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Abstract

Compressive sensing (CS) is an alternative to Shannonfstysampling for acquisition of sparse or
compressible signals that can be well approximated by Just N elements from anV-dimensional
basis. Instead of taking periodic samples, we measure ipragtucts withM < N random vectors
and then recover the signal via a sparsity-seeking optiinizaor greedy algorithm. The standard CS
theory dictates that robust signal recovery is possiblmfid = O (K log(/N/K)) measurements. The
goal of this paper is to demonstrate that it is possible tostguttially decreas@/ without sacrificing
robustness by leveraging more realistic signal modelsgbdteyond simple sparsity and compressibility
by including dependencies between values and locatiorsedignal coefficients. We introduce a model-
based CS theory that parallels the conventional theory emddes concrete guidelines on how to create
model-based recovery algorithms with provable performanearantees. A highlight is the introduction
of a new class of model-compressible signals along with a sigfficient condition for robust model-
compressible signal recovery that we dub the restrictedifioapion property (RAmP). The RAMP is
the natural counterpart to the restricted isometry prgp@iP) of conventional CS. To take practical
advantage of the new theory, we integrate two relevant bigodels — wavelet trees and block sparsity
— into two state-of-the-art CS recovery algorithms and prthat they offer robust recovery from just
M = O (K) measurements. Extensive numerical simulations demadestra validity and applicability

of our new theory and algorithms.
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. INTRODUCTION

We are in the midst of a digital revolution that is enabling thevelopment and deployment
of new sensors and sensing systems with ever increasingyfidad resolution. The theoretical
foundation is the Shannon/Nyquist sampling theorem, whktales that a signal’s information is
preserved if it is uniformly sampled at a rate at least twaeBrfaster than its Fourier bandwidth.
Unfortunately, in many important and emerging applicagioie resulting Nyquist rate can be
so high that we end up with too many samples and must compresslér to store or transmit
them. In other applications the cost of signal acquisit®priohibitive, either because of a high
cost per sample, or because state-of-the-art samplertcachieve the high sampling rates
required by Shannon/Nyquist. Examples include radar intagind exotic imaging modalities
outside visible wavelengths.

Transform compression systems reduce the effective dimalgy of an N-dimensional
signal x by re-representing it in terms of a sparse set of coefficienta a basis expansion
xr = Wa, with ¥ an N x N basis matrix. By sparse we mean that oty < N of the
coefficientsa are nonzero and need to be stored or transmitted. By conipleesge mean that
the coefficientsy, when sorted, decay rapidly enough to zero thatn be well-approximated as
K-sparse. The sparsity and compressibility properties areagive in many signals of interest.
For example, smooth signals and images are compressilihe iRdurier basis, while piecewise
smooth signals and images are compressible in a wavelet figsithe JPEG and JPEG2000
standards are examples of practical transform compresyistiems based on these bases.

Compressive sensin@CS) provides an alternative to Shannon/Nyquist samplitgrwthe
signal under acquisition is known to be sparse or compries$ih-4]. In CS, we measure
not periodic signal samples but rather inner products with< N measurement vectors. In
matrix notation, the measuremenjs= &x = ®Va, where the rows of thél/ x N matrix
® contain the measurement vectors. While the madrik is rank deficient, and hence loses
information in general, it can be shown to preserve the méiron in sparse and compressible
signals if it satisfies the so-calle@stricted isometry propertyRIP) [3]. Intriguingly, a large
class of random matrices have the RIP with high probability.recover the signal from the

compressive measurementswe search for the sparsest coefficient vectothat agrees with
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the measurements. To date, research in CS has focused ifyriorareducing both the number
of measurements/ (as a function ofV and K) and on increasing the robustness and reducing
the computational complexity of the recovery algorithmdags state-of-the-art CS systems
can robustly recovef(-sparse and compressible signals from just= O (K log(N/K)) noisy
measurements using polynomial-time optimization sohegrgreedy algorithms.

While this represents significant progress from Nyquist-isampling, our contention in this
paper is that it is possible to do even better by more fullgtaging concepts from state-of-the-
art signal compression and processing algorithms. In macly algorithms, the key ingredient is
a more realistisignal modethat goes beyond simple sparsity by codifying the interetielency
structureamong the signal coefficients.! For instance, JPEG2000 and other modern wavelet
image coders exploit not only the fact that most of the wavebefficients of a natural image
are small but also the fact that the values and locationseofdige coefficients have a particular
structure. Coding the coefficients according to a modelt $tructure enables these algorithms
to compress images close to the maximum amount possiblenHisantly better than a naive
coder that just processes each large coefficient indepépnden

In this paper, we introduce a model-based CS theory thatlglarthe conventional theory and
provides concrete guidelines on how to create model-bassalvery algorithms with provable
performance guarantees. By reducing the degrees of freedcasparse/compressible signal
by permitting only certain configurations of the large andozamall coefficients, signal models
provide two immediate benefits to CS. First, they enable usdace, in some cases significantly,
the number of measuremenid required to stably recover a signal. Second, during signal
recovery, they enable us to better differentiate true sgigrfarmation from recovery artifacts,
which leads to a more robust recovery.

To precisely quantify the benefits of model-based CS, wedhice and study several new
theoretical concepts that could be of more general intevéstbegin with signal models fak -

sparse signals and make precise how the structure encodesignal model reduces the number

1Obviously, sparsity and compressibility correspond topsisignal models where each coefficient is treated indegrehyd
for example in a sparse model, the fact that the coefficignis large has no bearing on the size of amy, j # i. We will
reserve the use of the term “model” for situations where vweeemforcing dependencies between the values and the lesatio

of the coefficientsy;.



of potential sparse signal supportsanThen using thenodel-based restricted isometry property
(RIP) from [5, 6], we prove that suamodel-sparse signaksan be robustly recovered from noisy
compressive measurements. Moreover, we quantify the negjuiumber of measuremenig

and show that for some modeld is independent ofV. These results unify and generalize
the limited related work to date on signal models for styicdparse signals [5-9]. We then
introduce the notion of aodel-compressible signalvhose coefficients: are no longer strictly
sparse but have a structured power-law decay. To estabigmtodel-compressible signals can
be robustly recovered from compressive measurements, werageze the CS RIP to a new
restricted amplification propertyRAmMP). For some compressible signal models, the required

number of measurementd is independent ofV.

To take practical advantage of this new theory, we dematestiaw to integrate signal models
into two state-of-the-art CS recovery algorithms, CoSaNl®)| fand iterative hard thresholding
(IHT) [11]. The key modification is surprisingly simple: weenely replace the nonlinear ap-
proximation step in these greedy algorithms with a modekdaapproximation. Thanks to our
new theory, both new model-based recovery algorithms heweaple robustness guarantees for

both model-sparse and model-compressible signals.

To validate our theory and algorithms and demonstrate neigeé applicability and utility, we
present two specific instances of model-based CS and coadange of simulation experiments.
The first model accounts for the fact that the large wavelefffaients of piecewise smooth
signals and images tend to live on a rooted, connetésdstructurg12]. Using the fact that the
number of such trees is much smaller tk@b the number ofK-sparse signal supports iN
dimensions, we prove that a tree-based CoSaMP algorithdsredy M/ = O (K) measurements
to robustly recover tree-sparse and tree-compressiblaalsigFigure 1 indicates the potential

performance gains on a tree-compressible, piecewise $nsagnal.

The second model accounts for the fact that the large cagftciof many sparse signals cluster
together [7, 8]. Such a so-callddock sparsemodel is equivalent to @int sparsitymodel for
an ensemble of/, length+V signals [9], where the supports of the signals’ large caefits are
shared across the ensemble. Using the fact that the numbkrstéred supports is much smaller
than ("), we prove that a block-based CoSaMP algorithm needslahly O (K + & log(2X))
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(a) test signal (b) CoSaMP (RMSE 1.123)

(c) ¢1-optimization (RMSE= 0.751) (d) model-based recovery (RMSE 0.037)

Fig. 1. Example performance of model-based signal recovery. geiiise-smoothleaviSinetest signal of length

N = 1024. This signal is compressible under a connected wavelettoetel. Signal recovered froM = 80 random
Gaussian measurements using (b) the iterative recovenyithign CoSaMP, (c) standafd linear programming, and
(d) the wavelet tree-based CoSaMP algorithm from Sectiolm ¥l figures, root mean-squared error (RMSE) values

are normalized with respect to the norm of the signal.

measurements to robustly recover block-sparse and blotipessible signals. Moreover, as the
number of signals/ grows large, the number of measurements approathes O (K).

Our new theory and methods relate to a small body of previook \eaimed at integrating
signal models with CS. Several groups have developed nspaific signal recovery algorithms
[5—8, 13—15]; however, their approach has either been adohndocused on a single model
class. Previous work on unions of subspaces [5, 6] has fdceselusively on strictly sparse
signals and has not considered feasible recovery algasitfimthe best of our knowledge, our
general framework for model-based recovery, the concejgt wiodel-compressible signal, and
the associated RAmP are new to the literature.

