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Abstract—Phase retrieval, or signal recovery from magnitude-
only measurements, is a challenging signal processing prob-
lem. Recent progress has revealed that measurement- and
computational-complexity challenges can be alleviated if the
underlying signal belongs to certain low-dimensional model fam-
ilies, including sparsity, low-rank, or neural generative models.
However, the remaining bottleneck in most of these approaches
is the requirement of a carefully chosen initial signal estimate.
In this paper, we assume that a portion of the signal is already
known a priori as “side information” (this assumption is natural
in applications such as holographic coherent diffraction imaging).
When such side information is available, we show that a much
simpler initialization can provably succeed with considerably
reduced costs. We supplement our theory with a range of
simulation results.

I. INTRODUCTION

A. Overview

The problem of phase retrieval refers to the challenge
of recovering a real- or complex-valued signal from its
magnitude-only measurements. This problem owes its roots to
applications in diffraction imaging, X-ray crystallography, and
ptychography [1]–[3]. Let us assume that an unknown signal,
x∗ ∈ Rn, is measured via (possibly noisy) measurements of
the form:

yi = |〈ai,x∗〉|+ ei, (1)

The goal is to recover an estimate of x∗ from the (phaseless)
measurements y ∈ Rm. While classical, the phase retrieval
problem has attracted renewed interest in the signal processing
community due to several recent breakthroughs [4], [5]. In
particular, a variety of phaseless signal recovery algorithms
have emerged in the literature that enjoy provable guarantees.

The majority of these results have focused on the “over-
complete” case where the number of measurements exceeds
the signal dimension, sometimes by a significant amount. This
may cause compute and storage problems in real-world appli-
cations. To alleviate measurement- and related computational-
complexity challenges, subsequent works have considered the
case where the unknown signal x∗ is structured in the sense
that it belongs to a low-dimensional sub-manifold of the
signal space that is known a priori. Examples of signal
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structure include sparsity [6], [7], low-rank [8], [9], or neural
generative models [10], [11]. Such structural assumptions can
provably reduce the measurement complexity of the phase
retrieval problem to m = o(n) using specialized algorithms;
for example, for s-sparse signals whose coefficients obey a
power-law behavior, the measurement-complexity drops to
O(s log n) [12].

However, there is a price to be paid in achieving provable
signal recovery. Many of these newer algorithms involve
solving a fundamentally non-convex problem using iterative
gradient-style methods; therefore, they need to be carefully
initialized. The initialization technique of choice is spectral
initialization, first proposed in the context of phase retrieval
in [5], and extended to the sparse signal case in [6], [7]. How-
ever, the running time of spectral initialization is quadratic
in the signal dimension (Ω(n2)) and constitutes the main
algorithmic bottleneck.

B. Our contributions

In this paper, we propose, analyze, and experimentally
validate a signal recovery algorithm for a variant of the
phase retrieval problem. In particular, we will assume that
a portion of the signal (or measurements) is already known
as “side information”. This assumption is natural in optics
applications such as holographic coherent diffraction imaging.
Such situations can be mathematically modeled as follows:

yi = |〈ai,x∗〉+ bi|+ ei, (2)

where b = [b1, . . . , bm] is assumed to be “side information”
that is available to the reconstruction algorithm.

Our recovery algorithm proceeds in two stages. We first
construct a coarse initial estimate of the signal; crucially, this
is done via a simple, linear estimation that leverages the side
information. Then, we iteratively refine this initial estimate
using an alternating minimization method in which we alter-
nately estimate: (i) the phases (signs) of the observations and
(ii) the signal x∗ using (conjugate/projected) gradient descent.

We analyze the performance of our proposed algorithm.
Our main result is given in Theorem IV.1. We also analyze
the empirical performance of our algorithm using simulated
measurements.



Algorithm 1 Linear initialization

Input: A,y, side information b, signal sub-manifold S

1: Compute the linear estimate:

x̄← 1

2m

m∑
i=1

y2i biai (4)

2: (Optional) Project onto feasible sub-manifold:

x̂← argmin
x∈S

‖x− x̄‖22.

Output: x0 ← x̂.

II. BACKGROUND

The phase retrieval problem has been extensively studied
over the last few decades [4], [13], [14] and it appears
in several applications, including optical imaging [14], [15],
microscopy [16], [17], and X-ray crystallography [18].

Phase retrieval is a non-convex problem and classical so-
lution methods rely on alternating projection heuristics; ex-
amples include Gerchberg-Saxton [13] and Fienup algorithms
[14]. In recent years, lifting-based methods were introduced
that reformulate phase retrieval as a semidefinite program. [4].
Subsequently, non-convex methods have been proposed for
solving phase retrieval problem with theoretical performance
guarantees [5], [12], [19]–[23]. Most non-convex methods
rely on estimating a good initial solution via the so-called
spectral initialization method. In its simplest form, spectral
initialization requires computation of the top singular vector
of the following Hermitian matrix:

1

m

m∑
i=1

y2i aia
T
i , (3)

In our proposed algorithm, we circumvent this requirement of
spectral computations, and show that when a portion of the
signal is known, then a simpler, linear initialization gives us
the necessary conditions required to establish convergence.

