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Abstract—We study the problem of recovering structured data
from ptychographic measurements. Ptychography is a image
acquisition scheme that uses an array of images to produce high-
resolution images in microscopy as well as long-distance imaging,
to mitigate the effects of diffraction blurring. The number of
measurements are typically much larger than the size of the
signal (image or video) to be reconstructed, which translates to
high storage and computational requirements.

The issue of high sample complexity can be alleviated by
utilizing structural properties of the image (or video). In this
paper, we first discuss a range of sub-sampling schemes which
can reduce the amount of measurements in ptychographic setups;
however, this makes the problem ill-posed. Correspondingly, we
impose structural constraints on the signals to be recovered,
to regularize the problem. Through our novel framework of
recovery algorithms, we show that one can reconstruct high-
resolution images (or video) from fewer samples, via simple and
natural assumptions on the structure of the images (or video).
We demonstrate the validity of our claims through a series of
experiments, both on simulated and real data.

Index Terms—Phase retrieval, ptychography, structure, sparse,
low-rank, sub-diffraction imaging, super-resolution.

I. INTRODUCTION

A. Motivation

ACOMMON problem in microscopy and long-distance
imaging is diffraction blurring. When the aperture of the

imaging lens is much smaller in comparison to (i) the size of
the object to be imaged [4], or (ii) the distance of the object
to be imaged [5], a diffraction pattern is observed. When the
spatial resolution of the object is smaller than the diameter of
this pattern, the image formed at the sensing plane is typically
blurred. Consequently, the limited angular extent of the input
aperture leads to significant loss in spatial resolution, and
designing methods for super-resolution in diffraction-blurred
imaging systems is of considerable interest.

Fourier ptychography [4] is a technique which mitigates the
effects of diffraction blurring by constructing a large synthetic
aperture. Practically, this setup can be implemented by either
spatially moving a single camera aperture [6], or by an array of
fixed cameras [4], similar to those used in light-field cameras;
each of the cameras measure different parts of the Fourier
spectrum of the desired images. The image formation at the
sensing plane is typically complex in nature, due to phase
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shifts induced by the optical lens setup. However, the sensing
apparatus is incapable of estimating the phase of the complex
values, and only the magnitudes can be measured.

This setup can be molded to that of the classical problem
of phase retrieval [7], [8], [9], which is a non-linear, ill-
posed inverse problem. In phase retrieval, the goal is to recon-
struct a discretized image (or video) of size n (or nq) from
noisy, magnitude-only observations of the image’s discrete
Fourier transform (DFT) coefficients. A generalized version
of this problem replaces the DFT coefficients with a generic
linear operator constructed by sampling certain families of
probability distributions. Several algorithmic approaches for
this generalized case have emerged in the recent literature,
accompanied by strong theoretical guarantees on the accuracy
of reconstruction [10], [11], [12], [13], [14].

A fundamental challenge in Fourier ptychography is the
requirement of an over-complete set of observations. To re-
construct a length-n signal, one requires m � n samples.
This value of m can be typically very large, which can pose
severe limitations in terms of data storage and computational
load. To reduce this sample complexity, one can leverage
low-dimensional modeling assumptions made on the signal.
Exploitation of low-dimensional structures in signals has been
well studied in the case of linear measurements. For instance,
a natural structural assumption on image data is sparsity
[15]. Further, more refined structured sparsity assumptions
(such as block sparsity) can also be imposed to enable image
reconstruction from an even smaller set of measurements [16],
[17], [18].

Similarly, for video data, one can consider the scenario of
estimating a dynamic slowly changing scene with a moving
target. Then, without structural assumptions, for a video with
q frames, one requires m = Ω(nq) measurements. To alleviate
this, a low-rank assumption can be imposed on the video in
order to reduce the sample complexity, a concept which has
been well exploited in recent literature [19].

B. Our contributions
In this paper, we design and validate a series of sample-

efficient algorithms for sub-diffraction imaging using the
Fourier ptychography framework that exploits structure. More-
over, we introduce two practical “sub-sampling” strategies for
Fourier ptychography. These strategies can be easily incorpo-
rated into pre-existing measurement setups. In particular, we
make the following contributions:
1) We leverage underlying (structured) sparsity of natural

image data in various transform domains, to present a
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family of reconstruction algorithms for recovering super-
resolved sparse images from sub-sampled measurements.

2) We leverage underlying low-rank structure in video data
and propose a novel reconstruction algorithm for recov-
ering super-resolved slowly changing videos from sub-
sampled measurements.

3) We propose a model-error correction strategy for our low-
rank ptychography algorithm which accounts for inaccura-
cies in estimating the low-rank nature of data correctly.

4) We support our claims for reduced sample complexity
requirements through a series of experiments, on both
synthetically generated and real data.

Sparse data model: For sparse image data, we propose an
approach based on a line of previous work [20], [21] wherein
we had developed an algorithmic framework for improving
sample-complexity of classical phase retrieval. This paper
extends this line of work to the (more practically relevant)
setting of Fourier ptychography.

Low-rank data model: For video data which satisfies the
low-rank model, we adapt the algorithmic framework intro-
duced in [22], [23] and extend to the setting of Fourier
ptychography. For real-world videos that need not fit the
low-rank model perfectly, we propose a novel modeling-error
correction stage which allows for application of our approach
to a broad class of video data.

II. PRIOR WORK

A. Fourier ptychography
In the literature on Fourier ptychography, the majority of

papers focus on the experimental merits of the procedure [6],
[4], [24], [25], albeit without structural constraints. Recent
work [26], [27], [28] provides analysis on the convergence
guarantee of phase retrieval problem for Short Time Fourier
Transform (STFT) measurements, which can be extended
to the setting of ptychography; however, only simple test
cases (that consider 1-D signals of specific length) have been
analyzed until now.

In [29] the authors discuss the experimental robustness of
various phase retrieval algorithms in the context of Fourier
ptychography, and conclude that amplitude-based recovery
methodologies are more effective in combating noise, aber-
rations and model mismatch.