This paper is organized as follows. A review of the CS thearySection Il lays out the
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foundational concepts that we extend to the model-basedinagibsequent sections. Section Ill
develops the concept of model-sparse signals and intrgdheeconcept of model-compressible
signals. We also quantify how signal models improve the megsent and recovery process
by exploiting the model-based RIP for model-sparse sigaats by introducing the RAmMP for
model-compressible signals. Section IV indicates how tetCoSaMP to incorporate model
information and establishes its robustness propertiesnimiel-sparse and model-compressible
signals. Sections V and VI then specialize our theory to thecisl cases of wavelet tree and
block sparse signal models and report on a series of nurhexperiments that validate our
theoretical claims. We conclude with a discussion in Sechil. To make the paper more

readable, all proofs are relegated to a series of appendices

II. BACKGROUND ONCOMPRESSIVESENSING

A. Sparse and compressible signals

Given a basis{w,;}¥ ,, we can represent every signale RY in terms of N coefficients
{a;}, asz = 3N, a,;9; stacking they; as columns into theV x N matrix ¥, we can write
succinctly thatr = Wa. In the sequel, we will assume without loss of generalityt tha signal
x IS sparse or compressible in the canonical domain so thatpgaesity basisl is the identity
anda = z.

A signal x is K-sparseif only K < N entries ofz are nonzero. We call the set of indices
corresponding to the nonzero entries twpportof x and denote it by sugp). The set of all
K-sparse signals is the union of tlﬁg) K-dimensional subspaces aligned with the coordinate
axes inRY. We denote this union of subspaces Yy.

Many natural and manmade signals are not strictly sparse;dsube approximated as such;
we call such signalsompressibleConsider a signat whose coefficients, when sorted in order

of decreasing magnitude, decay according to the power law
27| < ST, i=1,...,N, (1)

whereZ indexes the sorted coefficients. Thanks to the rapid decapeif coefficients, such

signals are well-approximated bif-sparse signals. Lety € Y represent the besk-term
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approximation ofz, which is obtained by keeping just the firsf terms inxzz; from (1).

Denote the error of this approximation in thenorm as
ok (x)p = arg min ||z — [, = [lz — 2|, (2)
TEXK

1/
where thel, norm of the vector: is defined ad|z||, = <Zf\i1 |xi\f’> " for 0 < p < oo. Then,
we have that

ox(x), < (rs) P SK, 3)

with s = % — % That is, when measured in tife norm, the signal’s best approximation error
has a power-law decay with exponenas K increases. We dub such a sigeatompressible
The approximation of compressible signals by sparse sgedhe basis ofransform coding
as is used in algorithms like JPEG and JPEG2000 [1]. In tlasyéwork, we acquire the full
N-sample signak; compute the complete set of transform coefficientgia o = ¥~'z; locate
the K largest coefficients and discard th& — K') smallest coefficients; and encode the
values and locations of the largest coefficients. While aelyiciccepted standard, this sample-
then-compress framework suffers from three inherent itieficies: First, we must start with
a potentially large number of sampl@s even if the ultimate desired” is small. Second, the
encoder must compute all of th¥ transform coefficientsy, even though it will discard all
but K of them. Third, the encoder faces the overhead of encodiagdtations of the large

coefficients.

B. Compressive measurements and the restricted isomaipegy (RIP)

Compressive sensing (CS) integrates the signal acquisitid compression steps into a single
process [2—4]. In CS we do not acquirelirectly but rather acquiré/ < N linear measurements
y = ®x using anM x N measurement matrik. We then recover: by exploiting its sparsity or
compressibility. Our goal is to push/ as close as possible # in order to perform as much
signal “compression” during acquisition as possible.

In order to recover a good estimate of (the K largestz;’s, for example) from theM
compressive measurements, the measurement mhtskould satisfy theestricted isometry
property (RIP) [3].



Definition 1: An M x N matrix & has the K-restricted isometry property/i-RIP) with

constantyy if, for all x € Y,

(1= dr)llll3 < 1 Pzll3 < (1 + 0k 13- (4)
In words, the K-RIP ensures that all submatrices of of size M x K are close to an
isometry, and therefore distance (and information) pxesgr Practical recovery algorithms
typically require thatb have a slightly stronger K -RIP, 3K -RIP, or higher-order RIP in order to
preserve distances betweénsparse vectors (which agd<-sparse in general), three-way sums
of K-sparse vectors (which ag#(-sparse in general), and other higher-order structures.
While the design of a measurement matrx satisfying the K-RIP is an NP-Complete
problem in general [3], random matrices whose entries am iGaussian, BernoulliH1),
or more generally subgaussfawork with high probability providedV/ = O (K log(N/K)).
These random matrices also have a so-calletversality property in that, for any choice of
orthonormal basis matrixt, ¥ has the K-RIP with high probability. This is useful when
the signal is sparse not in the canonical domain but in bé&sig random® corresponds to
an intriguing data acquisition protocol in which each measwenty; is a randomly weighted

linear combination of the entries af

C. Recovery algorithms

Since there are infinitely many signal coefficient vectofsthat produce the same set of
compressive measuremenjs= &z, to recover the “right” signal we exploit our a priori
knowledge of its sparsity or compressibility. For exampies could seek the sparsestthat
agrees with the measurements

xr = arg min ||2’||o, (5)
y=ox’

where thel, “norm” of a vector counts its number of nonzero entries. Wihilis optimization
can recover d{-sparse signal from just/ = 2K compressive measurements, it is unfortunately
a combinatorial, NP-Complete problem; furthermore, th@very is not stable in the presence

of noise.

?A random variableX is called subgaussian if there exists- 0 such thaE (e**) < e /2 for all t € R. Examples include

the Gaussian and Bernoulli random variables, as well as aopded random variable. [16]
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Practical, stable recovery algorithms rely on the RIP (ametdfore require at leas/ =
O (Klog(N/K)) measurements); they can be grouped into two camps. The figbach
convexifies the/, optimization (5) to the/; optimization

r = arg min ||2/|;. (6)
y=ox’

This corresponds to a linear program that can be solved ynpatial time [2, 3]. Adaptations to
deal with additive noise iy or = include basis pursuit with denoising (BPDN) [17], comptegxi
based regularization [18], and the Dantzig Selector [19].

The second approach finds the sparsesigreeing with the measuremenjsthrough an
iterative, greedy search. Algorithms such as matching yitirerthogonal matching pursuit
[20], StOMP [21], iterative hard thresholding (IHT) [11],06aMP [10], and Subspace Pursuit
(SP) [22] all revolve around a bestterm approximation for the estimated signal, witlvarying

for each algorithm.

D. Performance bounds on signal recovery

Given M = O (K log(N/K)) compressive measurements, a number of different CS signal
recovery algorithms, including all of thé techniques mentioned above and the CoSaMP, SP,
and IHT iterative techniques, offer provably stable sigreadlovery with performance close to
optimal K-term approximation (recall (3)). For a randaimnall results hold with high probability.

For a noise-free K-sparse signal, these algorithms offer perfect recovepammg that the
signalx recovered from the compressive measuremegntsdx is exactlyxr = x.

For a K-sparse signat whose measurements are corrupted by neigg bounded norm —

that is, we measurg = &x + n — the mean-squared error of the recovered sighal
|z = [z < Cf|nlf2, (7

with C' a small constant [2, 3, 10, 11].
For an s-compressible signat whose measurements are corrupted by neisg bounded

norm, the mean-squared error of the recovered signall

|z —Zll2 < Cillz — zkll2 + Co—=|lz — zklli + Cs|n[. (8)

L
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Using (3) we can simplify this expression to

Ci1SK—* N CoSK—*
V/2s s—1/2

[ =[], < + Cslln]2. (9)

1. BEYOND SPARSE AND COMPRESSIBLESIGNALS

While many natural and manmade signals and images can belsesto first-order as sparse
or compressible, the support of their large coefficientsroftas an underlying inter-dependency
structure. This phenomenon has received only limited atterby the CS community to date [5—
8,13-15]. In this section, we introduce a model-based thebCS that captures such structure.
A model reduces the degrees of freedom of a sparse/compeessgnal by permitting only
certain configurations of supports for the large coefficiéxg we will show, this allows us to
reduce, in some cases significantly, the number of compeesseasurementsd/ required to

stably recover a signal.

A. Model-sparse signals

Recall from Section II-A that d-sparse signal vectar lives in Xx C RY, which is a union
of (g) subspaces of dimensioli. Other than itsiK-sparsity, there are no further constraints
on the support or values of its coefficients.signal modelendows thek-sparse signat with
additional structure that allows certaiti-dimensional subspaces Yy, and disallows others [5,
6].

To state a formal definition of a signal model, l8t, represent the entries afcorresponding
to the set of indice$2 C {1,..., N}, and letQ“ denote the complement of the get

Definition 2: A signal modelM  is defined as the union ofix canonical K-dimensional
subspaces

mic

My = U X,,, such that¥,, := {z : z

m=1

Qm € RK#AQ% = 0}7

m

where each subspacg, contains all signals: with supp(z) € €,,. Thus, the modeM x is
defined by the set of possible suppofts,, ..., 2, }.
Signals from M are called/K-model sparseClearly, M C ¥ and containgny < (g)

subspaces.
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In Sections V and VI below we consider two concrete modelssfmrse signals. The first
model accounts for the fact that the large wavelet coeffisiefi piecewise smooth signals and
images tend to live on a rooted, connectezk structure[12]. The second model accounts for

the fact that the large coefficients of sparse signals aftestertogether [7-9].

B. Model-based RIP

If we know that the signak being acquired ig<-model sparse, then we can relax the RIP
constraint on the CS measurement madriand still achieve stable recovery from the compressive
measurementg = dx [5, 6].