III. PHASE RETRIEVAL WITH SIDE INFORMATION

Our goal is to reconstruct the underlying signal x∗ from
measurements of the form 2. We will assume that x∗ lies on a
signal submanifold S ⊆ Rn; this represents the prior structural
information about the signal available to the reconstruction
algorithm1. If there is no such information available we can
simply set S = Rn.

Our overall reconstruction algorithm is described in pseu-
docode form in Algorithms 1 and 2. Our algorithm follows
the same familiar two-stage approach that is common in the
phase retrieval literature.
(a) Initialization: We first construct a coarse initial estimate

of the signal. Specifically, we obtain a signal estimate

1For example, if the signal is known to be s-sparse then S represents the
union of all s-dimensional canonical subspaces of Rn.

Algorithm 2 Iterative refinement

Input: A,y, side information b, signal sub-manifold S

1: Initialize x0 according to Algorithm 1
2: for t = 1, · · · , T do
3: pt ← sign

(
Axt−1 + b

)
,

4: xt = argminx∈S ‖pt ◦ y − b−Ax‖22
5: end for

Output: x̂← xT .

x0 using a linear initialization process described in Al-
gorithm 1. Such an estimate is expected to satisfy the
following condition:

dist
(
x0,x∗

)
≤ δ ‖x∗‖2

for some small constant δ, where dist (·, ·) is a suitably
defined distance measure. In the following section we
will derive conditions under which the above condition
is provably met.

(b) Iterative refinement: We then iteratively refine this coarse
initial estimate using alternating minimization follow-
ing [5], [12], [23]. The refinement procedure is described
in Algorithm 2. In each iteration, the (unknown) phases of
the observations are hallucinated using the current signal
estimate, and the corresponding linear problem is solved
using (constrained) least squares. In the following section,
we will derive conditions under which our refinement
strategy demonstrates linear convergence to x∗ when no
noise is present2. Specifically, for t = 0, 1, 2, . . ., our
sequence of estimates satisfies:

dist
(
xt+1,x∗

)
≤ ρ dist

(
xt,x∗

)
.

We now estimate the computational complexity of the
overall reconstruction algorithm. It can be seen that Line 1
in Alg. 1 and Line 3 in Alg. 2 involve a single matrix-vector
multiply involving A, and hence can be achieved in time
O(mn). The main burden now becomes the (constrained) least
squares step (Line 4 in Alg. 2), but this can be solved in
principle using approximate techniques. For example, in the
unconstrained case, one can use conjugate gradient for a fixed
number of steps, while in the case of s-sparsity, one can use
iterative algorithms such as CoSaMP [24] or iterative hard
thresholding [25]. In either case, this step can be achieved
in time Õ(mn). Therefore, the overall running time of the
reconstruction procedure is O(mnT ). When m = o(n) and
linear convergence is achieved, our proposed algorithm runs
sub-quadratic in the signal dimension n.

IV. ANALYSIS

We now provide sufficient conditions under which our
proposed reconstruction algorithm provably converges to the

2When noise is present, we achieve linear convergence up to a ball around
x∗ whose radius depends on the noise level



desired solution. We will use the Euclidean norm to define the
distance measure for convergence:

dist (x,x′) = ‖x− x′‖2 .

A. Assumptions
While our algorithm is applicable in general settings, for

our theoretical analysis we make the following assumptions:
(a) The elements of A are chosen i.i.d. from a unit Gaussian.
(b) The elements of b are also chosen i.i.d. from any distribu-

tion of mean 0, variance 1 (for example, a unit Gaussian).
(c) (optional) There exists an ε-approximation algorithm for

solving the manifold-constrained least squares step.
(d) The measurements are noiseless, i.e., ei = 0.

The first assumption is standard in the (generalized) phase re-
trieval literature. The second assumption is new and particular
to our “side-information” setting, and we expect that it can
be relaxed even further. The third assumption is reasonable
since there has been a lot of recent effort towards deriving
efficient approximation algorithms for solving constrained
least squares [26], [27]. The fourth assumption is made purely
for simplicity, and analogous theoretical results can be derived
even in the presence of noise.

B. Linear initialization
The first stage of the reconstruction algorithm constructs a

coarse initial signal estimate. To do so, we define a unbiased
estimator of the underlying signal using the measurements plus
side information as follows:

x̄ =
1

2m

m∑
i=1

y2i biai.