In [5], authors proposed a way of adapting this super-
resolution methodology for long-distance imaging, which they
solve via alternation minimization. There exist several choices
for the phase retrieval procedure in all of these setups. Most
papers utilize first-order methods such as Wirtinger flow [30],
[31] and Alternating Minimization [5]. Meanwhile in [32],
[33], the authors use a Newton-step based alternating gradient
descent, for the same setup.

Exploiting structure in the context of ptychography had not
been explored in literature until very recently. Zhang et. al.
study the problem of exploiting sparsity with threshold-based
gradient descent [34], [35]. However they use sparsity as a
regularization and do not study the problem in the context of
under-sampled measurements. Our method explicitly addresses
the sample-complexity issue, and is extensible to a large class
of structured sparsity models.

Very recently, Shamshad et. al. [36] discuss a deep gen-
erative priors strategy for sub-sampled Fourier Ptychography
under sparsity priors. Since their methodology is training-
based, it requires large number of example images to learn the
generative model accurately. This can be highly prohibitive in
the context of microscopic or long-distance images, as the
acquisition time and costs associated with generating such
datasets will be very high.

To the best of our knowledge, there does not exist any
prior work that considers low-rank structure in the context
of ptychography.

B. Phase retrieval

Initially studied in the 1970s [37], phase retrieval is a
classic problem and challenge in optical imaging and signal
processing area. Traditionally, the alternating minimization
framework is utilized; one can estimate the missing phase
information of the measurements, and subsequently the signal
coefficients, within the same iteration of this algorithm. Since
this problem is inherently non-convex in nature, convergence
of such algorithm to the desired ground truth signal value, is
not always guaranteed, unless initialized properly 1. For the
case of multi-variable Gaussian measurements, Netrapalli et.
al. provide the first set of guarantees [13].

Subsequently, a gradient descent based approach, which
utilizes the Wirtinger gradient [12], [40] to minimize an `2-
squared empirical loss function was developed, for Gaussian
as well as Coded Diffraction Pattern (CDP) measurements.
This line of work as well as subsequent papers[14], [41], [42]
is now well established with near-optimal results.

Similarly, convex formulations of the same problem exist,
with the majority of algorithms relying on lifting the problem
from an n-dimensional space to an n2-dimensional space, and
attempting to solve a low-rank constrained problem in the
larger space [10]. However, these methods are computationally
expensive.

C. Sparse phase retrieval

Sparsity assumptions have recently been introduced in
the context of phase retrieval. A series of approaches have
emerged that use alternating minimization [13], [20], convex
relaxation [41], [38], [43] and iterative thresholding [44], [45].
In all of the above, authors give a sample complexity of
O
(
s2 log n

)
for stable recovery for s-sparse signals. In case

of s � n, this result is an improvement compared to the
standard requirement of O (n) measurements. Additionally,
subsequent work [20], [21] suggests that modeling the sparsity
into specific structures such as blocks or trees, leads to a
lowered sample complexity (to O (s log n)). Related other
works also show a similar complexity (O (s log n)), albeit for
some more carefully designed measurements [46], [47].

1Exceptions to this are [38],[39], however this comes at the cost of higher
computational or sample complexity.
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Ai,k : x F Pi,k F−1 Mi,k ŷi,k

ŷi,k | · | yi,k

A>i,k : ŷi Mi,k F Pi,k F−1 x̂i,k

Fig. 1: Sampling procedure for single image, using operator
Ai,k. Mi,k indicates the sub-sampling step. Indices i and k
correspond to different cameras and video frames respectively.

D. Low-rank matrix recovery

In classic signal processing, the low-rank matrix recovery
problem has been studied in the context of matrix completion
and robust PCA [48], [49], [50]. Our previous work [22] gave
the first result on using low-rank model in the context of phase
retrieval. However, all of the works mentioned above require
generic linear matrix measurements, and the applicability of
such methods for Fourier Ptychography has not been studied
thus far.

III. PAPER OUTLINE

We describe the paper organization in detail. In Section IV,
we describe lay the groundwork for the Fourier Ptychography
measurement model used in the rest of the paper. In particular,
in Section IV-A, we introduce the optical setup used to acquire
conventional ptychography measurements. In Section IV-B
we discuss sub-sampling strategies to reduce the number of
measurements. In Section IV-C, we introduce the mathematical
formulation for the measurement setup. In Section IV-D, we
discuss the conventional reconstruction procedure used for
inverting ptychographic measurements.

Further, we discuss signal reconstruction under our two
main structural assumptions. In Section V, we establish the
still image data model, with a sparsity prior and set up
the main optimization problem. In Section VI, similarly, we
establish the video data model, with a low-rank prior and the
corresponding optimization problem. In both Sections V and
VI, we introduce and describe our algorithms for reconstruct-
ing structured data from sub-sampled Fourier ptychography
measurements.

We first report our experimental findings for sparse ptychog-
raphy, in Section VII, for simulation (Section VII-A) and real
data (Section VII-B) measurements. We then report our exper-
imental findings for low-rank ptychography, in Section VIII,
for simulation (Section VIII-A) and real data (Section VIII-B)
measurements. Finally, in Section IX, we compare our sparsity
and low-rank models in the context of the measurement setup
described in Section IV.

IV. FOURIER PTYCHOGRAPHY SETUP

A. Optical setup

The setup in Fourier ptychography, such as that described in
[5], [33], involves imaging an object using a series of optical

sensing operations. The object is illuminated by coherent light.
The transformed beam of light from the illumination pattern
then passes through a thin lens which is located in front of the
object, leading to a thin lens effect that can be modeled via
a Fourier transform operation. The Fourier domain image is
captured by a camera array with limited-size aperture pupils.
In the setting of [5], such camera array is realized by either a
physical grid of N cameras, or by a single translating camera.
In [33], the multi-camera setup is replaced by a single fixed
lens but with grid of LEDs with programmable illumination
angles or patterns. Effectively, both of these setups simulate
a large synthetic aperture. The effect of the lens array on the
image plane is equal to an inverse Fourier operation. Finally,
the image (in the form of the light beam) is received by an
optical sensor that records the absolute value of the complex
image.

