis function values at “gauss point -
1” (top left corner). This convolution results in the func-
tion values evaluated at the Gauss point “1” of each ele-
ment (marked green). (Udθ GP1)M is the matrix of this re-
sult. Function values (or their derivatives) evaluated at Gauss
points can then be used in any integral evaluation. For exam-
ple,

∫
uhdD = |J |

∑
I∈M

[∑4
i=1(wi(U

d
θ)GPi)M

]
, where

|J | is the transformation Jacobian for integration and w are
the quadrature weights.

in learning the interaction between the discrete points lo-
cally. Since, the network takes an input of a discrete grid
representation (similar to an image, possibly with multiple
channels) and predicts an output of the solution field of a
discrete grid representation (similar to an image, possibly
with multiple channels), this is considered to be similar to
a image segmentation or image-to-image translation task in
computer vision. U-Nets (Ronneberger, Fischer, and Brox
2015; Çiçek et al. 2016) have been known to be effective for
applications such as semantic segmentation and image re-
construction. Due to its success in diverse applications, we
choose U-Net architecture for DIFFNET.

2.6 Training algorithm for DIFFNET

We provide two versions of the training algorithm. (i) an al-
gorithm for computing the solution for an instance of a PDE
and (ii) an algorithm for approximating the solution for a
parametric PDE. The model architecture and the loss func-
tion remain the same for both. For solution for an instance,
we use a simple approach as explained in Algorithm (1).

Page 4 of 7

While sampling from a distribution of coefficients/forcing
field for a parametric PDE, we employ the mini-batch based
optimization approach as explained in Algorithm (2). The
sampling of the known quantities is performed by using
sobol sampling methodology. For training the neural net-
work, we predict the solution field using sampled inputs
and compute the loss using the FDM/FEM loss. We employ
Adam optimizer with a learning rate of 1E − 5 for perform-
ing the optimization of the neural network parameters, θ us-
ing the gradients obtained from the FDM/FEM loss.

3 Results
We present results from a canonical PDE in two and three
dimensions. Specifically, we consider the Poisson equation.

3.1 Linear Poisson’s equation in 2D with forcing
For the first illustration, we consider a very simple problem
of Poisson equation:

−∇ · (ν(x)∇u) = f(x) in D (11)
u|∂D = 0 (12)

where D = [0, 1]2, a 2D square domain, ν is the diffu-
sivity (or permeability) and is set to 1 for this problem.
The forcing f = f(x) = f(x, y) = 2π2 sin(πx) sin(πy).
The exact solution to this problem is given by uex(x, y) =
sin(πx) sin(πy). There are two ways to formulate this prob-
lem through DIFFNET architecture:

1. One way could be where we seek the mapping between
the diffusivity field (which, in this case is just a matrix of
1’s) and solution.

2. Or we could also seek the mapping between the forcing f
and the solution.

In either case, the loss function (irrespective of the dis-
cretization scheme) remains exactly the same, written as fol-
lows:

• FDM based loss:

R =

Nxy∑
i

‖∇ · [ν(xi]∇u(xi)) + f(xi)‖2 (13)

• weighted FEM based loss:

R =
1

2

∫
ν|∇u|2dx−

∫
ufdx (14)

In both cases, the Dirichlet boundary values are applied ex-
actly by “padding” the 2D image/matrix representation of
Udθ (see section (2.3)).

This problem is solved using DIFFNET according to the
training process described in (2.6). The input data (Sd),
discrete solution (Udθ) are shown in Figure (6) (the first
two columns). This figure also contains a reference solution
(column 3) calculated using a conventional (linear-system
based) finite element method and the difference between the
neural and numerical solution.

3.2 Poisson’s equation with parametric log
permeability

Our second illustration is a more practical one that is used
as a model for simulating heat or mass transfer through an
inhomogeneous media. The PDE and BC’s are given by: The
Poisson equation is given by

−∇ · (ν̃(x)∇u) = 0 in D (15)
u(0, y) = 1 (16)
u(1, y) = 0 (17)

∂u

∂n
= 0 on other boundaries (18)

where D = [0, 1]2 as in the example presented before; but ν̃
is now a function of x = (x, y), rather than being constant.

In this case, do not have any forcing, so we really have
only one set of data, which is ν̃. So, for this problem we
seek the mapping between ν̃ and u.

