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ABSTRACT

We consider the problem of reconstructing a signal from under-
determined modulo observations (or measurements). This obser-
vation model is inspired by a (relatively) less well-known imaging
mechanism called modulo imaging, which can be used to extend the
dynamic range of imaging systems; variations of this model have also
been studied under the category of phase unwrapping. Signal recon-
struction in the under-determined regime with modulo observations is
a challenging ill-posed problem, and existing reconstruction methods
cannot be used directly. In this paper, we propose a novel approach to
solving the inverse problem limited to two modulo periods, inspired
by recent advances in algorithms for phase retrieval under sparsity
constraints. We show that given a sufficient number of measurements,
our algorithm perfectly recovers the underlying signal and provides
improved performance over other existing algorithms. We also pro-
vide experiments validating our approach on both synthetic and real
data to depict its superior performance.

Index Terms— Sparse recovery, nonlinear observation models,
modulo sensors, imaging applications.

1. INTRODUCTION

1.1. Motivation

The problem of reconstructing a signal (or image) from (possibly)
nonlinear observations is widely encountered in standard signal acqui-
sition and imaging systems. Our focus in this paper is the problem of
signal reconstruction from modulo measurements, where the modulo
operation with respect to a positive real valued parameter R returns
the (fractional) remainder after division by R.

Formally, we consider a high dimensional signal (or image) x* €
R™. We are given modulo measurements of x*, that is, for each
measurement vector a; € R™, we observe:
mod ((a; - x™),R) i ={1,2,...,m},

Yi = (1.1)

The task is to recover x* using the modulo measurements y € R™
and knowledge of the measurement matrix A = [a1 az ... am}T.
Recently, the use of a novel imaging sensor that wraps the data
in a periodical manner has been shown to overcome certain hardware
limitations of typical imaging systems [1, 2, 3, 4]. Many image ac-
quisition systems suffer from the problem of limited dynamic range;
however, real-world signals can contain a large range of intensity
levels, and if tuned incorrectly, most intensity levels can lie in the
saturation region of the sensors, causing loss of information through
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signal clipping. The problem gets amplified in the case of multiplexed
linear imaging systems (such as compressive cameras or coded aper-
ture systems), where required dynamic range is very high because of
the fact that each linear measurement is a weighted aggregation of
the original image intensity values.

The standard solution to this issue is to improve sensor dynamic
range via enhanced hardware; this, of course, can be expensive.
An intriguing alternative is to deploy special digital modulo sen-
sors [5, 6, 7, 8]. As the name suggests, such a sensor wraps each
signal measurement around a scalar parameter R that reflects the
dynamic range. However, this also makes the forward model (1.1)
highly nonlinear and the reconstruction problem highly ill-posed. The
approach of [1, 2] relies on the assumption that the underlying signal
is bandlimited and time-continuous, deeming them unfit for being
used in compressive sensing regime. Moreover, it assumes overcom-
plete observations, meaning that the number of measurements m is
higher than the ambient dimension n of the signal itself. For the cases
where m and n are large, this requirement puts a heavy burden on
computation and storage.

In contrast, our focus is on solving the inverse problem (1.1)
with very few number of samples, i.e., we are interested in the case
m < n. While this makes the problem even more ill-posed, we show
that such a barrier can be avoided if we assume that the underlying
signal obeys a certain low-dimensional structure. In this paper, we
focus on the sparsity assumption on the underlying signal, but our
techniques could be extended to other signal structures. Further, for
simplicity, we assume that our forward model is limited to only two
modulo periods: one in the positive half and one in the negative
half as shown in the Fig. 1(a). Such a simplified version of the
modulo function already inherits much of the challenging aspects of
the original function. Intuitively, this simplification requires that the
norm of the target signal is not too large.