Definition 3: [5,6] An M x N matrix ® has theM -restricted isometry propertyM x-RIP)

with constantd,,,. if, for all = € Mg, we have

(1= a2l < 12213 < (1 + dane) 2. (10)
To obtain a performance guarantee for model-based recafefy-model sparse signals in
additive measurement noise, we must define an enlarged ohisubspaces that includes sums
of elements in the model.

Definition 4: The B-Minkowski sunfor the setM, with B > 1 an integer, is defined as

B
ME =S = Zx(’”), with 2 e Mg 5.
r=1
Define Mp(z, K) as the algorithm that obtains the best approximation: @i the enlarged

union of subspaces1%:

Mp(z, K) = arg min |z — Z||2
z K

We write M(z, K) := M;(x, K) when B = 1. Note that for many models, we will have
ME c Mpg, and so the algorithivi(z, BK') will provide a strictly better approximation than
Mp(z, K).

Our performance guarantee for model-sparse signal regowbirequire that the measurement
matrix ® be a near-isometry for all subspacesAt? for someB > 1. This requirement is a
direct generalization of the K-RIP, 3K-RIP, and higher-order RIPs from the conventional CS
theory.
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Blumensath and Davies [5] have quantified the number of measnts)/ necessary for a
random CS matrix to have th&1 -RIP with a given probability.
Theorem 1: [5] Let Mg be the union ofny subspaces of<-dimensions inRY. Then, for

anyt > 0 and any

M > 22 ln(QmK)%—Klnith ,

anM x N i.i.d. subgaussian random matrix has k&, -RIP with constant ., with probability
at leastl — e™".

This bound can be used to recover the conventional CS regugubstitutingm = (g) ~
(Ne/K)X. The Mg-RIP property is sufficient for robust recovery of model+sgasignals, as

we show below in Section IV-B.

C. Model-compressible signals

Just as compressible signals are “neaHysparse” and thus live close to the union of
subspace&x in RY, model-compressible signals are “neaffymodel sparse” and live close
to the restricted union of subspac#d. In this section, we make this new concept rigorous.
Recall from (3) that we defined compressible signals in teoinghe decay of theirkK-term
approximation error.

The ¢, error incurred by approximating € R by the best model-based approximation in
My is given by

Out (@) = inf o — 22 = [lo — Mz, K)l2.

The decay of this approximation error defines the model-cesygibility of a signal.

Definition 5: The set ofs-model-compressible signails defined as
M, ={reRY :op(x) < SK 1<K <N,S <oo}.

Define |z|on, as the smallest value @f for which this condition holds for and s.
We say thatr € 91, is an s-model-compressible signaihder the signal modeM . These
approximation classes have been characterized for cesigival models; see Section V for an

example.
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D. Nested model approximations and residual subspaces

In conventional CS, the same requirement (RIP) is a sufficamdition for the stable
recovery of both sparse and compressible signals. In muaksd recovery, however, the class
of compressible signals is much larger than that of spaigeals, since the set of subspaces
containing model-sparse signals does not spai alimensional subspaces. Therefore, we need
to introduce some additional tools to develop a sufficiemditon for the stable recovery of
model-compressible signals.

We will pay particular attention to models1, that generateested approximationsince
they are more amenable to analysis.

Definition 6: A model M = { M, M,, ...} has thenested approximation propertiNAP) if
supp(M(z, K)) C supp(M(x, K")) for all K < K’ and for allz € R".

In words, a model generates nested approximations if thpastipf the bestK’-term model-
based approximation contains the support of the bes¢rm model-based approximation for all
K < K'. An important example of a NAP model is the standard compessignal model of
(3).

When a model obeys the NAP, the support of the difference d@twhe besi K -term model-
based approximation and the bégt+ 1) K-term model-based approximation of a signal can be
shown to lie in a small union of subspaces, thanks to the tstrei@nforced by the model. This
structure is captured by the set of subspaces that are ettindeach subsequent approximation,
as defined below.

Definition 7: The j* set ofresidual subspacesf size K is defined as
R;x(M) = {u € R" such that u = M(z,jK) — M(z, (j — 1)K) for somez € RV},

forj=1,...,[N/K].

Under the NAP, each signalin a model can be partitioned into its bdstterm approximation
xr,, the additional components present in the &stterm approximation:r,, and so on, with
T = ZJU:V{K] vy, andzr, € R; k(M) for eachj. Each signal partition, is a K-sparse signal,
and thusR; x (M) is a union of subspaces of dimensianh We will denote byR; the number

of subspaces that compo®g x (M) and omit the dependence dv in the sequel for brevity.
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Intuitively, the norms of the partition§zr, ||, decay as; increase for signals that are
compressible under the model. As the next subsection shhisspbservation is instrumental in
relaxing the isometry restrictions on the measurementimétand bounding the recovery error

for s-model-compressible signals when the model obeys the NAP.

E. The restricted amplification property (RAmMP)

For exactly K-model-sparse signals, we discussed in Section 1lI-B that number of
compressive measuremenmts required for a random matrix to have thd -RIP is determined
by the number of canonical subspaceg via (11). Unfortunately, such model-sparse concepts
and results do not immediately extend to model-compresssiynals. Thus, we develop a
generalization of theM x-RIP that we will use to quantify the stability of recovery fimodel-
compressible signals.

One way to analyze the robustness of compressible signalegec in conventional CS is
to consider the tail of the signal outside ifS-term approximation as contributing additional
“noise” to the measurements of sigé(x — z)||2 [10, 11, 23]. Consequently, the conventional
K-sparse recovery performance result can be applied witlwulenented noise + ¢ (x — zg).

This technique can also be used to quantify the robustnesaoalel-compressible signal
recovery. The key quantity we must control is the amplifmatf the model-based approximation
residual throughb. The following property is a new generalization of the RIF amodel-based
RIP.

Definition 8: A matrix ® has the(eg, r)-restricted amplification propertyRAmP) for the

residual subspaceR; x of model M if
1Pull < (1 + ex)* [lull; (11)

for anyu € R; i for eachl < j < [N/K].

The regularity parameter > 0 caps the growth rate of the amplification ofc R, x as a
function of ;. Its value can be chosen so that the growth in amplificatiai wibalances the
decay of the norm in each residual subsp&ge, with j.

We can quantify the number of compressive measureméntgequired for a random

measurement matri® to have the RAmP with high probability; we prove the follogim
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Appendix II.

Theorem 2:Let ® be anM x N matrix with i.i.d. subgaussian entries and let the set atites
subspace® ; x of model M containR; subspaces of dimensidid for eachl < j < [N/K].
If

1 N
M> max . <2K am BN 2t) , (12)
IGSIN/KT (57 /T + e — 1) K

then the matrix® has the(ex, r)-RAMP with probabilityl — e~*.

The order of the bound of Theorem 2 is lower th@ K log(N/K)) as long as the number of
subspaces; grows slower tharVX. Armed with the RaMP, we now prove the following result,
which will provide robustness for the recovery of model-qguessible signals; see Appendix IlI
for the proof.

Theorem 3:Let x € 91, be ans-model compressible signal under a modédl| that obeys the
NAP. If ® has the(ex,r)-RAMP andr = s — 1, then we have

19(z — Mz, K))||» < vIF ek~ In %W 2

M -

IV. MODEL-BASED SIGNAL RECOVERY ALGORITHMS

To take practical advantage of our new theory for model-t&38, we demonstrate how to
integrate signal models into two state-of-the-art CS regpalgorithms, CoSaMP [10] (in this
section) and iterative hard thresholding (IHT) [11] (in Agelix 1V). The key modification is
simple: we merely replace the bdstterm approximation step in these greedy algorithms with a
bestK -term model-based approximation. Since at each iterateneed only search over thex
subspaces oM  rather thar(%) subspaces of -, fewer measurements will be required for the
same degree of robust signal recovery. Or, alternativeipgithe same number of measurements,
more accurate recovery can be achieved. After presentmgntbdified CoSaMP algorithm, we

prove robustness guarantees for both model-sparse and-powudpressible signals.

A. Model-based CoSaMP

We choose to modify the CoSaMP algorithm [10] for two reaséinst, it has robust recovery
guarantees that are on par with the best convex optimizateed approaches. Second, it
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Algorithm 1 Model-based CoSaMP
Inputs: CS matrixd, measurementg, model M

Output: K -sparse approximation to true signak:
Zo =0, r =y, i =0 {initialize}
while halting criterion falsedo
1—1+1
e — ®Tr {form signal residual estimate
Q0 — supp(My(e, K)) {prune signal residual estimate according to signal model
T — QUsupp(x;_1) {merge supporis
blr — Ly, blyc — 0 {form signal estimate
z; < M(b, K) {prune signal estimate according to signal médel
r «— y — &x; {update measurement residpal
end while

returnz « z;

has a simple iterative, greedy structure based on a BéStterm approximation (withB a
small integer) that is easily modified to incorporate a le&t-term model-based approximation
Mp (K, ). Pseudocode for the modified algorithm is given in Algorithm

We now study the performance of model-based CoSaMP sigealveey on model-sparse

signals and model-compressible signals.

B. Performance of model-sparse signal recovery

A robustness guarantee for noisy measurements of modedespgnals can be obtained using
the model-based RIP (10). The following theorem is proveAppendix V.