In this paper, in order to decrease sample complexity we
also use an additional “sub-sampling” mask, in which we
mute the measurements corresponding to a fraction of pixels
(or cameras) constituting the measurement setup. This step is
incorporated via an element-wise masking operation M. This
masking operation is discussed in further detail in Section
IV-B. For capturing static images, the imaging procedure is
summarized as in Figure 1. For capturing videos, the same
setup is used except that different sub-sampling masksM are
used for each of the q frames.

B. Sub-sampling strategies

Sub-sampling can be done in two ways: pixel-wise and
camera-wise. Camera-wise sub-sampling corresponds to ran-
domly switching off a different set of cameras at different
times (refer Figure 2(b)), while pixel-wise corresponds to
“switching off” different randomly selected pixels at different
times (refer Figure 2(a)). Both strategies help save power
(pixel-wise requires careful camera design in which individual
pixel sensors can be turned off to save power). This strategy
is similar to that used in compressed sensing literature [51].
Camera-wise sub-sampling can also result in a proportional
reduction in data acquisition time in case “multiple cameras”
are simulated by moving a single camera to different locations.

Random pixel patterns: We construct a sub-sampling mask
in which the elements of the mask are picked up according to
a Bernoulli distribution. If i is an index for a given camera in
the camera array, then elements bij corresponding to different
pixels of a camera, are independent standard Bernoulli random
variables. The mask resembles the operation of a diagonal
matrix with 1s and 0s on the diagonal. Pixels corresponding
to 1s are retained and those corresponding to 0s are discarded.
A total of m = f × (nN) measurements are retained, in
expectation, from all N cameras, where f denotes the fraction
of samples (or pixels), and is also the probability associated
with the Bernoulli random variable and n is the size of the
original image frame. Figure 2 (a) represents an illustration.

In this case, for an input signal (vectorized image) v ∈ Cn,
the sub-sampling mask operates as

Mi(v)j = bij · (v)j , (1)
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(a) (b)

Fig. 2: Construction of camera array masks via (a) random
pixel and (b) random camera arrangements.

where Pr(bij = 1) = f and Pr(bij = 0) = 1− f .
Randomly chosen cameras: Another sub-sampling strategy

is to turn some cameras “on” or “off”. We use sampling masks
Mi, which are picked up from a Bernoulli distribution b ∈
RN , with elements bi being independent standard Bernoulli
random variables. In terms of the sampling mask, for a vector
input v ∈ Cn, the sub-sampling mask,

Mi(v) = bi · v, (2)

where Pr(bi = 1) = f and Pr(bi = 0) = 1 − f . Figure 2 (b)
represents an illustration of this setup.

C. Mathematical formulation of measurement setup

We discuss the mathematical model for recovering a multi-
dimensional signal, from sub-sampled Fourier ptychographic
measurements problem. We consider a matrix X, with columns
being vectorized images and q such images frames

X := [x1, . . .xk, . . . ,xq], X ∈ Cn×q

where each frame is indexed by k. Henceforth, we denote the
index set {1, . . . q} as [q] for simplicity of notation. In the case
of a single image frame, q = 1. For a video that is sufficiently
slow changing, the rank of matrix X can be assumed to be no
greater than r, where r � min(n, q). Each individual frame of
the video xk is fed to the measurement setup described in in
Fig. 1. The measurements corresponding to a specific camera i,
and image frame k, where i spans different cameras or LEDs
(i = 1, 2, . . . , N or i = [N ] for simplicity of notation) is
yi,k ∈ Rn. The linear operators Ai,k : Cn → Cn represent the
series of operations represented in Fig. 1, prior to the camera
sensor. Effectively, the measurements can be stacked into a
long vector

y =


|A1,1(x1)|

...
|Ai,k(xk)|

...
|AN,q(xq)|

 = |A(X)|

in which y ∈ CnNq and the measurement operators Ai,k can
be stacked vertically into a long effective operator A.

The forward operator Ai,k is effectively the sequence of
operations:

Ai,k =Mi,kF−1Pi,kF (3)

in which, F and F−1 denote the Fourier and inverse Fourier
operations, and Pi,k is a pupil mask correspond to the ith

camera and kth frame. The collection of operators {Pi,k},
for all i, constitute a series of bandpass filters which cover
different parts of the Fourier spectrum of a given frame k.

The sub-sampling mask Mi,k is different from camera to
camera as well as from frame to frame.

D. Existing recovery methods

The problem of phase retrieval involves recovering a signal
x (or single frame) from phase-less measurements of the form

y = |A(x)|.

A common recovery method uses alternating minimization
[37], [13], which involves re-formulating the recovery as the
solution to a non-convex problem:

min
C,x
‖y −C · A(x)‖2 ,

where the diagonal matrix C = diag(phase(A(x))) captures
the missing (complex) phase information from the measure-
ments.

Algorithm 1 Alternating minimization for phase retrieval

1: Input: A,y, t0
2: Initialize x0 s.t. minφ

∥∥eiφx0 − x∗
∥∥
2
≤ δ ‖x∗‖2.

3: for t = 0, · · · , t0 − 1 do
4: Ct+1 ← diag

(
phase(A(xt))

)
,

5: xt+1 ← argminx

∥∥A(xt)−Ct+1y
∥∥
2
.

6: end for
7: Output z← xt0 .

Our recovery method is described in Algorithm 1. It in-
volves an alternating procedure in which one estimates the
missing phase information C and estimates the signal x. A
crucial requirement for the convergence of AltMinPhase is that
a “good” initialization x0 is provided.