1.2. Our contributions

In this paper, we propose a recovery algorithm for exact reconstruc-
tion of signals from modulo measurements of the form (1.1). We refer
our algorithm as MoRAM, short for Modulo Recovery using Alternat-
ing Minimization. The key idea in our approach is to identify and
draw parallels between modulo recovery and the problem of phase
retrieval. Indeed, this connection enables us to bring in algorithmic
ideas from classical phase retrieval, which also helps in our analysis.

Phase retrieval has attracted renewed interest of late with many
solutions available in literature [9, 10, 11, 12, 13], including the
cases where underlying signal is sparse [14, 15, 16, 17, 18, 19, 20].
In phase retrieval, we are given magnitude measurements of (a; - x™)
and are tasked with reconstructing x*. While these two different
class of problems appear different at face value, the common theme is
the need of undoing the effect of a piecewise linear transfer function
applied to the observations. See Fig. 1 for a comparison.
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Fig. 1: Comparison between (a) modulo function (f(t) =

mod (¢, R)); and (b) absolute value function (g(t) = abs(t)).

However, several essential differences between the two problems
restrict us from using algorithms for phase retrieval as-is for the
modulo reconstruction problem. The absolute value function is a
multiplicative transfer function (multiplication with the sign of the
measurements), so in phase retrieval, a wrongly estimated phase
induces an error that increases /inearly with the magnitude of each
measurement. On the other hand, the modulo function adds a constant
value (R) to negative inputs, thus the error induced by an incorrect
bin-index is R (or larger), irrespective of the measurement. Therefore,
existing algorithms for phase retrieval perform rather poorly for our
problem (both in theory and practice).

We resolve this issue by making non-trivial modifications to ex-
isting phase retrieval algorithms that better exploit the structure of
modulo reconstruction. Apart from experimental results and compari-
son with existing algorithm, we also provide an analytical guarantee
suggesting that such a recovery can be performed using an (essen-
tially) optimal number of observations, given the initial estimate that
lies relatively close to the underlying signal. We provide an initializa-
tion method to obtain such initial estimate, and present experiments
depict the effectiveness of our approach. To the best of our knowledge
we are the first to pursue this type of approach for modulo recovery
problems, distinguishing us from previous work [2, 1].

1.3. Techniques

The basic approach in MoRAM is similar to several recent non-convex
phase retrieval algorithms [20, 21, 22, 23, 24, 19]. In the first step
we identify a good initial guess x° for our signal that lies relatively
close to the true vector x*. Spectral initialization, a commonly used
technique for phase retrieval [18], does not work in our case due to
the markedly different nature of the modulo function. We introduce
a novel approach of measurement correction by comparing with
typical density plots of Gaussian observations. Given access to such
corrected measurements, x° can be calculated simply by using a
first-order estimator. This method is intuitive, yet provides a provable
guarantee for getting a initial vector that is close to the true signal.

In the second step, we follow an alternating minimization ap-
proach (e.g. [18, 25]) that estimates the signal and the measurement
signs alternatively. However, as mentioned above, any estimation
errors incurred in the first step induces fairly large additive errors (pro-
portional to the dynamic range parameter R.) We resolve this issue
by appealing to a robust form of alternating minimization (specifi-
cally, the Justice Pursuit algorithm [26]). We prove that AltMin with
Justice Pursuit succeeds provided the number of wrongly estimated
bin-indices in the beginning is a small fraction of the total number of
measurements. This gives us a natural radius for initialization, and
also leads to provable sample-complexity upper bounds.

1.4. Prior work

Due to space, we defer a more thorough discussion of prior work to
an extended version of this paper. For a qualitative comparison of
our MoRAM method with existing approaches, refer Table 1. The
table suggests that the previous approaches varied from the Nyquist-
Shannon sampling setup only along the amplitude dimension, as they
rely on bandlimitedness of the signal and uniform sampling grid. We
vary the sampling setup along both the amplitude and time dimensions
by incorporating sparsity in our model, which enables us to work
with non-uniform sampling grid (random measurements) and achieve
a provable sub-Nyquist sampling complexity. The only setup that
allows the non-uniform sampling grid is multishot UHDR [2], under
some reasonable modifications. We provide experiments comparing
our algorithm with multishot UHDR in experiments section. In recent
works, [27] proposed unlimited sampling algorithm for sparse signals.
Similar to [1], it also exploits the bandlimitedness by considering the
low-pass filtered version of the sparse signal, and thus differs from our
random measurements setup. In [28], modulo recovery from Gaussian
random measurements is considered, however, it assumes the true
signal to be distributed as mixed Bernoulli-Gaussian distribution,
which is impractical in real world imaging scenarios.