Theorem 4:Let x € Mg and lety = &z + n be a set of noisy CS measurements®lhas
an M4-RIP constant ob < 0.1, then the signal estimaté obtained from iteration of the

model-based CoSaMP algorithm satisfies

lz = Zill2 < 27" [|zll2 + 15]|n]2. (13)
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C. Performance of model-compressible signal recovery

Using the new tools introduced in Section lll, we can proval@obustness guarantee for
noisy measurements of model-compressible signals, usiagRAMP as a condition on the
measurement matris.

Theorem 5:Let x € M, be ans-model-compressible signal from a model that obeys the
NAP, and lety = ®x + n be a set of noisy CS measurements®lthas the M%-RIP with
dpms. < 0.1 and the(ex, r)-RAMP with ex < 0.1 andr = s — 1, then the signal estimatg;

obtained from iteration of the model-based CoSaMP algorithm satisfies

lz = Zill2 < 27"||2ll2 + 35 (Inll2 + @l K *(1 + In[N/KT)) . (14)

To prove the theorem, we first bound the recovery error fos-amodel-compressible signal
x € M, when the matrixd has the(ex, r)-RAMP with » < s — 1. Then, using Theorems 3
and 4, we can easily prove the result by following the analsgaroof in [10].

D. Robustness to model mismatch

We now analyze the robustness of model-based CS recovenpdel mismatchwhich occurs
when the signal being recovered from compressive measutsmees not conform exactly to
the model used in the recovery algorithm.

We begin with optimistic results for signals that are “clos® matching the recovery model.
First consider a signal that is not/K’-model sparse as the recovery algorithm assumes but rather
(K + k)-model sparse for some small integer This signal can be decomposed intg, the
signal’s K-term model-based approximation, amd- x, the error of this approximation. For
xk < K, we have that: —zx € R, k. If the matrix® has the(eg, r)-RAmMP, then it follows than

|P(x — k)|l < 2"V1 + ekl — 2K ||2. (15)

Using equations (13) and (15), we obtain the following gongea for theit" iteration of model-
based CoSaMP:

o = &ill2 < 277 lalla + 16 - 2 VI F enlla — a2 + 15]Inlo.
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By noting that||z — ||, is small, we obtain a guarantee that is close to (13).
Second, consider a signathat is nots-model compressible as the recovery algorithm assumes
but rather(s —¢)-model compressible. The following bound can be obtainetkuthe conditions
of Theorem 5 by modifying the argument in Appendix III:
. i s N/K|c—1
o= 3l < 2ol 35 (Il + elan & (14 25 E2) )

€

As ¢ becomes smaller, the facté?“I"=! approachesog[N/K1, matching (14). In summary,
as long as the deviations from the model-sparse and modghessible models are small, our
model-based recovery guarantees still apply within a sb@linded constant factor.

We end with a more pessimistic, worst-case result for sgtizht are arbitrarily far away
from model-sparse or model-compressible. Consider sudrlgitraryx € RY and compute its
nested model-based approximationg = M(x,jK), j = 1,...,[N/K]. If z is not model-
compressible, then the model-based approximation etfpfx) is not guaranteed to decay as
decreases. Additionally, the number of residual subspRGescould be as large a@f) that is,
the j** difference between subsequent model-based approxinsation= ;i — x(;j_1)x Might
lie in any arbitrary K -dimensional subspace. This worst case is equivalent tmget= 0 and
R; = (¥) in Theorem 2. It is easy to see that this condition on the nurnobeneasurements
M is nothing but the standard RIP for CS. Hence, if inflate thenlber of measurements to
M = O (K log(N/K)) (the usual number for conventional CS), the performanceaxfelxbased
CoSaMP recovery on an arbitrary signafollows the K-term model-basedpproximation ofx

within a bounded constant factor.

E. Computational complexity of model-based recovery

The computational complexity of a model-based signal repgpwalgorithm differs from
that of a standard algorithm by two factors. The first fac®rthe reduction in the number
of measurementd/ necessary for recovery: since most current recovery dlgos have a
computational complexity that is linear in the number of megaments, any reduction b/
reduces the total complexity. The second factor is the cbste model-based approximation.

The K-term approximation used in most current recovery algorgltan be implemented with a
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simple sorting operation (N log N) complexity, in general). Ideally, the signal model should
support a similarly efficient approximation algorithm.

To validate our theory and algorithms and demonstrate themeral applicability and utility,
we now present two specific instances of model-based CS amdlucba range of simulation

experiments.

V. EXAMPLE: WAVELET TREE MODEL

Wavelet decompositions have found wide application in thalysis, processing, and com-
pression of smooth and piecewise smooth signals because #ignals are/-sparse and
compressible, respectively [1]. Moreover, the waveletffiments can be naturally organized
into a tree structure, and for many kinds of natural and malenségnals the largest coefficients
cluster along the branches of this tree. This motivates a@cted tree model for the wavelet
coefficients [24-26].

While CS recovery for wavelet-sparse signals has been aderesi previously [13-15],
the resulting algorithms integrated the tree constrainannad-hoc fashion. Furthermore, the
algorithms provide no recovery guarantees or bounds on ébessary number of compressive

measurements.

A. Tree-sparse signals

We first describe tree sparsity in the context of sparse wawcompositions. We focus
on one-dimensional signals and binary wavelet trees, budfabur results extend directly to
d-dimensional signals an2f-ary wavelet trees.

Consider a signat of length NV = 27, for an integer value of. The wavelet representation

of x is given by
I-12¢-1

T = VoV + g E W; Vi j,

i=0 j=0

wherev is the scaling function ana), ; is the wavelet function at scaleand offsetj. The
wavelet transform consists of the scaling coefficieptand wavelet coefficients); ; at scalei,
0 <i<I-1,and positionj, 0 < j < 2 — 1. In terms of our earlier matrix notation, has

the representatiom = Va, whereV is a matrix containing the scaling and wavelet functions as
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Fig. 2. Binary wavelet tree for a one-dimensional signal. The segidenote the large wavelet coefficients that arise
from the discontinuities in the piecewise smooth signaiwdrdelow; the support of the large coefficients forms a

rooted, connected tree.

columns, andv = [vy woo w10 w11 wayg...]7 is the vector of scaling and wavelet coefficients.
We are, of course, interested in sparse and compressible

The nested supports of the wavelets at different scalegect@gparent/child relationship
between wavelet coefficients at different scales. We say #ha, |,/ is the parent of w; ;
and thatw, ;5; and w;41 2541 are thechildren of w; ;. These relationships can be expressed
graphically by the wavelet coefficient tree in Figure 2.

Wavelet functions act as local discontinuity detectors] agsing the nested support property
of wavelets at different scales, it is straightforward te $leat a signal discontinuity will give
rise to a chain of large wavelet coefficients along a brancthefwavelet tree from a leaf to
the root. Moreover, smooth signal regions will give riseégions of small wavelet coefficients.
This “connected tree” property has been well-exploited mumber of wavelet-based processing
[12,27,28] and compression [29, 30] algorithms. In thistise¢c we will specialize the theory
developed in Sections Il and IV to a connected tree madel

A set of wavelet coefficient® forms aconnected subtrei, whenever a coefficienw; ; € (2,
then its parentw;_y |;2) € €2 as well. Each such sé? defines a subspace of signals whose
support is contained if2; that is, all wavelet coefficients outside are zero. In this way, we
define the modellx as the union of allK-dimensional subspaces corresponding to supgorts

that form connected subtrees.
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Definition 9: Define the set of-tree sparse signalas
I-1 2¢
Tk = v =1+ Z Zwmwi,j twlge = 0,9 = K, forms a connected subtree
i=0 j=1
To quantify the number of subspaces/ig, it suffices to count the number of distinct connected
subtrees of sizd{ in a binary tree of sizeV. We prove the following result in Appendix VI.

for K > log, N and

4K+4

Proposition 1: The number of subspaces fyc obeysTx < “r

Tr < 29% for K < log, N
K =K1 < 108y V.

B. Tree-based approximation

To implement tree-based signal recovery, we seek an effialgorithmT(z, K') to solve the
optimal approximation

T . _
= — 75, 1
T = arg min |z — Z||2 (16)

Fortuitously, an efficient solver exists, called tb@ndensing sort and select algorith{f@SSA)
[24—26]. Recall that subtree approximation coincides widmdardi -term approximation (and
hence can be solved by simply sorting the wavelet coeffis)ewhen the wavelet coefficients
are monotonically nonincreasing along the tree branchédrom the root. The CSSA solves
(16) in the case of general wavelet coefficient valuesdaydensinghe nonmonotonic segments
of the tree branches using an iterative sort-and-averageeo The condensed nodes are called
“supernodes”. Condensing a large coefficient far down the &ccounts for the potentially large
cost (in terms of the total budget of tree nod€} of growing the tree to that point.

The CSSA can also be interpreted as a greedy search amongdhs. fror each node in the
tree, the algorithm calculates the average wavelet coafianagnitude for each subtree rooted
at that node, and records the largest average among all bitleeesi as the energy for that node.
The CSSA then searches for the unselected node with thestaggergy and adds the subtree
corresponding to the node’s energy to the estimated supgaat supernode [26].

Since the first step of the CSSA involves sorting all of the &t coefficients, overall it
requiresO (N log N) computations. However, once the CSSA grows the optimaldfesze K,
it is trivial to determine the optimal trees of size K and computationally efficient to grow the

optimal trees of size- K [24].