In the subsequent sections, we discuss the recovery of
both sparse images and low-rank videos, in the context of
the Fourier ptychography measurement setup. In Section IX,
we compare these two models under the aforementioned sub-
sampled measurement setup.

V. STILL IMAGE DATA: SPARSITY MODEL

In this section, we discuss an algorithm to estimate a single
image from phaseless measurements using fewer samples than
is required conventionally by alternating minimization. To do
this, we utilize prior knowledge of the underlying sparsity
of the image to formulate a new non-convex optimization
problem:

min
x

N∑
i=1

‖|Ai(x)| − yi‖22, s.t. x ∈Mb
s, (4)
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Algorithm 2 Model-based CoPRAM for Ptychography

1: Input: A1, . . .AN ,y, s, b, t0
2: x0j ←

√
1
N

∑N
i=1 y

2
i,j , j indexes signal entries j = [n].

3: for t = 0, · · · , t0 − 1 do
4: Ct+1 ← diag

(
sign

(
A(xt)

))
,

5: xt+1 ← MODELCOSAMP
(
A√
nN

, C
t+1y√
nN

, s, b,xt
)

.
6: end for
7: Output z← xt0 .

where x is a vectorized image. Here, Mb
s is called a sparsity

model, and denotes the set of all s-sparse signals whose non-
zero coefficients can be grouped into blocks with uniform
block length b. (The standard sparsity model can be rep-
resented by assigning b = 1.) To solve (4), we adapt the
Compressive Phase Retrieval with Alternating Minimization
(CoPRAM) framework, first introduced in [20], [21]. This
procedure is shown in Algorithm 2.

The algorithm contains two stages: (i ) initialization and (ii)
sparse signal estimation, which we discuss in detail as follows.

A. Initialization

The initialization for solving the problem in (4) is a crucial
step since the formulation is non-convex. It is therefore impor-
tant to design an initialization that is as close to the ground
truth of the signal to be recovered as possible. There exists
a range of alternatives which can be chosen for this purpose,
and we discuss this choice of initialization in detail in Section
VII.

Typically in the literature, the choice of initialization is
either (a) the observed intensity values from a small set of
cameras placed at or near the center of the camera array [33]
(b) an average of the intensity values from all cameras of the
camera array [5]. In [5], the authors use the average 1

N

∑N
i yi,

of the observed intensity values yi from each camera, as
the initial estimate x0. Another choice of initialization is to
directly use the intensity values recorded by the central camera
(indexed by c ∈ [N ]), yc, which is essentially a low-resolution
image that needs to be super-resolved.

In this paper, for the initialization stage, we improve upon
the one given in [5] by using root-mean-squared measurements

as the estimator
√

1
N

∑N
i=1 y

2
i , where y2

i is an element-wise
squaring operation (line 1 of Algorithm 2). We establish
experimentally that this initialization is superior to that in [5].
A similar initialization strategy has been discussed in [28].

This is also a deviation from the conventional spectral
initialization for phase retrieval as discussed in [13], [11],
[20]. While a spectrally-obtained initial estimate succeeds for
generic (Gaussian) linear measurements both in theory and
practice, it unfortunately fails for the Fourier ptychographic
setup. The intuition behind average or root mean squared
initialization is as follows.

If the measurements were not phaseless, then yi,k would
contain random samples of a bandpass filtered version of the
signal (with different i’s corresponding to different random
samples of different bands). Hence summing (or averaging)

all the yi,k’s, would provide a good initial estimate of the xk.
The same would also be true if the operation before the step of
taking phaseless measurements returned a vector with all non-
negative entries. In our setting, neither is exactly true, however
the same idea still returns a good enough initial estimate. We
believe the reason is that the image itself is all non-negative
and hence its low-pass filtered measurements are definitely all
non-negative as well. These likely dominate the summation,
and because of this, the same approach works even though
we are often removing the sign of negative entries as well
(the higher frequency entries can be negative). Experimentally
we have observed that instead of averaging, taking the root
mean squared estimate gives a slightly better initial estimate.
This is better because the large (low pass) entries dominate
even more in this estimate than in a simple average.

B. Sparse signal estimation

Once we have a coarse estimate for the initialization of
the CoPRAM algorithm, we then refine this estimate using a
variant of alternating minimization. Specifically, at any given
iteration, we first estimate the phase (line 3 of Algorithm 2)
by applying the forward operator A to the signal estimate
xt. Next, we assign this estimated phase into our observed
intensity measurements, and subsequently obtain the next
signal estimate xt+1 using a sparse recovery algorithm (line
4 of Algorithm 2) such as CoSaMP [52]. Moreover, in order
to incorporate structural assumptions beyond sparsity, the only
modification is to replace the sparse recovery method by any
other stable structured sparse recovery method, such as model
CoSaMP [17] (line 4 of Algorithm 2).

In [20] we have demonstrated (both theoretically and numer-
ically) that the estimates xt+1 of the above alternating mini-
mization technique for Gaussian measurements, converges to
the solution x at a linear rate, using an appropriate termination
condition.

The basic idea is that the “phase noise” induced due to the
estimation error can be suitably bounded provided the initial
estimate is good enough. Below, we empirically demonstrate
that for the case of Fourier ptychographic measurements,
similar gains can be achieved using our algorithm, as long
as a good initialization is provided.

VI. VIDEO DATA: LOW RANK MODEL

We develop a reconstruction method that exploits the as-
sumption that a sequence of slowly changing images is often
well approximated by a low rank matrix (with each column
of the matrix being one image arranged as a 1D vector). For
real videos, this means that the first few singular values of X
contain most of the energy.

In the ideal scenario in which the video is exactly low-
rank, the desired X will be the solution to the non-convex
optimization problem:

argmin
X

q∑
k=1

N∑
i=1

‖yi,k − |Ai,k(xk)|‖22, (5)

s.t. rank(X) ≤ r,
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where r represents the rank-parameter. To solve (5), we
adapt the low-rank phase retrieval (LRPR) algorithm in [22].
As above, our recovery algorithm consists of primarily two
stages: (i) initialization, and (ii) low-rank matrix estimation.
We call this adaptation the Low Rank Ptychography (LRPtych)
algorithm.