To provide the intuition behind the above expression, observe
the following:

y2i = (〈ai,x∗〉+ bi)
2,

= aix
∗x∗TaTi + b2i + 2bia

T
i x
∗, i.e.,

E[y2i biai] = E
[
bi(aix

∗x∗TaTi + b2i + 2bia
T
i x
∗)ai

]
,

= E[bi]E[aix
∗x∗TaTi ai]

+ 2E[b2i ]E[aTi x
∗ai] + E[b3i ]E[ai],

= 2x∗,

which follows from Assumptions (a) and (b) above. If a
constraint sub-manifold S has been given beforehand, then the
signal estimate x̄ is orthogonally projected onto S to produce
the initial estimate:

x0 = argmin
x∈S

‖x̄− x‖22 .

By applying tail concentration bounds for sub-Gaussian ran-
dom variables, we can infer with high probability that for m/n
exceeding a certain constant, we get:

dist
(
x0,x∗

)
≤ δ0 ‖x∗‖2 ,

with high probability. We omit detailed proofs here due to
space constraints, but refer to [12], [28] for details for both
the unstructured and the structured cases.

C. Iterative refinement

The second stage of the reconstruction algorithm refines
the initial signal estimate to progressively become closer and
closer to the solution. The method involves alternately estimat-
ing the (unknown) phases of the (linearized) measurements
〈ai,x∗〉 + bi, and using these linearized measurements to
reconstruct the signal estimate using standard regression or
sparse recovery techniques.

The intuition is as follows. In the absence of noise (As-
sumption (d) above), the observation model in (2) reduces to:

sign (〈ai,x∗〉+ bi) ◦ yi = 〈ai,x∗〉+ bi,

for all i = {1, 2, . . . ,m}. To ease notation, denote the phase
vector p ∈ Rm as a vector that contains the unknown signs
of the measurements, i.e., pi = sign (〈ai,x〉+ bi) for i =
{1, 2, . . . ,m}. Let p∗ denote the true phase vector and let P
denote the set of all phase vectors, i.e. P = {p : pi = ±1,∀i}.
Therefore, the recovery of x∗ can be posed as a (non-convex)
optimization problem:

min
x∈S,p∈P

‖Ax + b− p ◦ y‖2 (5)

To solve this problem, we alternate between estimating p
and x. We perform two estimation steps:
(a) if we fix the signal estimate x, then the minimizer p ∈ P

is given in closed form as:

pi = sign (〈ai,x〉+ bi) , (6)

(b) and if we fix the phase vector p, the signal vector
x ∈ S can be obtained via (approximately) solving the
constrained least squares problem:

min
x∈S
‖p ◦ y −Ax− b‖22. (7)

We now analyze our proposed descent scheme. We obtain:

Theorem IV.1. Given an initialization x0 ∈ M satisfying
dist

(
x0,x∗

)
≤ δ ‖x∗‖2, for 0 < δ < 1, if the number of

(Gaussian) measurements,

m > Ω̃δ,ρ(ω
2(S))

then with high probability, the iterates xt+1 of Alg. 2, satisfy:

dist
(
xt+1,x∗

)
≤ ρdist

(
xt,x∗

)
, (8)

where 0 < ρ < 1 and ω(·) represents Gaussian width.

Proof: The high level idea behind the proof is that with a δ-ball
around the true signal x∗, the “phase noise” can be suitably
bounded in terms of a constant times the signal estimation
error. To be more precise, suppose that z∗ = Ax∗+bi = p∗◦y.
Then, at any iteration t, we have:

zt = pt ◦ y
= p∗ ◦ y + (pt − p∗) ◦ y
= z∗ + et,



where et can be viewed as the “phase noise”. Now, examining
Line 4 of Algorithm 2, we have:∥∥Axt + b− pt ◦ y

∥∥
2
≤ (1 + ε)

∥∥Ax∗ + b− pt ◦ y
∥∥
2
.

This follows from two reasons: (i) in Assumption (c) above
we assumed that xt is an ε-approximate solution to the
constrained least squares problem 7. (ii) x∗ is a feasible point
in S. Therefore, we have:∥∥Axt + b− pt ◦ y

∥∥
2
≤ (1 + ε)

∥∥z∗ − zt
∥∥
2

= (1 + ε)
∥∥et∥∥

2
.

On the other hand, we have:∥∥Axt + b− pt ◦ y
∥∥
2

=
∥∥Axt + b− zt

∥∥
2

≥
∥∥Axt + b− z∗

∥∥
2
−
∥∥z∗ − zt

∥∥
2

=
∥∥A(xt − x∗)

∥∥
2
−
∥∥et∥∥

2

≥ (1− δ0)
∥∥xt − x∗

∥∥
2
−
∥∥et∥∥

2
,

where the second inequality follows from the triangle in-
equality and the last inequality follows from standard matrix
concentration arguments [29]; in general, this holds provided:

M ≥ C

δ20
(ω2(S)),

where ω represents the Gaussian width3. Rearranging the
inequalities gives us the following bound:

∥∥xt − x∗
∥∥
2
≤ 2(1 + ε)

1− δ0
∥∥et∥∥

2
.