2. MATHEMATICAL MODEL

Let us introduce some notation. We denote matrices using bold
capital-case letters (A, B), column vectors using bold-small case
letters (x,y,z etc.) and scalars using non-bold letters (R, m etc.).
The cardinality of set S is given by card(.S). The signum function
is defined as sgn(zx) := oo Vo € R,z # 0, with sgn(0) = 1. The
projection of vector x € R™ onto a set of coordinates S is represented
asxgs € R™, xs; = x; for j € S, and 0 elsewhere.

As depicted in Fig. 1(a), we consider the modulo operation within
2 periods. If we write the modulo function of Fig. 1(a) in terms of a
signum function, then the measurement model of Eq. 1.1 becomes,

yi = (@ - x") + (M) R, i={1,..,m}. (2.1)

If we divide the number line in two bins, then the coefficient of R in
above equation can be seen as a bin-index, a binary variable which
takes value O when sgn(t) = 1, or 1 when sgn(¢) = —1. We denote
such bin-index vector as p € R™. Each element of the true bin-index
vector p* is given as,

*
pr = Losenl{ai-x7)) Sgn(éa‘ x7) ,i={1,.,m}.

If we ignore the presence of modulo operation in above formu-
lation, then it reduces to a standard compressive sensing problem.
In that case, the compressed measurements y., would just be equal
to (a; - x*). While we have access only to the compressed modulo
measurements Yy, it is useful to write y in terms of true compressed
measurements y.. Thus,

yi = (ai - x") +p; R =ye, +pi R.

It is evident that if we can recover p* successfully, we can calcu-
late the true compressed measurements (a;-x*) and use them to recon-
struct x* with any sparse recovery algorithm such as CoSaMP [29]
or basis-pursuit [30, 31, 32].
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Table 1: Comparison of MoRAM with existing modulo recovery methods.

Unlimited Sampling [1] OLS multishot UHDR [2] MoRAM (our approach)
Method [4]
Assumption on structure of signal Bandlimited Bandlimited No assumptions Sparsity

Sampling scheme uniform grid

uniform grid

random linear
measurements

(carefully chosen)
linear measurements

Sample complexity oversampled, O(n)

- oversampled, O(n)  undersampled, O(slog(n))

Provides sample complexity bounds? Yes - No Yes
Leverages Sparsity? No No No Yes
(Theoretical) bound on dynamic range Unbounded Unbounded Unbounded 2R
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Fig. 2: Density plots of (a) yc = AX*; (b)y =

mod (Ax™).
3. ALGORITHM AND MAIN RESULTS

Giveny, A, s, R, our approach recovers x* and p* in two steps: (i)
an initialization step, and (ii) descent step via Alt-Min.

3.1. Initialization by re-calculating the measurements

Similar to other non-convex approaches, MORAM also requires an
initial estimate x° that is close to the true signal x*.

To do so, we observe the density plots of the y. = Ax* and
y = mod (Ax") as shown in Fig. 2 (a) and (b) respectively. Note
that the compressed measurements y. follow the standard normal
distribution, as A is Gaussian random matrix. These plots essentially
depict the distribution of our observations before and after the modulo
operation.

With reference to Fig. 2(a), we divide the compressed observa-
tions y. in two sets: yc,+ contains all the non-negative observations
(orange) with bin-index= 0, while y.,— contains all the negative
ones (green) with bin-index= 1.