Note: When the diffusivity is constant, the mapping be-
tween the forcing and the solution is linear (the previous ex-
ample). But the mapping between u and ν̃ is not linear. This
can also be seen since ν̃ and u are multiplied together in the
PDE.

Here the diffusivity ν̃ is parametric, and is represented by
the following log permeability expression

ν̃(x;ω) = exp

(
m∑
i=1

ωiλiξi(x)ηi(y)

)
where ωi is anm-dimensional parameter, λ is a vector of real
numbers with monotonically decreasing values arranged in
order; and ξ and η are functions of x and y respectively. We
take m = 4, ω = [−3, 3]4 and λi = 1

(1+0.25a2i)
, where

a = (1.72, 4.05, 6.85, 9.82). Also ξi(x) = ai
2 cos(aix) +

sin(aix) and η(y) = ai
2 cos(aiy) + sin(aiy) The two sets of

loss expressions can be written as:

• FDM based loss

R =

Nxy∑
i

∥∥∇ · (ν(xi)∇u(xi))− f(xi)
∥∥2

(19)

• Integral based loss

R =

∫
ν̃|∇u|2dx (20)

In addition to Dirichlet conditions, we also have Neumann
conditions applied in this problem. Dirichlet conditions are,
once again, applied by padding the matrices. Neumann con-
ditions can pose a slight challenge. In general, applying Neu-
mann conditions in FDM results in an extra set of equa-
tions.. In FEM, especially in case of Poisson equation, Neu-
mann conditions are naturally taken into the resulting dis-
crete equations (no “extra” equations) in the form of sur-
face/boundary integrals.

But since we are given “zero-Neumann” conditions, we
take advantage of that, and apply it by replicating the values
adjacent to the boundaries to the boundaries. In case of FDM

Page 5 of 7

Figure 6: Solution to the linear Poisson’s equation with forcing. From left to right: f , uhθ , unum and (uhθ − unum). Here unum
is a conventional numerical solution obtained through FEM. Diffusivity ν = 1

Figure 7: An example of solution corresponding to the coefficients ω = (−0.26,−0.77,−0.37,−0.92) in the Poisson’s equation
with log permeability. From left to right: ν, uhθ , unum, (uhθ − unum)

Figure 8: (Poisson’s equation log permeability) Vertical line cuts of uhθ (u gen) and unum, at x = 0.2, 0.5, 0.8

Figure 9: Example of ν(x, y, z) and the solution uhθ (x, y, z) to the 3D Poisson’s problem with log permeability

loss, this strategy forms an approximate way of applying a
zero-Neumann condition, since the optimization algorithm
will have to “learn” this feature. But in case of FEM loss,
this is an exact imposition of the zero-Neumann conditions.

The Dirichlet boundary conditions are applied exactly.
Instead of one instance of solution, we attempt to learn the

distribution of the stochastic solution, given that the coeffi-
cients in the log permeability K-L sum come from a known
range of values that depends on the parameter space ω.

Figure (7) shows ν̃, uhθ , unum (a solution from a numer-
ical method, FEM in this case) and uhθ − unum. Figure (8)

shows vertical line cuts for uhθ and unum.

3-D Poisson’s equation We finally show the ability to
solve parametric PDE in 3D using the framework (Figure
(9)).

4 Conclusions
In this paper, we integrate neural PDE methods with numer-
ical methods by performing numerical differentiation (and
integration, if needed) instead of using the spatial differen-
tiability. We defined two loss functions (based on FDM and

Page 6 of 7

FEM), for obtaining the neural approximate mapping be-
tween inputs and the discretized field solution. We demon-
strate this framework’s performance on poisson equation in
2D, steady heat transfer. We see that the results obtained
from the neural PDE approximation (predicted) are match
very closely with actual ground truth numerical solution.

