
Sampling and Recovery of Pulse Streams

Chinmay Hegde and Richard G. Baraniuk

Department of Electrical and Computer Engineering

Rice University

Abstract

Compressive Sensing (CS) is a new technique for the efficientacquisition of signals, images, and

other data that have a sparse representation in some basis, frame, or dictionary. By sparse we mean

that theN -dimensional basis representation has justK ≪ N significant coefficients; in this case,

the CS theory maintains that justM = O (K log N) random linear signal measurements will both

preserve all of the signal information and enable robust signal reconstruction in polynomial time. In this

paper, we extend the CS theory topulse streamdata, which correspond toS-sparse signals/images that

are convolved with an unknownF -sparse pulse shape. Ignoring their convolutional structure, a pulse

stream signal isK = SF sparse. Such signals figure prominently in a number of applications, from

neuroscience to astronomy. Our specific contributions are threefold. First, we propose a pulse stream

signal model and show that it is equivalent to an infinite union of subspaces. Second, we derive a lower

bound on the number of measurementsM required to preserve the essential information present in pulse

streams. The bound is linear in the total number of degrees offreedomS + F , which is significantly

smaller than the naive bound based on the total signal sparsity K = SF . Third, we develop an efficient

signal recovery algorithm that infers both the shape of the impulse response as well as the locations and

amplitudes of the pulses. The algorithm alternatively estimates the pulse locations and the pulse shape

in a manner reminiscent of classical deconvolution algorithms. Numerical experiments on synthetic and

real data demonstrate the advantages of our approach over standard CS.
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I. INTRODUCTION

Digital signal processing systems face two parallel challenges. On the one hand, with ubiq-

uitous computing power, memory and communication bandwidth, the pressure is onacquisition

devices, such as analog-to-digital converters and digitalcameras, to capture signals at ever

increasing sampling rates. To date, signal acquisition hasbeen governed by the Shannon/Nyquist

sampling theorem, which states that all the information contained in a signal is preserved if it

is uniformly sampled at a rate twice the bandwidth of its Fourier transform. On the other hand,

to counter the resulting deluge of Nyquist-rate samples, DSP systems must utilize efficient

compressionschemes that preserve the essential information containedin the signals of interest.

Transform compression of a discrete-time signalx ∈ RN involves representing the signal in

a suitable basis expansionx = Ψα, with Ψ an N × N basis matrix, and storing only theK

largest basis coefficients. The number of large coefficientsin α is known as thesparsityK of

the signal in the basisΨ. For many classes of interesting signals,K ≪ N , and hence efficient

signal compression can be achieved.

An intriguing question can thus be asked: can a system simultaneously attain the twin goals of

signal acquisition and compression? Surprisingly, the answer in many cases isyes. This question

forms the core of the burgeoning field of Compressive Sensing(CS) [3, 4]. A prototypical CS

system works as follows: a signalx of lengthN is sampled by measuring its inner products with

M ≪ N vectors; the output of the sampling system is thus given by the vectory = Φx = ΦΨα,

whereΦ ∈ R
M×N is a non-invertible matrix. The CS theory states that, with high probability,

x can be exactly reconstructed fromy provided that (i) the elements ofΦ are chosen randomly

from certain probability distributions, and (ii) the number of samplesM is O (K log(N/K)).

Further, this recovery can be carried out in polynomial timeusing efficient greedy approaches

or optimization based methods (e.g., [5, 6]).

For some applications, there exist more selective signal models than simple sparsity that en-

code various types of inter-dependencies among the locations of the nonzero signal components.
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Recent work has led to the development of CS theory and algorithms based onstructured sparsity

models that are equivalent to a finite union of subspaces [7, 8]. By exploiting the dependencies

present among the nonzero coefficients,M can be significantly reduced; for certain structured

sparsity models, with high probability the number of measurementsM required for exact recovery

is merelyO (K) (without the additional logarithmic dependence on the signal lengthN).