21



The constrained optimization (16) can be rewritten as awmnstcained problem by introducing

the Lagrange multiplien [31]:
min o — 23 + A([laflo — K),
z€eT

where 7 = UN_ 7, and a are the wavelet coefficients af. Except for the inconsequential
AK term, this optimization coincides with Donoha@smplexity penalized sum of squafég],
which can be solved in onl§) (N) computations using coarse-to-fine dynamic programming on
the tree. Its primary shortcoming is the nonobvious retediop between the tuning parameter

A and and the resulting siz€ of the optimal connected subtree.

C. Tree-compressible signals

Specializing Definition 2 from Section 1lI-C t@, we make the following definition.

Definition 10: Define the set ok-tree compressible signatss
Ti={zeR" |z —T(z,K)|p <SK*1<K<N,S<oo}.

Furthermore, defin¢r|<, as the smallest value &f for which this condition holds for ands.
Tree approximation classes contain signals whose wavelefficents have a loose (and
possibly interrupted) decay from coarse to fine scales.d blesses have been well-characterized
for wavelet-sparse signals [25,26,30] and are intringicihked with the Besov spaces
B;(L,([0,1])). Besov spaces contain functions of one or more continuotiablas that have
(roughly speaking)s derivatives inL,([0,1]); the parameter; provides finer distinctions of
smoothness. When a Besov space signawith s > 1/p — 1/2 is sampled uniformly and

converted to a lengthv vectorz, its wavelet coefficients belong to the tree approximatiosce
T, With

[zn |z, =X [Zall Lo + 12all Bs (L, 0.17))

where “<” denotes an equivalent norm. The same result holds=f1/p — 1/2 andq < p.

D. Stable tree-based recovery from compressive measutemen

For tree-sparse signals, by applying Theorem 1 and Prapodit we find that a subgaussian

random matrix has th&-RIP property with constanir,. and probabilityl — e~ if the number
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of measurements obeys

<K In -2 + In 25 512 > + t) if K <log, N,

cd% 2

M >

<Kln 2e 4y 2 +t> if K> log, N,

Thus, the number of measurements necessary for stableergcolvtree-sparse signals is linear
in K, without the dependence QM present in conventional non-model-based CS recovery.

For tree-compressible signals, we must quantify the nurabsubspaces:; in each residual
set R, x for the approximation class. We can then apply the theory egtin IV-C with
Proposition 1 to calculate smallest allowalllé via Theorem 5.

Proposition 2: The number ofi’-dimensional subspaces that comprigex obeys

(2e)K(25+1) . . logy N
ey LS < { K J
2(3j+2)K+8 i K .e - | logg N
R < drmeoine 0= |9 .
(2j+1)K+8 P logy N
o R I

Using Proposition 2 and Theorem 5, we obtain the followingdition for the matrix® to
have the RAmMP, which is proved in Appendix VII.
Proposition 3: Let ® be anM x N matrix with i.i.d. subgaussian entries. If

2 N .

601N

2 i
(Vien1)’ ( ) it K > log, N,

then the matrix? has the(eg, s)-RAMP for modelZ and alls > 0.5 with probability 1 —e™".

Both cases give a simplified bound on the number of measutsmequired as\/ = O (K),
which is a substantial improvement over thé = O (K log(N/K)) required by conventional
CS recovery methods. Thus, whé@nsatisfies Proposition 3, we have the guarantee (14) for

sampled Besov space signals frasi(L,([0, 1])).

E. Experiments

We now present the results of a number of numerical expetsnémat illustrate the
effectiveness of a tree-based recovery algorithm. Our istarg observation is that explicit

incorporation of the model in the recovery process sigmfigamproves the quality of recovery
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for a given number of measurements. In addition, modelsaseovery remains stable when the
inputs are no longer tree-sparse, but rather are tree-@ssipte and/or corrupted with differing
levels of noise. We employ the model-based CoSaMP recovieAtgmrithm 1 with a CSSA-
based approximation step in all experiments.

We first study one-dimensional signals that match the cdedegavelet-tree model described
above. Among such signals is the class of piecewise smoaittifuns, which are commonly
encountered in analysis and practice.

Figure 1 illustrates the results of recovering the treequ@ssibleHeaviSinesignal of length
N = 1024 from M = 80 noise-free random Gaussian measurements using CoSaMBrm
minimization using thd 1_eq solver from the/;-Magic toolbox® and our tree-based recovery
algorithm. It is clear that the number of measuremenfs= 80) is far fewer than the minimum
number required by CoSaMP arfg-norm minimization to accurately recover the signal. In
contrast, tree-based recovery usiRg= 26 is accurate and uses fewer iterations to converge
than conventional CoSaMP. Moreover, the normalized madaibf the squared error for tree-
based recovery is equal to 0.037, which is remarkably clogkd error between the noise-free
signal and itsbest K -term tree-approximation (0.036).

Figure 3 illustrates the results of a Monte Carlo simulastudy on the impact of the number
of measurementd/ on the performance of model-based and conventional regdeera class
of tree-sparse piecewise-polynomial signals. Each daiat peas obtained by measuring the
normalized recovery error of 500 sample trials. Each sari@ewas conducted by generating
a new piecewise-polynomial signal with five polynomial gsaf cubic degree and randomly
placed discontinuities, computing its bdstterm tree-approximation using the CSSA, and then
measuring the resulting signal using a matrix with i.i.du€san entries. Model-based recovery
attains near-perfect recovery & = 3K measurements, while CoSaMP only matches this
performance atV/ = 5K. We defer a full Monte Carlo comparison of our method with the
much more computationally demandifigsnorm minimization to future work. In practice, we
have noticed that CoSaMP aidgnorm minimization offer similar recovery trends; consenqtly,

we can expect that model-based recovery will offer a sintikggree of improvement ovér-norm

3http://www.acm.caltech.edu/limagic
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Fig. 3. Performance of CoSaMP vs. wavelet tree-based recovery tasa af piecewise-cubic signals as a function
of M/K.

minimization.

Further, we demonstrate that model-based recovery pesfagstably in the presence of
measurement noise. We generated sample piecewise-pabinsignals as above, computed
their besti-term tree-approximations, computéd measurements of each approximation, and
finally added Gaussian noise of expected ndmij, to each measurement. Then, we recovered
the signal using CoSaMP and model-based recovery and neeis@ recovery error in each case.
For comparison purposes, we also tested the recovery pafae of a/;-norm minimization
algorithm that accounts for the presence of noise, whichbdess implemented as thel_qc
solver in the/;-Magic toolbox. First, we determined the lowest value Mf for which the
respective algorithms provided near-perfect recoverpignabsence of noise in the measurements.
This corresponds td/ = 3.5K for model-based recovery/ = 5K for CoSaMP, and// = 4.5K
for /; minimization. Next, we generated 200 sample tree-moddlguaks, computedy/ noisy
measurements, recovered the signal using the given digordind recorded the recovery error.
Figure 4 illustrates the growth in maximum normalized remgverror (over the 200 sample
trials) as a function of the expected measurement signabige ratio for the tree algorithms. We
observe similar stability curves for all three algorithmahile noting that model-based recovery
offers this kind of stability using significantly fewer meaements.

Finally, we turn to two-dimensional images and a waveletdiyg® model. The connected

25



CoSaMP (M = 5K)
-= ¢1—minimization (M = 4.5K)
0.8F | — Model-based recovery (M = 3.5K)

Maximum normalized recovery error

0 0.1 0.2 0.3 0.4 0.5
E([Inll2/llyll2)

Fig. 4. Robustness to measurement noise for standard and waeddbdsed CS recovery algorithms. We plot the
maximum normalized recovery error over 200 sample triala &sction of the expected signal-to-noise ratio. The
linear growth demonstrates that model-based recovergpsss the same robustness to noise as CoSaMP-aiodm

minimization.

wavelet-tree model has proven useful for compressing akhiovages [25]; thus, our algorithm
provides a simple and provably efficient method for recawgea wide variety of natural images
from compressive measurements. An example of recoverpipeaince is given in Figure 5. The
test image Repper$ is of size N = 128 x 128 = 16384 pixels, and we computed/ = 5000
random Gaussian measurements. Model-based recovery aff@is higher performance than
standard signal recovery algorithms like CoSaMP, both ims$eof recovery mean-squared error

and visual quality.

VI. EXAMPLE: BLOCK-SPARSE SIGNALS AND SIGNAL ENSEMBLES

In a block-sparsesignal, the locations of the significant coefficients clusteblocks under
a specific sorting order. Block-sparse signals have beerigugly studied in CS applications,
including DNA microarrays and magnetoencephalographg][7An equivalent problem arises
in CS for signal ensembles, such as sensor networks and Midn@nainication [8, 9, 32]. In this
case, several signals share a common coefficient supporft@eexample, when a frequency-
sparse acoustic signal is recorded by an array of microghdhen all of the recorded signals

contain the same Fourier frequencies but with different ldoges and delays. Such a signal
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(a) Peppers (b) CoSaMP (c) model-based recovery
(RMSE = 22.8) (RMSE =11.1)
Fig. 5. Example performance of standard and model-based recomdamages. (aN = 128 x 128 = 16384-pixel

Peppergest image. Image recovery frohi = 5000 compressive measurements using (b) conventional CoSalIP an

(c) our wavelet tree-based algorithm.

ensemble can be re-shaped as a single vector by concateratob then the coefficients can be
rearranged so that the concatenated vector exhibits bloaisisy.