In real-world applications, the exact low-rank assumption
on the target video may not necessarily hold. Mathematically,
the desired X can be written as X = X̃+E where E encodes
the modeling error and X̃ is exactly low rank.

To correct for this modeling error, we introduce an ad-
ditional estimation stage. In this third stage, we invoke the
model correction subroutine, to fix any errors that may have
propagated due to inaccuracy in selecting the rank r, from
the standard LRPtych algorithm. This stage, coupled with
LRPtych, constitutes the Modified Low Rank Ptychography
(or MLRPtych) framework. Mathematically, this represents the
following optimization problem:

X̂ := X̃ + argmin
E

q∑
k=1

N∑
i=1

‖yi,k − |Ai,k(xk + ek)|‖22 (6)

where E = [e1, e2, . . . eq], E ∈ Rn×q is the modeling error.
In Algorithm 3, we summarize the three stages of our

Modified Low Rank Ptychography algorithm. Our algorithm
relies on the fact that a rank-r matrix X∗ can be written as
X∗ = UB, where U is a matrix of size n× r with mutually
orthonormal columns, and B is a matrix of size r × q.

In keeping with the requirements for phase retrieval algo-
rithms, initialization is a key factor in obtaining an appropriate
reconstruction of the video data matrix X. For the low-
rank matrix recovery stage, we introduce a subspace based
alternating minimization method, which estimates the missing
phase information and signal information in an alternating
pattern. Further details of these three stages of Algorithm 3
are discussed below.

A. Initialization

The original LRPR algorithm used a spectral initialization
approach that was a modification of the ideas in [12] to
the low rank set up. However after experimental probing,
we observe that borrowing the approach of LRPR does not
work for the current application. We believe this is so because
the measurement setup does not capture the properties of the
Gaussian and CDP model discussed in [12].

Instead, we use the same initialization idea as described in
Section V-A. We obtain the initial guess for each individual
image frame as x0

k =
√

1
N

∑N
i=1 y

2
i,k, where y2

i,k is element-
wise squared. Moreover, we follow this by computing a rank-r
approximation of the resulting matrix and using its compo-
nents to initialize U and B. (Refer lines 1-5 of Algorithm 3
for this procedure).

A reduced singular value decomposition (reducedSVD) is
applied on the video estimate X0 = [x0

1, . . .x
0
q], with given

rank r to obtain U0,S0,V0 respectively. This initialization
ensures that the future estimates of Ut ∈ Rn×r estimate an
r-dimensional subspace. Similarly, the corresponding coeffi-
cients in terms of B0 = S0 ·V0> are extracted.

Algorithm 3 Modified Low Rank Ptychography (MLRPtych)

(Initialization)
1: Input: yk,Ai,k, r
2: x0k,j ←

√
1
N

∑N
i=1 y

2
i,k,j , j indexes signal entries j = [n].

3: [U0,S0,V0]← ReducedSV D((X
0
), r)

4: b0
k ← (S0V0>)k, k = [q].

(Low-rank matrix recovery stage)
5: for t = 1, 2, . . . , T do
6: a) Ct

k ← diag(phase(Ak(Ut−1bt−1k ))), k = [q]

7: b) Utmp ← argminŨ

∑
k

∥∥∥Ct
kyk −Ak(Ũbt−1k )

∥∥∥2
8: c) Ut ← QR(Utmp)

9: d) btk ← argminb̃k

∥∥∥Ct
kyk −Ak(Utb̃k)

∥∥∥2, k = [q]

10: end for
11: Intermediate output: X̃0 = UTBT

(Modeling-error correction stage)
12: for k = [q] do
13: x̃k

0 = UTbTk
14: x̂0

k = x̃k
0 + e0k

15: for t = 1, 2, . . . , T ′ do
16: e) Ct

k ← diag(phase(Ak(x̂k
t)))

17: f) etk ← argmine(
∥∥Ct

kyk −Ak(x̂k
t + e)

∥∥2
2
+τ‖e‖22)

18: g) x̂k
t+1 = x̂k

t + etk
19: end for
20: end for
21: Output: X∗ = X̂T ′+1

This initialization procedure critically ensures that a low
rank structure is imposed in subsequent estimates of X.

B. Low-rank matrix recovery

Once we obtain an initial estimate, we then refine it using
a procedure similar to the LRPR2 algorithm of [22], which is
an alternating-minimization algorithm that alternates between
three steps: estimating the phase of the measurements C, and
the components U and B of the low rank matrix X.

Specifically break down the Algorithm 3, in Line 10, we
obtain an estimation of the missing phase information Ct

k,
for each frame k. In Line 11, we estimate an r-dimensional
subspace Ut, by utilizing the conjugate gradient (CG) method
to obtain a fast, approximate solution, and thus avoid any need
for explicit matrix inversions. In Line 12, we similarly estimate
the coefficients btk by using QR decomposition to obtain btk
in an efficient nammer.

C. Modeling-error correction

Finally, we proceed to the modeling error correction stage
(lines 16-21 of Algorithm3), an idea similar to that used in
iterative back projection (IBP)[53]. The output at the end of
the low-rank matrix estimation stage, in Line 15, is exactly
rank r. However, for most real videos, the low-rank model
assumption, is often inconsistent, and cannot describe the
video characteristics precisely.

We introduce new notation, to demarcate the real video
as X∗ = X̃ + E. In the modeling error correction stage,
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(a) Spatially sparse (b) Block sparse

Fig. 3: (a) Resolution chart, used as ground truth (b) simulated
block sparse image, used as ground truth for experimental
analysis.

we claim to produce X̂t′ → X∗. This stage, much like the
previous stage involves alternatively estimating the modeling
error E = [e1, . . . eq], and the missing phase information from
the measurements.