References
Botelho, S.; Joshi, A.; Khara, B.; Sarkar, S.; Hegde, C.;
Adavani, S.; and Ganapathysubramanian, B. 2020. Deep
Generative Models that Solve PDEs: Distributed Comput-
ing for Training Large Data-Free Models. arXiv preprint
arXiv:2007.12792 .
Brenner, S.; and Scott, R. 2007. The mathematical theory
of finite element methods, volume 15. Springer Science &
Business Media.
Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S. S.; Brox, T.; and
Ronneberger, O. 2016. 3D U-Net: learning dense volumetric
segmentation from sparse annotation. In International con-
ference on medical image computing and computer-assisted
intervention, 424–432. Springer.
Han, J.; Jentzen, A.; and Weinan, E. 2018. Solving high-
dimensional partial differential equations using deep learn-
ing. Proceedings of the National Academy of Sciences
115(34): 8505–8510.
Hughes, T. J. 2012. The finite element method: linear static
and dynamic finite element analysis. Courier Corporation.
Karumuri, S.; Tripathy, R.; Bilionis, I.; and Panchal, J. 2020.
Simulator-free solution of high-dimensional stochastic ellip-
tic partial differential equations using deep neural networks.
Journal of Computational Physics 404: 109120.
Kharazmi, E.; Zhang, Z.; and Karniadakis, G. E. 2019. Vari-
ational physics-informed neural networks for solving partial
differential equations. arXiv preprint arXiv:1912.00873 .
Lagaris, I. E.; Likas, A.; and Fotiadis, D. I. 1998. Artificial
neural networks for solving ordinary and partial differential
equations. IEEE transactions on neural networks 9(5): 987–
1000.
Lagaris, I. E.; Likas, A. C.; and Papageorgiou, D. G. 2000.
Neural-network methods for boundary value problems with
irregular boundaries. IEEE Transactions on Neural Net-
works 11(5): 1041–1049.
Larson, M. G.; and Bengzon, F. 2013. The finite ele-
ment method: theory, implementation, and applications, vol-
ume 10. Springer Science & Business Media.
Lee, H.; and Kang, I. S. 1990. Neural algorithm for solv-
ing differential equations. Journal of Computational Physics
91(1): 110–131.
LeVeque, R. J. 2007. Finite difference methods for ordinary
and partial differential equations: steady-state and time-
dependent problems. SIAM.
Malek, A.; and Beidokhti, R. S. 2006. Numerical solution
for high order differential equations using a hybrid neural
network—optimization method. Applied Mathematics and
Computation 183(1): 260–271.

Michoski, C.; Milosavljevic, M.; Oliver, T.; and Hatch,
D. 2019. Solving irregular and data-enriched differen-
tial equations using deep neural networks. arXiv preprint
arXiv:1905.04351 .
Paganini, M.; de Oliveira, L.; and Nachman, B. 2018. Calo-
GAN: Simulating 3D high energy particle showers in mul-
tilayer electromagnetic calorimeters with generative adver-
sarial networks. Physical Review D 97(1): 014021.
Pang, G.; Lu, L.; and Karniadakis, G. E. 2019. fPINNs:
Fractional physics-informed neural networks. SIAM Journal
on Scientific Computing 41(4): A2603–A2626.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Compu-
tational Physics 378: 686–707.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.
Rudy, S.; Alla, A.; Brunton, S. L.; and Kutz, J. N. 2019.
Data-driven identification of parametric partial differential
equations. SIAM Journal on Applied Dynamical Systems
18(2): 643–660.
Samaniego, E.; Anitescu, C.; Goswami, S.; Nguyen-Thanh,
V. M.; Guo, H.; Hamdia, K.; Zhuang, X.; and Rabczuk, T.
2020. An energy approach to the solution of partial dif-
ferential equations in computational mechanics via machine
learning: Concepts, implementation and applications. Com-
puter Methods in Applied Mechanics and Engineering 362:
112790.
Sirignano, J.; and Spiliopoulos, K. 2018. DGM: A deep
learning algorithm for solving partial differential equations.
Journal of computational physics 375: 1339–1364.
Tompson, J.; Schlachter, K.; Sprechmann, P.; and Perlin, K.
2017. Accelerating eulerian fluid simulation with convolu-
tional networks. In International Conference on Machine
Learning, 3424–3433. PMLR.
Trefethen, L. N. 2000. Spectral methods in MATLAB.
SIAM.
van der Meer, R.; Oosterlee, C.; and Borovykh, A. 2020.
Optimally weighted loss functions for solving PDEs with
Neural Networks. arXiv preprint arXiv:2002.06269 .
Yang, L.; Zhang, D.; and Karniadakis, G. E. 2018. Physics-
informed generative adversarial networks for stochastic dif-
ferential equations. arXiv preprint arXiv:1811.02033 .
Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; and Perdikaris,
P. 2019. Physics-constrained deep learning for high-
dimensional surrogate modeling and uncertainty quantifica-
tion without labeled data. Journal of Computational Physics
394: 56–81.

Page 7 of 7