It has been shown that the block-sparse structure enalgeslsiecovery from a reduced
number of CS measurements, both for the single signal cas} phd the signal ensemble
case [9], through the use of specially tailored recoveryordigm [7,8,33]. However, the
robustness guarantees for such algorithms either ardctedtrto exactly sparse signals and
noiseless measurements, do not have explicit bounds oruthber of necessary measurements,
or are asymptotic in nature.

In this section, we formulate the block sparsity signal miaake a union of subspaces and
pose an approximation algorithm on this union of subspaths. approximation algorithm is
used to implement block-based signal recovery. We alsoeléie corresponding class of block-

compressible signals and quantify the number of measurtsnmexcessary for robust recovery.

A. Block-sparse signals

Consider a class of signal vectorsr € R/, with J and N integers. This signal can be

reshapped into & x N matrix X, and we use both notations interchangeably in the sequel.
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We will restrict entire columns o to be part of the support of the signal as a group. That
is, signalsX in a block-sparse model have entire columns as zeros or rasZ€he measure
of sparsity for X is its number of nonzero columns. More formally, we make thkowing
definition.

Definition 11: [7, 8] Define the set of{-block sparse signalas

Sk ={X =1, ... zy] e R such thatr, =0 forn ¢ Q,Q C {1,...,N},|Q| = K}.

It is important to note that & -block sparse signal has sparsky./, which is dependent on
the size of the block/. We can extend this formulation to ensembles/oflength/V signals
with common support. Denote this signal ensembleBy, ..., 7}, with z; e RY, 1 < j < J.
We formulate a matrix representatid?] of the ensemble that features the sigaalin its ;"
row: X = [#; ...Zy]7. The matrix X features the same structure as the malfiobtained
from a block-sparse signal; thus, the matix can be converted into a block-sparse vecior

that represents the signal ensemble.

B. Block-based approximation

To pose a the block-based approximation algorithm, we neeatktine the mixed norm of a
matrix.

Definition 12: The (p, ¢) mixed normof the matrix X = [z x2 ... xy] is defined as

1/q
1 XN .0 = <Z|l$n|lq) :

Wheng = 0, || X||(,0) simply counts the number of nonzero columnsin
We immediately find thaf X ||, ,) = ||=||,, with  the vectorization ofX. Intuitively, we pose

the algorithmS( X, K) to obtain the best block-based approximation of the sighals follows:
Xp =arg _min || X — X[ (22 subject to]|X||z0) < K. (18)
XeRIXN

It is easy to show that to obtain the approximation, it suffite perform column-wise hard
thresholding: lep be the K™ largest/,-norm among the columns &€. Then our approximation

algorithm isS(X, K) = X3 = [#%, ...2% y], Where

S Tn 2nll2 = p,
xK,n =
0 ||l’n||2 < p,
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for eachl < j < J and1 < n < N. Alternatively, a recursive approximation algorithm caa b
obtained by sorting the columns &f by their/; norms, and then selecting the largest columns.

The complexity of this sorting process@(NJ + N log N).

C. Block-compressible signals

The approximation class under the block-compressible inodeesponds to signals with
blocks whose&/; norm has a power-law decay rate.

Definition 13: We define the set of-block compressible signals as
Gy ={X=[r1 ... 2] ER”N st. ||logpla < Si™721<i < N, S < oo},

whereZ indexes the sorted column norms.
We say thatX is an s-block compressible signal ik € &;. For such signals, we hayeX —
Xkl 22 = 05, (x) < S K%, and|| X — Xk||21) < SeK'/?>~%. Note that the block-compressible
signal model does not impart a structure to the decay of tpeaticoefficients, so that the sets
R,k are equal for all values of; due to this property, théds, , s)-RAmMP is implied by the
Sk -RIP. Taking this into account, we can derive the followiegult from [10], which is proven
similarly to Theorem 4.

Theorem 6:Let = be a signal from modef, and lety = &z + n be a set of noisy CS
measurements. B has theS;-RIP with s < 0.1, then the estimate obtained from iteration

of block-based CoSaMP, using the approximation algorittiB),(satisfies

~ i 1
o= 3l < 2ol +20 (1X — X laa + =X ~ XEla + Il ).

Thus, the algorithm provides a recovered signal of similaaligy to approximations of
by a small number of nonzero columns. When the sighad K-block sparse, we have that
|X — XZl22 = ||X — XZ||21) = 0, obtaining the same result as Theorem 4, save for a

constant factor.

D. Stable block-based recovery from compressive measateme

Since Theorem 6 poses the same requirement on the meastnevaieix ¢ for sparse and

compressible signals, the same number of measureménssrequired to provide performance
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guarantees for block-sparse and block-compressible Isigifhe classSx containssS = (g)
subspaces of dimensiohk’. Thus, a subgaussian random matrix has§8heRIP property with
constantys,, and probabilityl — e~* if the number of measurements obeys

2 2N 12
M>— | K|ln— In — t). 19
_05§K< (HK+JD5$K)+) (29)

The first term in this bound matches the order of the bound émventional CS, while the
second term introduces a linear dependence on the size dilaek J. This shows that the
number of measurements required for robust recovery sealéé = O (KJ + K log(N/K)),
which is a substantial improvement over the= O (JK log(N/K)) that would be required by
conventional CS recovery methods. When the size of the blosklarger thanog(N/K), then
this term become® (K J); that is, it is linear on the total sparsity of the block-sgasignal.

We note in passing that the bound on the number of measursniE®) assumes a dense
subgaussian measurement matrix, while the measurementesatised in [9] have a block-
diagonal. structure. To obtain measurements fromlarnx JN dense matrix in a distributed
setting, it suffices to partition the matrix inté pieces of sizeM x N and calculate the CS
measurements at each sensor with a corresponding matese tindividual measurements are
then summed to obtain the complete measurement vectorrge J, (19) implies that the
total number of measurements required for recovery of tgaasiensemble is lower than the
bound for the case where each signal recovery is performggpendently for each signal (M
= O (JKlog(N/K))).

E. Experiments

We conducted several numerical experiments comparing ki@ded recovery to CoSaMP
in the context of block-sparse signals. We employ the mbdsked CoSaMP recovery of
Algorithm 1 with the block-based approximation algorithd8) in all cases. For brevity, we
exclude a thorough comparison of our model-based algorithitim /;-based optimization and
defer it to future work. In practice, we observed that oualttpm performs several times faster
than convex optimization-based procedures.

Figure 6 illustrates av = 4096 signal that exhibits block sparsity, and its recoveredivers

using CoSaMP and model-based recovery. The block.size64 and there werd{ = 6 active

30



(a) original block-sparse signal (b) CoSaMP (c) model-daseovery
(RMSE = 0.723) (RMSE = 0.015)
Fig. 6. Example performance of model-based signal recovery forogkbéparse signal. (a) Example block-

compressible signal of lengtN = 4096 with K = 6 nonzero blocks of sizd = 64. Recovered signal from

M = 960 measurements using (b) conventional CoSaMP recovery adb@k-based recovery.

blocks in the signal. We observe the clear advantage of ubmdplock-sparsity model in signal
recovery.

We now consider block-compressible signals. An examplevery is illustrated in Figure 7. In
this case, thé,-norms of the blocks decay according to a power law, as destibove. Again,
the number of measurements is far below the minimum numlegrinex to guarantee stable
recovery through conventional CS recovery. However, @niigrthe model in the approximation
process results in a solution that is very close to the bddb& approximation of the signal.

Figure 8 indicates the decay in recovery error as a functiahe numbers of measurements
for CoSaMP and model-based recovery. We generated sanqak-fparse signals as follows:
we randomly selected a set &f blocks, each of sizg, and endow them with coefficients that
follow an i.i.d. Gaussian distribution. Each sample poimthie curves is generated by performing
200 trials of the corresponding algorithm. As in the conedcivavelet-tree case, we observe
clear gains using model-based recovery, particularly fov-ineasurement regimes; CoSaMP
matches model-based recovery only far> 5K.

VIlI. CONCLUSIONS

In this paper, we have aimed to demonstrate that there anéfisaint performance gains to
be made by exploiting more realistic and richer signal medeyond the simplistic sparse

and compressible models that dominate the CS literaturgdiBg on the unions of subspaces
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(RMSE = 0.711) (RMSE = 0.195)
Fig. 7. Example performance of model-based signal recovery farkbbmmpressible signals. (a) Example block-

compressible signal, lengthi = 1024. (b) Best block-based approximation wilh = 5 blocks. Recovered signal

from M = 200 measurements using both (c) conventional CoSaMP recowelrycd block-based recovery.

results of [5] and the proof machinery of [10], we have takems of the first steps towards
what promises to be a general theory for model-based CS mydunting the notion of a model-
compressible signal and the associated restricted anapidic property (RAmMP) condition it
imposes on the measurement matbix

For the volumes of natural and manmade signals and imagésatbawavelet-sparse or
compressible, our tree-based CoSaMP and IHT algorithmer gierformance that signifi-
cantly exceeds today’s state-of-the-art while requirimdyoM = O (K) rather thanM =
O (K log(N/K)) random measurements. For block-sparse signals and sigeaméles, our
block-based CoSaMP and IHT algorithms offer not only exs#lperformance but also require

just M = O (JK) measurements, wheték is the signal sparsity. Furthermore, block-based
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Fig. 8. Performance of CoSaMP and block-based recovery on a cldgsak-sparse signals as a function\df K .

Standard CS recovery does not match the performance oflaséd recovery untif = 5K.

recovery can recovery signal ensembles using fewer maasute than the number required
when each signal is recovered independently.