We initialize this stage as X̂0 = X̃0 + E0 where X̃0 is
the output from the previous stage, and E0 = 0 initializes the
modeling error on real videos. In lines 20 to 22, we use an
alternative minimization method to estimate this model error,
by alternatively updating C (step (e) of Algorithm 3) and E
(step (f), and subsequently step (g) of Algorithm 3, X̂). We
impose an `2 regularization on ek to ensure that the error term
is minimized.

In the next section we describe some experimental results
based on our Model-based CoPRAM and MLRPtych algo-
rithms.

VII. EXPERIMENTAL RESULTS: SPARSE MODEL

A. Simulation results

In this section, we demonstrate the performance of the
sparse ptychography algorithms discussed in the previous sec-
tions on synthetically generated ptychographic measurements,
with known ground truth values.

We describe the effect of enforcing the sparsity constraint
in various domains as follows. We use two different datasets:
(i) a simulated USAF resolution chart as shown in Figure 3
(a), and (ii) a simulated image which is specifically block
sparse as shown in Figure 3 (b). The resolution chart provides
a good way to inspect the recovery of finer details, at varying
spatial resolutions. The parameters fed to the main algorithm
are as follows: we used a n = 2562(256× 256) image of the
Resolution Chart (resChart) as the ground truth. The camera
array consists of N = 81(9× 9) cameras, each with aperture
diameter 72.75 pixels and overlap of 0.72 between consecutive
cameras. A sub-sampling factor of f = 0.3 picks up 30% of
the original number of measurements. To implement this, we
generated masks Mi as in (1). For the sparse phase retrieval
algorithm CoPRAM, we enforce a sparsity of s = 0.25n.
The reconstruction procedure relies heavily on the extent of
overlap, hence the norm of the reconstructed images is not
preserved. We use Structural Similarity Index (SSIM) [54] as
a metric to appropriately capture the quality of reconstruction,
as it compares the two images in terms of luminance, contrast
and structure, instead of utilizing a straightforward distance
measure.

(a) Center (b) IERA (c)CoPRAM
SSIM=0.3517 SSIM=0.3369 SSIM=0.8740

Fig. 4: 30% samples, (a) center image, reconstruction using (b)
IERA (c) CoPRAM (spatial sparsity).

0 0.2 0.4 0.6 0.8 1

0

0.5

Fraction of samples f
SS

IM

CoPRAM, Spatial
CoPRAM, Fourier
Block CoPRAM

Modified SPARTA
IERA

Fig. 5: Variation of SSIM with sub-sampling ratio, with sparsity
s = 0.25n, (block size b = 4× 4 for Block CoPRAM).

We employ CoPRAM by enforcing sparsity in spatial basis
and compare the reconstruction from sub-sampled magnitude-
only measurements, to those from Iterative Error Reduction
Algorithm (IERA) [5], which is an application of AltMinPhase
in the context of Fourier ptychography.

Sub-sampling via random pixel patterns: The results via
the random pixel sub-sampling discussed in Section IV-B are
displayed in Figure 4 for the input image in Figure 3. It can
be noted that we can also impose sparsity in a wavelet basis
(such as Haar) and we expect to achieve similar improvements
in the SSIM.

We have also analyzed the variation of the SSIM with
different sub-sampling rates. For this, we used CoPRAM while
assuming sparsity in the spatial basis for the input image in
Fig. 3. We also invoked Block CoPRAM, (refer Sec. VII-A for
details) which assumes block sparsity in the spatial domain.
For comparison, we used IERA and also a modified version of
another sparse phase retrieval algorithm called SPARTA [45],
where we have used the same initialization as in line 1 of
Algorithm 2. These results can be found in Figure 5.

Sub-sampling via randomly chosen cameras: The results
via the randomly chosen cameras sub-sampling strategy dis-
cussed in Section IV-B are discussed here. We utilize this
strategy to test the robustness of CoPRAM against IERA,
under the sparsity assumption. We switch off ≈ 50% of the
cameras (for this experiment, 38 cameras are active, from 81
total), where the camera locations are picked according to (2)
(the central camera is kept “on” by default). The results are
displayed in Figure 6 for the input image in Figure 3. We
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(a) Center (b) IERA (c) CoPRAM
SSIM=0.3927 SSIM=0.4225 SSIM=0.9053

Fig. 6: Using 50% cameras, (a) center image, reconstruction
using (b) IERA (c) CoPRAM (spatial sparsity).

(a) Center (b) IERA (c) CoPRAM
SSIM=0.3674 SSIM=0.3088 SSIM=0.6124

Fig. 7: Using 0.12 overlap between consecutive cameras, (a)
center image, reconstructed image using (b) IERA (c) re-
constructed image using CoPRAM with sparsity constraint in
spatial basis.

observed that enforcing sparsity in the spatial domain gives a
better reconstruction (Fig. 6 (d)).

Effect of decreased aperture overlap: One of the issues
of the implementation in [5] is that they require consecu-
tive camera arrays to have overlap with each other. This is
physically impractical if one wants to implement a camera
array in the same plane. However, with no camera overlap,
their experiments perform poorly (oversampling is imperative
for standard phase retrieval strategies). On the other hand
CoPRAM uses a sparsity constraint to improve quality of
reconstruction (Note: for this setup f = 1). For this experi-
ment, we changed the amount of overlap between two cameras
from 0.72 to 0.12. The results of this experiment suggest
a superior reconstruction when CoPRAM is invoked, with
sparsity in spatial basis (SSIM=0.6124) as compared to IERA
(SSIM=0.3088) and the input center image (SSIM=0.3674)
are displayed in Figure 7 for the input image in Figure 3. We
observed that enforcing sparsity in the spatial domain gives a
better reconstruction.