As shown in Fig. 2(b), after modulo operation, the set y. —
(green) shifts to the right by R and gets concentrated in the right
half ([R/2, R]); while the set y.,+ (orange) remains unaffected and
concentrated in the left half ([0, R/2]). Thus, for some of the mod-
ulo measurements, their correct bin-index can be identified just by
observing their magnitudes relative to the midpoint R/2. This leads
us to obtain following maximum likelihood estimator for bin-indices

(p):
pznzt — 07
T 17

The pi™* obtained with above method contains the correct values
of bin-indices for many of the measurements, except for the ones
concentrated within the ambiguous region in the center.

Once we identify the initial values of bin-index for the modulo

if0 <y < R/2

3.1
ifR/2<y <R G-D

Algorithm 1 MORAM

Inputs: y, A, s, R; Output: x*
m,n < size(A)

Initialization
fori =0:mdo
Calculate pi™** according to Eq. 3.1.
end for
Calculate y™* according to Eq. 3.2.

x% « H, (% Zf\;l yi’fi“ai>
Alternating Minimization

fort =0:7T do

pt « lfsgn(2A»xt>)

y§+<1—y—ptRl 1t (ot T
end for

measurements, we can calculate corrected measurements as,

init

yit =y + p™'R. (3.2)

We use these corrected measurements y'** to calculate the initial

estimate x° with first order unbiased estimator.

1 N
o _ 1 init
X 7Hs (N;yc,z a‘Z)?

where H denotes the hard thresholding operator that keeps the s
largest absolute entries of a vector and sets the other entries to zero.

(3.3)

3.2. Alternating minimization

In the descent step, starting with x°, we calculate the estimates of p
and x in alternating fashion to converge to the original signal x*. At
each iteration of our Alternating Minimization, we use the current
estimate of the signal x* to get the value of the bin-index vector p®
as following:

pt = 1A xt))

Given x? is close to x*, p° would also be close to p*. Ideal way
is to calculate the correct compressed measurements y& using p*,
and use y& with any popular compressive recovery algorithms such
as CoSaMP or basis pursuit to calculate the next estimate x*+*.

However, even the small error d® = p® — p* would reflect
heavily in the calculation of x*, as each incorrect bin-index would
add a noise of the magnitude R in y&. The typical sparse recovery
algorithms are not robust enough to cope up with such gross errors
in y£ [26]. To tackle this issue, we employ the justice pursuit based

34
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formulation which is specifically robust towards grossly corrupted
measurements. We consider the fact that the nature of error d° is
sparse with sparsity s4; = ||d®||o; and each erroneous element of p
adds a noise of the magnitude R in y&. Thus we solve the augmented
optimization problem:

t+1

b'4 = argmin

A 1 [d] - yellz,
[x d]—r EMs+sdt
However, the sparsity of d®(s4;) is unknown, thus we employ
basis pursuit [30, 31, 32] that doesn’t rely on sparsity. The robust
formulation of basis pursuit is referred as Justice Pursuit (JP) [26] in
the literature, specified in Eq. 3.5.

L

xtt :Jp(m[A I],%yi,[xt p'l).

(3.5)
We repeat the steps of bin-index calculation (as in Eq. 3.4) and sparse
recovery (Eq. 3.5) alternatively for 7 iterations.

3.3. Theoretical results

‘We now provide theoretical guarantee for convergence of alternating
minimization in our algorithm. For brevity, here we omit the proof,
which is discussed in detail in an extended version [33].

We assume the availability of an initial estimate x° that is close
to x*, i.e. ||x® — x*||2 < §||x*||2. In our case, our initialization step
(in Alg. 1) provide such x°. For simplicity, we limit our analysis
of the descent to only one iteration of Alternating Minimization in
our algorithm. In fact, as proven in our analysis, theoretically only
one iteration of AltMin with JP is required for exact signal recovery.
Contrast to that, in practice we observe that our algorithm requires
more than one AltMin iterations to converge to the optimum solution.
We build our proofs on the results from [34, 35, 36].