There are many avenues for future work on model-based CS. aWe dénly considered the
recovery of signals from models that can be geometricalgcdleed as a union of subspaces;
possible extensions include other, more complex geonseff example, high-dimensional
polytopes, nonlinear manifolds.) We also expect that the ob our proposed algorithms — a
model-enforcing approximation step — can be integrated ather iterative algorithms, such
as relaxed/;-norm minimization methods. Furthermore, our frameworl Wwenefit from the
formulation of new signal models that are endowed with effitimodel-based approximation

algorithms.
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APPENDIX |

MODEL-BASED ITERATIVE HARD THRESHOLDING

Our proposed model-based iterative hard thresholding XlidGiven in Algorithm 3 For this
algorithm, Theorems 4, 5, and 6 can be proven with only a fewdifizations: ® must have

33



Algorithm 2 Model-Based lIterative Hard Thresholding
Inputs: CS Matrix®, measurementg, model M

Outpurs: K-sparse approximation
initialize: 7o = 0, r =y, i = 0.
while halting criterion falsedo
1—1+1
b« 7;_1 + ®Tr {form signal estimate
z; — M(b, K) {prune signal estimate according to signal médel
r — y — &; {update measurement residpal
end while

returnz « 7z;

the M3.-RIP with dmz < 0.1, and the constant factor in the bound changes from 15 to 4 in
Theorem 4, from 35 to 10 in Theorem 5, and from 20 to 5 in TheoBem

To illustrate the performance of the algorithm, we repeat teaviSineexperiment from
Figure 1. Recall thatv = 1024, and M = 80 for this example. The advantages of using
our tree-model-based approximation step (instead of mare thresholding) are evident from
Figure 10. In practice, we have observed that our modelebasgorithm converges in fewer

steps than IHT and yields much more accurate results in tefrmscovery error.

APPENDIX Il

PROOF OFTHEOREM 2

To prove this theorem, we will study the distribution of theximum singular value of a
submatrix®, of a matrix with i.i.d. Gaussian entries corresponding to the columns indexed
by T'. From this we obtain the probability that RAmP does not haldd fixed supporf’. We
will then evaluate the same probability for all suppditef elements ofR; x, where the desired
bound on the amplification is dependent on the valug. dthis gives us the probability that the
RAmMP does not hold for a given residual subspacefsgt. We fix the probability of failure
on each of these sets; we then obtain probability that theixnét does not have the RAmMP
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(a) original (b) IHT (c) model-based IHT
(RMSE = 0.627) (RMSE = 0.080)

Fig. 9. Example performance of model-based IHT. (a) PiecewisectimteaviSinetest signal, lengtiN = 1024.
Signal recovered frol = 80 measurements using both (b) standard and (c) model-ba3eetidvery. Root mean-

squared error (RMSE) values are normalized with respeéigéytnorm of the signal.

using a union bound. We end by obtaining conditions on thebmrmof rows)/ of ¢ to obtain
a desired probability of failure.

We begin from the following concentration of measure for thmsyest singular value of a
M x K submatrix®r, |T'| = K, of an M x N matrix  with i.i.d. subgaussian entries that are

properly normalized [16, 34, 35]:

K

For large enoughV/, 5 < 1; thus we ignore this small constant in the sequel. By letting
T=7"V1+ex —1— ,/% (with the appropriate value of for T'), we obtain

- 2
P (Umax<(I)T) > ]T\/W) < 6_%07\/@_1_\/%) .

We use a union bound over all possilite supports foru € R, x to obtain the probability that
® does not amplify the norm af by more thanj"/1 + eg:

. 2
P ([0ully > (VI T ex) llulla ¥V u € Ryx) < Ry 3 (YMGVIFa-D-VE)"
Bound the right hand side by a constantthis requires

R, < VAUV, 20)

35



for eachj. We use another union bound among the residual subspaggsto measure the
probability that the RAMP does not hold:

. . . N
P ([|®ulls > (j"VI+ex) |lullaVue Rk, Vj,1<j<[N/K])< [E—‘ n
To bound this probability by ~*, we needu = £¢~*; plugging this into (20), we obtain

R < (VI )—VE) K
- N

for eachj. Simplifying, we obtain that fo® to posess the RAmP with probability— ¢~*, the
following must hold for ally:

1 R;N i
z(jr — <\/2<ln R +t)+\/?> . (21)

Since (y/a + vb)? < 2a + 2b for a,b > 0, then the hypothesis (12) implies (21), proving the
theorem. O

APPENDIX I

PROOF OFTHEOREM 5

In this proof, we denot®l(z, K') = xx for brevity. To bound||®(x — zx)||2, we write z as

[N/K]
r=xg + Z xy,
where
Tr; = TjiK — 93(j—1)K>j =2,..., [N/KW
is the difference between the begk model approximation and the be&t — 1)K model

approximation. Additionally, each piecg; € R; . Therefore, sinc@ satisifes the(ex, s — 1)
RAmMP, we obtain

[N/K] [N/K] [N/K]
@z —z)lla=|[@ | D an ||| < Z [Pz, [|2 < Z VIitegi gl  (22)
=2

2
Sincex € M,, the norm of each piece can be bounded as

oz, |2 = llzjx — 2g-nkll2 < [|# — zg-nrle + |2 — zjxlls < |2l K5 (G —1) " +57°).
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Applying this bound in (22), we obtain
[N/K]

@z —2x)lle < VItex > 57 ar o
j=2

[N/K]
< Viteglrlo K> 7 G- D+,
j=2
[N/K]
< Viteglalm K™ > 7
j=2

It is easy to show, using Euler-Maclaurin summations, fﬁ‘%ﬁémj‘l < In[N/K; we then

obtain

N
|P(z — xg)|ls < V1+exg K °In [E-‘ || o, s

which proves the theorem. U

APPENDIX IV

MODEL-BASED ITERATIVE HARD THRESHOLDING

Our proposed model-based iterative hard thresholding i Given in Algorithm 3. For this
algorithm, Theorems 4, 5, and 6 can be proven with only a fewdifizations: ® must have
the M3,-RIP with dmz. < 0.1, and the constant factor in the bound changes from 15 to 4 in
Theorem 4, from 35 to 10 in Theorem 5, and from 20 to 5 in Theoem

To illustrate the performance of the algorithm, we repeat eaviSineexperiment from
Figure 1. Recall thatvV = 1024, and M = 80 for this example. The advantages of using
our tree-model-based approximation step (instead of mare thresholding) are evident from
Figure 10. In practice, we have observed that our modelebasgorithm converges in fewer

steps than IHT and yields much more accurate results in tefmscovery error.

APPENDIX V

PROOF OFTHEOREM 4

The proof of this theorem is identical to that of the CoSaMgodathm in [10, Section 4.6],
and requires a set of six lemmas. The sequence of Lemmas 1eWw bee modifications of

the lemmas in [10] that are restricted to the signal modemio@ 4 does not need any changes
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Algorithm 3 Model-Based lIterative Hard Thresholding
Inputs: CS Matrix®, measurementg, model M g

Outpurs: K-sparse approximation
initialize: 7o = 0, r =y, i = 0.
while halting criterion falsedo
1—1+1
b« 7;_1 + ®Tr {form signal estimate
z; — M(b, K) {prune signal estimate according to signal médel
r — y — &; {update measurement residpal
end while

returnz « 7z;

(a) original (b) IHT (c) model-based IHT
(RMSE = 0.627) (RMSE = 0.080)

Fig. 10. Example performance of model-based IHT. (a) PiecewiseagimtdeaviSinetest signal, lengtiN = 1024.
Signal recovered frol = 80 measurements using both (b) standard and (c) model-ba3eetidvery. Root mean-

squared error (RMSE) values are normalized with respeéigbytnorm of the signal.

from [10], so we state it without proof. The proof of Lemma$3:se the properties in Lemmas 1

and 2, which are simple to prove.

Lemma 1:Supposeb has M-RIP with constant . Let 2 be a support corresponding to a
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subspace inf. Then we have the following handy bounds.

[Pqulla < VT daalfullo,
1

ﬁHUHz,

(L +n) [[ullz,

(1= r)lull2;
1

1+ op
1

1— on

|Phullz

IN

IN

12gPoul

124 Poul,

v

IN

1(®4Pa) " ully ]2,

v

1(®4Pa) " ull ]2

Lemma 2: Supposeb hasM?%-RIP with constanb .z . Let (2 be a support corresponding to

a subspace itM g, and letz € M. Then || ®LPz|qe || < oz [|z]ae ]l

We begin the proof of Theorem 4 by fixing an iteratio» 1 of model-based CoSaMP. We
write 7 = 7,_; for the signal estimate at the beginning of ti iteration. Define the signal
residuals = z — 7, which implies thats € M?2. We note that we can write = y — &7 =
O(z —2) +n=>s+n.

Lemma 3: (Identificationhe set) = supp(Ms(e, K)), wheree = Tr, identifies a subspace

in M2, and obeys

Islacl2 < 0.2223]|s]]s + 2.34]| 2.