Extension to block sparsity: Since we were able to demon-
strate the advantage of sparse modeling to reduce number of
samples required for good reconstruction, we also applied Co-
PRAM to images with block sparsity (in the spatial domain).
Instead of using CoSaMP (line 4 of Algorithm 2), we use a
block variant of model-based CoSaMP [17] (we call this Block
CoPRAM). For this experiment, we synthetically generated a
block sparse image (Fig. 3 (b)), and measured it using the
random sub-sampling pattern described in (1), with an low
overlap of 0.12 between adjacent cameras. The reconstructions
are displayed in Fig. 8, showing pronounced improvement
when Block CoPRAM is used.

(a) Center (b) CoPRAM (c) Block CoPRAM
SSIM=0.99687 SSIM=0.99995 SSIM=0.99998

Fig. 8: Using 0.12 overlap and 30% samples (a) center image,
reconstructed image using (b) CoPRAM (spatial sparsity) (c)
Block CoPRAM (spatial block sparsity).

TABLE I: Comparison of SSIM values for recovery from
different initializations.

Initialization Spectral Center Mean RMS
SSIM 0.2328 0.8812 0.8908 0.8958

(a) Center (b) IERA (c) CoPRAM

Fig. 9: Center image (a) and reconstruction using 30% pixels,
via (b) IERA (c) CoPRAM, for a USAF imprint imaged via
ptychography setup.

Effect of different initialization schemes: Several initial-
ization schemes were compared. Specifically, we tried (i)
spectral initialization, (ii) central camera image (iii) mean of
absolute measurements, (iv) root-mean-squared (RMS) abso-
lute measurements. The results from all of these initialization
schemes in terms of SSIM, for the setting of 30% samples,
using uniform random pixel sub-sampling, with CoPRAM, is
tabulated in Table I. It is clear that the root-mean-squared
measurements are a better initialization.

B. Real data experiments

For the sparse model, we used a USAF imprint imaged
via the ptychographic setup, which is described in detail in
Section VII. B. of [5]. The input image is 200 × 200 pixels,
the camera array consists of N = 529(23 × 23) cameras,
each camera lens with aperture diameter spanning 56 pixels
and spacing of 15.8 pixels (rounded to closest integer value)
between consecutive pupils. The sparsity is assumed to be s =
0.25n. The reconstruction using uniform random pixel sub-
sampling, by retaining 30% of the measurements and assuming
sparsity in spatial basis is displayed in Figure 9.

Similarly, the results from uniform random camera sub-
sampling by using 50% cameras is shown in Figure 10.

Perceptually, we results from CoPRAM are show better
resolution and are in keeping with our findings from our
simulation data experiments. In conclusion, the results of our
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(a) Center (b) IERA (c) CoPRAM

Fig. 10: Center image (a) and reconstruction using 50%
cameras, via (b) IERA (c) CoPRAM for a USAF imprint
imaged via ptychography setup.

algorithm are well-applicable in real-world sparse imaging
scenarios.

VIII. EXPERIMENTAL RESULTS : LOW-RANK MODEL

A. Simulation results
In this section, we demonstrate the performance of the low-

rank ptychography algorithms discussed in the previous sec-
tions on synthetically generated ptychographic measurements,
with known ground truth values. We apply Algorithm 3 for two
different patterns of under-sampling. The settings used for this
experiment are as follows: the data is sized as 180× 180× q,
where q varies for different videos: q = 112 for “Bacteria”
(B) video, q = 148 for “SleepingDog” (D) video, q = 140
for “Fish” (F) videos (all videos used for this implementation
can be found at [55]). The aperture diameter of each camera
considered is 40 pixels, overlap between consecutive cameras
is of factor 0.48 and number of cameras in the camera array
is 81 (9 × 9). We run lines 9-14 of MLR-Ptych algorithm
for 5 iterations (T = 5) and lines 19-23 for 10 iterations
(T ′ = 10). We compare the results of our algoirhtm to
the basic AltMinPhase or IERA framework, for 250 outer
iterations. In addition, we run original LR-Ptych algorithm,
without modeling correction (lines 9-14 of Algorithm 3) for 5
iterations, as a comparison. The rank considered for all videos
for is r = 20.

Sub-sampling via random pixel patterns: In the first set
of experiments (refer Fig. 11,12), we consider random pixel
under-sampling, as discussed in IV-B, with sub-sampling ratio
f . In Fig. 12, we provide a visual comparison between the
three algorithms (MLRPtych, LRPtych and IERA) that we
tested in the experiment, for a fixed frame of the video of a
fish (labeled as “F”). In Fig. 11 we compare the SSIM values
from the reconstruction.

Sub-sampling via randomly chosen cameras: In the second
set of experiments (refer Fig. 13,14), we consider a simpler and
more feasible under-sampling strategy of turning a fraction of
cameras from the camera array “on”, as discussed in Section
IV-B. We see similar trends of improved performance of
MLRPtych w.r.t. IERA and LRPtych (see Fig. 14, in terms
of SSIM, in both sets of experiments. It is also interesting
to note that even under the scenario where we consider all
measurements (f = 1), we see an improved recovery for the
MLRPtych algorithm w.r.t. IERA. A visual comparison of the
performance of both algorithms on “Bacteria” (B) video can
be seen in Figure 14.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

undersampling ratio f

SS
IM

F,MLRPtych
B,MLRPtych
D, MLRPtych

F,IERA
B,IERA
D,IERA

F,LRPtych
B,LRPtych
D,LRPtych

Fig. 11: Variation of SSIM of recovery of different algorithms,
with random pixel sub-sampling, at different sub-sampling
ratios f .

(b) Center image (c) MLRPtych

(a) Ground truth (d) LRPtych (e) IERA

Fig. 12: Visual comparison of super-resolved reconstructions
via (c) MLRPtych, (d) LRPtych, (e) IERA for ptychography
using 50% of measured pixels from low-resolution input (b),
with known ground truth (a).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

undersampling ratio f

SS
IM

F,MLRPtych
B,MLRPtych
D,MLRPtych

F,IERA
B,IERA
D,IERA

F,LRPtych
B,LRPtych
D,LRPtych

Fig. 13: Variation of SSIM of recovery of different algorithms,
with random camera sub-sampling, at different sub-sampling
ratios f .