Theorem 3.1 (Guarantee for Descent). Given an initialization
x0 satisfying ||x* —x%||l2 < §||x*|l2, for 0 < & < 1,m €
[0,1], € > 0, if we have number of (Gaussian) measurements
satisfying m > % (s log (n) + 2slog (22) + log (%)) and
s < ym/ (log (n/m) + 1), then the estimate after the first iter-
ation x* of alternating minimization in Algorithm 1 is exactly equal

to the true signal X* with probability at least 1 — K exp(—cm) — 1,
with ~y being a positive fraction, K and c being numerical constants.

4. NUMERICAL EXPERIMENTS

We numerically validate the MORAM algorithm on both synthetic
data and real image data. We also provide comparisons with multishot
UHDR [2], as it is the only approach (to our knowledge) that is
amenable to reconstruction from random compressive observations.
We generate a synthetic sparse signal x* € R™ with n = 1000. The
non-zero elements of x* are generated from A/ (0, 1) and normalized
such that ||x*||2 = 1. The number of measurements m is varied from
m = 100 to m = 800 in steps of 100.

We first obtain the compressed modulo measurements y =
mod yc = Ax™ using the forward model described in Eq. 2.1. We
reconstruct the signal from y using MoRAM algorithm with 7" = 15
and plot the confidence of perfect recovery (ratio of successful trials)
across 10 such independent trials vs. number of measurements m. In
comparison, we use multishot UHDR algorithm to undo the effect of
modulo operation on y to obtain y. = Ax™, and recover x* using
basis-pursuit. In both cases, we keep the total number of measure-
ments same, as multishot recovery requires oversampled (2 X in this

MoRAM: —=-5 =15
& 5=20 = s5=25

multishot: -e- s =15
-o- 5=20 -o-5=25
T

s 41 .
§ 0.8 -1 0.8 B
2
w 0.6 10.6F B
=}
(5]
204} 104} :
=]
=]
g02f 4 0.2 1
]

0r 4 0 8

200 400 600 800 200 400 600 800
Number of samples m Number of samples m
() (b)

Fig. 3: Comparison of confidence of success (ratio of successful
trials) vs no. of measurements (m) between MoRAM and multishot
UHDR [2] with n = 1000, and (a) R = 4; (b) R = 4.5.

multishot [2] with Qur algorithm,
basis-pursuit, R =4 (MoRAM), R =14

(a) Original image (b) SNR = 27.62dB (c) SNR = 79.65dB

Fig. 4: Sparse reconstructions (s = 800) of original Lovett Hall
image (n = 16,384); with m = 4000 and m = 6000 modulo
measurements for R = 4 (b) using multishot UHDR followed by
basis pursuit; (c) using MoORAM. MoRAM provides superior results
with higher PSNR.

case) measurements. In Fig. 3 we depict such plots for 2 values of
R = {4,4.5} and 3 values of s = {15,20,25}. It is evident that
for each combination of R and s, our algorithm achieves confidence
of 1 to give the exact recovery of the true signal (zero relative error)
consistently in all trials provided enough number of measurements,
while multishot fails to maintain high confidence of recovery even
with higher m. In all such cases, the minimum number of measure-
ments required for exact recovery for MoRAM are well below the
ambient dimension (n) of the underlying signal.

Further, for experiments on real data, we obtain a sparse represen-
tation of the 128 x 128 (n = 16384) Lovett Hall image (Fig. 4(a)) us-
ing the wavelet transform (with Haar wavelets). We set s = 800. We
reconstruct the image with MoRAM using m = 4000 and m = 6000
compressed modulo measurements, for R = 4. In comparison, in
Fig. 4(b) we depict the images reconstructed using multishot fol-
lowed by basis pursuit keeping the total measurements, m, the same.
Images reconstructed using MoRAM exhibit superior performance
compared to the multishot UHDR setup. As shown in Fig. 4(c, bot-
tom), for m = 6000, our algorithm produces perfect recovery with
high recovery PSNR.
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