Proof of Lemma 3Define the sefll = supp(s). Let e = Mjy(e, K) be the model-based
approximation tce with support2, and similarly lete;; be the approximation te with support

I1. Each approximation is equal tdfor the coefficients in the support, and zero elsewhere.eSinc
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Q) is the support of the best approximationAr?., we must have:

le—eallz < lle—enls,

Y (el —ealn])® < ) (eln] — enln])?,

(]
&
=
(VAN
(]
'&‘
=

[]=
'&‘
S,
(3]
|
WENIE N
2 2 2
S, S, S,
[N} no [N}
VoIV IV
204 1]
2 2 2
S, S, S,
\.l\’) \.l\D (]
|
(]
'&‘
=
\.l\’)

neqQ nell
dooel = Y elf
neQ\IL nell\Q

lelolls = llelmeall3,

where(2 \ II denotes the set difference 9f andIl. These signals are iM7}, (since they arise
as the difference of two elements framt%); therefore, we can apply th&1}.-RIP constants

and Lemmas 1 and 2 to provide the following bounds on bothssfdee [10] for details):
lefovmlls < dpa lIsllz + /1 4 dnez llell2; (23)
lelmellz = (1= dne )lIslaclls = dae, lIsll2 = /1 4 dae llell2. (24)

Combining (23) and (24), we obtain

(Ope, + Sas)Isllz +2, /1 + Gpe [lellz
Islocllz < = .
The argument is completed by noting thafz < ds < 0.1. O
Lemma 4: (Support Mergenet €2 be a set of at mos2K indices. Then the set = QU
supp(Z) contains at mos3 K indices, and|z|c |2 < [|s|ac]|2-
Lemma 5: (Estimation).et A be a support corresponding to a subspacgif, and define

the least squares signal estimatby b|; = ®}.y, bl = 0. Then
|z —b]|2 < 1.112[|z|sc||2 + 1.06]n2||2.
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Proof of Lemma 51t can be shown [10] that
lz = 0]l < [l[aclls + [(@XPA) ' DT P |nc |2 + [ Pfn],.

Since A is a support corresponding to a subspaceMt}, and x € My, we use Lemmas 1

and 2 to obtain

1 1
[z =blla < [[z|acll2 + ﬁ”‘bf‘bx\m”z + ———Inll2,
- Mﬁ{ —_— MS
K
5./\/14 ]_
< |\t ) el + ===l
Finally, note thatzSM?( < 5/\44;( <0.1. O

Lemma 6: (Pruning)rhe pruned approximation; = M(b, K) is such that

[ = Zill2 < 2[|x = b2,

Proof of Lemma 6: SinceZz; is the best approximation inm g to b, andx € My, we obtain

[z = Zill2 < llz = blla + [1b = Zill2 < 2]z = bl2.

We use these lemmas in reverse sequence for the inequakties:

IN

[l = Zill2 2[|z = bll2,

IN

2(1.112)|z|ac ||2 + 1.06]|n[|2),

IA

2.224||s|qe |2 + 2.12[|n |2,

VAN

2.224(0.2223||s]|2 + 2.34||n|2) + 2.12||n|2,

VAN

0.5][s[l2 + 7.5][n]2,

IA

From the recursion oft;, we obtain||z — Z;||s < 27¢||z||2 + 15||n||]2- This completes the proof
of Theorem 4. O
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APPENDIX VI

PROOF OFPROPOSITION1
When K < log, N, the number of subtrees of siZzé€ of a binary tree of sizéV is the Catalan
number [36]
Tiew 1 (QK) - (2e)K

TK+I\K) T EK+1U
using Stirling’s approximation. Whek™ > log, NV, we partition this count of subtrees into the

numbers of subtreels, ;, of size K and heighth, to obtain
logy N

TN = Z tk.h

h=|logy K |41
We obtain the following asymptotic identity from [36, pag&]5

AE+L5 21K _ K(27m)?
lgn = i [ﬁ@ﬂm)‘l — 3(27Tm)2] e” 1z +4%0 (e‘ln2 h)
m>1

In® h In® h
+450 ( ) + 450 ( )
E )7
4K+2 [2[( _ K(2rm)?
m>1

< 1 ﬁ@ﬁm)‘1 — 3(27rm)2} e T, (25)

We now simplify the formula slightly: we seek a bound for thersterm (which we denote

by 5, for brevity):

2K _K@rm)® 2K | Kmm)?
Bh = Z [ﬁ(%rm)ﬂ‘ - 3(27rm)2} e n < Z ﬁ(%rm)‘le R (26)
m>1 m2>1
Let mpax = ﬁ the value ofm for which the term inside the sum (26) is maximum; this is
not necessarily an integer. Then,
meaxJ -1 |'mmax.|
2K K( 7rm)2 2K K( 7"’”)2
s mz T (2mm)te T LZ J - 2mm)le
2K (2mm)?
+ D ﬁ(Qﬂm)“e‘K i
mZ’—mmax]‘i‘l
Lmmax] 9 f¢ 4 K(m)? [Mmax | 0K 4 K(mm)?
< 1 F(%rx) e 1 dr+ Z ﬁ(Qﬂm) e n

m= LmrnaxJ

< 2K nz)?
+/ —(27Tx)4e_K(i§) dx,
[

Mm ax]



where the second inequality comes from the fact that thesémnithe sum is strictly increasing
for m < |mua] @and strictly decreasing fan > [my., |. One of the terms in the sum can be

added to one of the integrals. If we have that

K (27 [mmax])? K (2n([mmax1))?

(27 | Mmax ] )€™ nZ < (27 [Mmax | )e” " » (27)

then we can obtain

K(2m [mmax ] )2
h2

[mrrlax1 2K ﬂ_z 2K
O < / —(27‘(‘:);’)46_ Klzel® dr + — (27 [mmaxDA‘e_
1

h? h?
< 2K (272)?
—l—/{m 1 ) (2mw)*e ~5E5 du,

When the opposite of (27) is true, we have that

Lmmax] 9 p¢ K<2m> 2K _ K(2r|mmax))?
Brn < /1 T (27T;L')4 dx + F(QW | Mmax | )46 12

K(27r:v)2

< 2K
+/ —2(27rx)4e_ W2 d.
LmrnaxJ h

Since the term in the sum reaches its maximumrfQr,,., we will have in all three cases that

* 2K 4 KEro)? 8h?
/Gh < /1 F(27T[L‘) e r2 dx + —KQQ'

We perform a change of variables= 27z and definer = h/v/2K to obtain

1 [>1 2 8h? 1 <1 2 8h?
< 4 —u? /202 dr < 4 —u? /20 dr + ——
P < 27r/ 2 * Ke?2 = 20v21 J_ o 27?0 - Ke?

Using the formula for the fourth central moment of a Gaussiiatribution:

&0 ]_ 4 2 2
—u®/20 dr =3 4
—u"e T o
/_oo \V2To ’
we obtain
303 8h? 3h3 8h?

< + = + )
ﬁh_ZvZW Ke? 8JrK3 Ke?

Thus, (25) simplifies to

; <{ 6 +128
B=K \Wwak  h2e?)”
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Correspondingly/x y becomes

logy N K
4 6 128
T < —
RPN (hﬂ+h2e2)’

h=|logy K |+1

4K [ 6 l‘gi 1, 128 I%N 128
% \Vek, —+— =3
K —[log, K |+1 h'e h=|log, K |+1 hie

It is easy to show, using Euler-MacIaurln summations that

j~' <In—— and jh< T
Z Z

we then obtain

4K 6 log, N 128 4R+ 4R+
Tkn < — In < ~
’ K \VvrK |logy K| = e?|log, K| Ke?|log, K| = Ke?
This proves the proposition. O
APPENDIX VII

PROOF OFPROPOSITION3

We wish to find the value of the bound (12) for the subspace tcoten in (17). We obtain

M > maxi<;<in/x1 M;, whereM; follows one of these three regimes:

(o (20 i ) i< [,
M, = m <2K +4ln K(K(jj—:lz))(i;;—i?—ﬁ)e? + 2t> if j = _10%_ :
We separate t;le terms that are linearforand j, and obtain
Wﬁ (K(3+41n2) +8K7(1+102) + 410 e m D +2t) i< {mg;(NJ |
v ey (261 +41n2) + 4Kj(1 +1n8) + A g8 o 2t) if j = | 252
m(2K(1+4ln2)+16Kjln2+4ln%_|_2t) i FO%NJv
e (BK(1+m2)+ KEEAND gy o N 2 |l
_ (jsfo.S\/%,j—o.s)z (4K(1 +1n8) + w + 3 e TR ) if j = FO%NJ )
e (6 me s BOHRD 4 i cm 2) > |
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logo N _ N
The sequences{Mj}jL:lK J and {MJ»}»,(KJIOMJJrl are decreasing sequences, since the
="K
numerators are decreasing sequences and the denominatoiirisreasing sequence whenever

s > 0.5. When K <log, N, we have

1 N
M > max (K(11+121n2)+41n +2t)7
(VIitex —1)° K(K +1)2K + 1)
K(L+1n8) + 2K (14+41n2)+41n K(I;)fé%“fﬁﬁg Tt
K
s—0. —0.5\ 2 )
<log12(N 05\/@_10%2(]\[ 05)
16K In2 4+ R Ko N:fﬁfﬁiél Wiz
K

logy N 5—0.5 logy N —0.5\ 2
(1) VTFe - (et 1)

These three terms have sequentially smaller numeratorseaquientially larger denominators,

resulting in
M > L (K(11+121n2)+41n N +2t)
“ (VTrer—1) K(K +1)(2K +1) |

When K > log, N, the first two regimes ofi/; are nonexistent, and so we have

1 2768 N
M > 5 2K(1+12ln2)+4ln%+2t .
(VI+ex—1) K3et

This completes the proof of Proposition 3. O
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