The reconstruction metric, as well as perceptual quality
suggests that MLRPtych (and LRPtych) give improved recon-
struction with respect to conventional algorithms which do
not consider a low-rank structure, using fewer measurements.
We now demonstrate similar gains for experimentally obtained
ptychographic measurements of biological cells.
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(b) Center image (c) MLRPtych

(a) Ground truth (d) LRPtych (e) IERA

Fig. 14: Visual comparison of super-resolved reconstructions
via (c) MLRPtych, (d) LRPtych, (e) IERA for ptychography
using 50% of cameras from low-resolution input (b), with
known ground truth (a).

B. Real data experiments

For the low-rank model, we source the data captured by
a multiplexed-LED illumination microscopic system imple-
mented by Tian et. al. [33].

The setting used in such system is as follows. The total
number of LEDs is 293 (N = 293) with overlap of 92.1%.
Size of measurement from each LED is 100× 100. Length of
video q = 98. The size of recovered frames is 500×500. The
rank considered for LRPtych is r = 20.

A low-rank regularization is useful in reducing the effect
of noisy or erroneous, as well as sub-sampled measurements.
With the simulation results, we have demonstrated the
improved recovery of (approximately) low-rank videos, using
much fewer samples. In this section we show similar gains
on biological data acquired via a ptychography setup.

Sub-sampling via random pixel patterns: In the first set of
experiments we utilize the random pixel sub-sampling strategy
discussed in Section IV-B. The results of the reconstruction
under various sub-sampling ratios f , for LRPtych, are shown
in Figure 15.

Sub-sampling via randomly chosen cameras: In the second
set of experiments, we utilize the random camera pattern
discussed in Section IV-B to sub-sample measurements. In
Figure 16, we show the results of reconstruction under the
uniform random camera sub-sampling strategy.

In Table II, we compare the SSIM of reconstruction under
different algorithms (implementation by Tian et. al. [33] which
we call AltGrad, and LRPtych), and sub-sampling schemes,
while using the f = 1, or “full” measurement case as
the baseline. We note that LRPtych is capable of achieving
superior performance as compared to AltGrad, under this
metric. Further discussion on these experiments can be found
in [55].

(a) low-res,
Frame 43

(b) 100% (c) 50% (d) 25%

(e) low-res,
Frame 53

(f) 100% (g) 50% (h) 25%

(i) low-res,
Frame 63

(j) 100% (k) 50% (l) 25%

Fig. 15: (a),(e),(i) show the low-resolution input images for
Frames 43,53 and 63 respectively, and the results for pixel-
wise sub-sampling are shown in (b)-(d) for frame 43, (f)-(h)
for frame 53 and (j)-(l) for frame 63, using 100%, 50%, 25%
measurements.

(a) low-res,
Frame 43

(b) 100% (c) 50% (d) 25%

(e) low-res,
Frame 53

(f) 100% (g) 50% (h) 25%

(i) low-res,
Frame 63

(j) 100% (k) 50% (l) 25%

Fig. 16: (a),(e),(i) show the low-resolution input images for
Frames 43,53 and 63 respectively, and the results for camera-
wise sub-sampling are shown in (b)-(d) for frame 43, (f)-(h)
for frame 53 and (j)-(l) for frame 63, using 100%, 50%, 25%
measurements.

IX. LOW-RANK V/S BLOCK SPARSE PHASE RETRIEVAL

For the sake of completeness, we compare the performance
of Block Sparse variant of CoPRAM with the Low Rank
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TABLE II: Comparison of reconstruction SSIM with that of
full measurements.

sub-sample pixel pixel camera camera
ratio f = 1 f = 0.5 f = 0.25 f = 0.5 f = 0.25

AltGrad N/A 0.5711 0.4748 0.5951 0.5603
LRPtych N/A 0.9979 0.9930 0.9218 0.8219

0 0.2 0.4 0.6 0.8 1
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0.5
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undersampling rate f
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IM

F,LRPtych
B, LRPtych
D, LRPtych
F,BSPtych
B,BSPtych
D,BSPtych

F,IERA
B, IERA
D, IERA

Fig. 17: Variation of SSIM of reconstructed image obtained
using LRPtych, BSPtych (apply block sparsity on video sig-
nal), and IERA versus sampling rates for three videos “Fish”
(F), “Dog” (D), “Bacteria” (B).

Ptychography algorithm. Note that a low-rank video can be
considered to be approximately block sparse, though it may not
be the best model for such kind of setups. To demonstrate this,
we compare the performances of model-based CoPRAM with
a block sparsity assumption, which assumes block sparsity in
wavelet domain of a video signal (instead of low rank) and use
same dynamic ptychography measurement set-up used for the
LRPtych formulation by showing the SSIM verses pixel-wise
under-sampling rate f in Fig. 17, for three videos of a fish (F),
dog (D) and bacteria cell (B) respectively (Section VIII-A).
We call this implementation BSPtych, and highlight that this
implementation is different from that in Section V which
considers a different measurements setup. As the videos used
here are not typical for those under which the wavelet block
sparsity model would hold , we can see that the performance of
block sparsity based algorithm is not as good as low rank based
one, but it is still better than IERA which uses no structure.
Moreover, the measurement setup itself, is not identical to
that used in Algorithm 2 for the reconstruction procedure. The
block-sparse formulation considers the entire video volume to
be a single image frame, where the block sparsity is modeled
across the time (or frame) axis. The measurement setup in
this scenario considers the video volume to be a single image,
with each frame being a single column, which differs from
the setup we use for the sparse formulation of the problem, in
which the image frame is not vectorized. Because these two
formulations are inconsistent, we argue that we require two
different models for low-rank and block sparse formulations.
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