It remains to show that ‖et‖2 can be bounded in terms of∥∥xt−1 − x∗
∥∥
2
. We do this by invoking Lemma C1 in [12]

(whose proof involves chaining techniques and is lengthy, so
we omit it here). Consequently, we get

∥∥xt − x∗
∥∥
2
≤ 2(1 + ε)ρ′

1− δ0
∥∥xt−1 − x∗

∥∥
2
,

where ρ′ is a small enough constant. Setting various constants,
we achieve a per-step error reduction scheme of the form:∥∥xt − x∗

∥∥
2
≤ ρ0

∥∥xt−1 − x∗
∥∥
2
,

if the initial estimate x0 satisfies
∥∥x0 − x∗

∥∥
2
≤ δ0 ‖x∗‖2.

V. EXPERIMENTS

In this section, we present several simulation results to
demonstrate the performance of our proposed algorithm under
different scenarios.

3See [29] for bounds that link Gaussian width to the complexity of the
signal manifold S. For example, for s-sparse vectors, ω(S) =

√
s logn.

Fig. 1: Phase transition for reconstructing sparse signals using
side information (n = 1000, s = 5).

(a) Fourier measurements (b) Gaussian measurements

Fig. 2: Reconstruction error for different values of over-
sampling factor m/n and reference signal strength σ with
n = 1024.

a) 1D signals: We first test our method for the recovery
of 1D signals from their (phaseless) measurements with an
additive known reference signal b. Our simulation setup is
as follows. We generate x∗ ∈ Rn with coefficients drawn
from N (0, 1/m) and the known “side information” b ∈ Rm
with independent entries drawn from N (0, σ2). We simulate
phaseless measurements y = |Ax∗ + b| and estimated x̂
using our proposed algorithm. We performed 100 independent
trials. For every trial, we record the normalized recovery error
‖x∗−x̂‖2
‖x∗‖2 .

First, we consider recovering s-sparse signals x∗ with
s = 5, n − 1000 using our proposed algorithm. Figure 1
shows the phase transition curve (in blue) plotting successful
recovery as a function of m (where success is defined as signal
recovery with error less than 1e-4.) Interestingly, a randomly
initialized method succeeds only a little worse; however,
randomly initialized alternating minimization without the side
information was unable to reconstruct the signal for the given
range of m.

Figure 2 summarizes error curves for our simulations using
our refinement algorithm with both Fourier and Gaussian
measurements with n = 1024, σ = 0, 0.5, 1, 2, and a range of
m/n. Every point on the error curves represents the recovery
error for the given values of m/n and σ. We observe that
for nonzero values of σ, the recovery error reduces as m/n
increases. We also observe that the quality of reconstruction
depends on the strength of the reference signal b that we



denote as σ. Note that σ = 0 refers to the standard phase
retrieval problem when b = 0; this problem is especially
challenging for the Fourier measurements. We can observe
in Fig. 2(a) that the phase retrieval method fails to recover
signal from Fourier amplitude measurements when σ = 0
but as σ increases, the recovery performance improves. In
the case of Gaussian measurements, the signal is recovered
almost perfectly if m/n ≥ 6 with or without reference. We
also observe that the presence of a strong known reference in
the measurements allows signal recovery even if m/n ≈ 3.

b) 2D images: In the second set of experiments, we test
our method for the recovery of sample MNIST images from
their Gaussian and Fourier (phaseless) measurements with an
additive known reference signal b. We select five test images
from MNIST dataset, each of size 28×28 (i.e., n = 784). We
captured m = 1764 phaseless measurements as |Ax∗ + b|,
where A either denotes an m × n Gaussian matrix or a 2D
Fourier transform operator with appropriate zero padding to
achieve 4× oversampling, x∗ denotes unknown image, and b
denotes the reference. We generated the reference signal b ∈
Rm with independent entries drawn from uniform distribution
in interval [0, 1].

(a) Fourier measurements (b) Gaussian measurements

Fig. 3: Sample reconstruction of MNIST images from Fourier
and Gaussian phaseless measurements.

The results are summarized in Fig. 3. The original 28× 28
images are shown in the top row. The middle row shows recon-
struction from the regular phase retrieval method (i.e., b = 0),
which fails to recover any image accurately. The bottom row
shows the reconstruction using our proposed method when a
known reference signal is added to the real- or complex-valued
measurements before recording their amplitude. The results
clearly illustrate the benefits of the side information available
to the reconstruction algorithm.
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