Despite the utility of sparsity models, in many real-world sensing applications the assumption

of sparsity itself is an oversimplification. For example, anelectrophysiological recording of a

neuron is often approximated as a series of narrow spikes butis more accurately modeled

as a series of more elongated pulses, the pulse shape being characteristic to the particular

neuron. As another example, a high-resolution image of the night sky consists of a field of

points (corresponding to the locations of the stars) convolved with the point spread function of

the imaging device. Such signals can be modeled as anS-sparsespike streamthat have been

convolved with an unknownF -sparseimpulse responseso that the resulting overall sparsity

K = SF . We call such a signal apulse stream. Applying standard compressive sensing and

recovery to such a pulse stream would requireM = O (SF log(N/SF )) measurements, and thus

incur a corresponding multiplicative increase by a factor of F as compared to sensing merely the

underlying spike stream (in which caseM = O (S log N/S)); this can be prohibitive in some

situations. Thus, it is essential to develop a CS framework that can handle not just sparse signals

but also more general pulse streams.

In this paper, we take some initial steps towards such a CS pulse stream framework. First,

we propose a deterministic signal model for pulse streams. We show that our proposed model is

equivalent to a specific instance of aninfinite union of subspaces. Second, as our main theoretical

contribution, we derive a bound on the number of random linear measurementsM required to

preserve the essential information contained in such signals. The proof relies on the particular

high-dimensional geometry exhibited by the pulse stream model. Our derivation shows that

M = O ((S + F ) log N); i.e., M must be proportional to the number of degrees of freedom of

the signalS +F but only sublinearin the total sparsityK = SF . Third, we develop algorithms

to recover signals from our model. Under certain additionalrestrictions on the signals of interest,

one of the algorithms provably recovers both the spike stream and the impulse response. We

analyze its convergence, computational complexity, and robustness to variations in the pulse
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Fig. 1. (a) Test signal of lengthN = 1024 obtained by convolving a spike stream withS = 6 spikes with an

impulse response of lengthF = 11, so that the total signal sparsityK = SF = 66. (b) Profile of one pulse . Signal

recovery fromM = 100 random Gaussian measurements performed using (c) a state-of-the-art CS recovery algorithm

(CoSaMP [9], MSE = 13.42), and (d) our proposed Algorithm 2 (MSE = 0.0028).

shape. Numerical experiments on real and synthetic data sets demonstrate the benefits of the

approach. As demonstrated in Figure 1, we obtain significantgains over conventional CS recovery

methods, particularly in terms of reducing the number of measurements required for recovery.

This paper is organized as follows. In Section II, we review the rudiments of standard and

structured sparsity-based CS. In Section III, we propose a deterministic signal model for pulse

streams and discuss its geometric properties. In Section IV, we derive bounds on the number of

random measurements required to sample signals belonging to our proposed model. In Section V,

we develop an algorithm for stable signal recovery and analyze its convergence and robustness

to model mismatch. Numerical results are presented in Section VI, followed by a concluding

discussion in Section VII.
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II. BACKGROUND ON COMPRESSIVESENSING

A. Sparse signal models

A signalx ∈ RN is K-sparsein the orthonormal basisΨ ∈ RN×N if the corresponding basis

representationα = ΨT x contains no more thanK nonzero elements. Without loss of generality,

we assume the sparsity basisΨ to be the identity matrix forRN . The locations of the nonzeros

of x can additionally be encoded by a binary vector of lengthN with a 1 indicating a nonzero;

this vectorσ(x) is called thesupportof x. Denote the set of allK-sparse signals inRN asΣK .

Geometrically,ΣK can be identified as the union of
(

N
K

)
subspaces ofRN , with each subspace

the linear span of exactlyK canonical unit vectors ofRN . For a generalx ∈ RN , we define its

bestK-sparse approximationxK as

xK = arg min
u∈ΣK

‖x− u‖2. (1)

Many signals of interest exhibit more complex dependenciesin terms of their nonzero values

and locations. Signals that permit only a small number of admissible support configurations can

be modeled by a restricted union of subspaces, consisting only of LK canonical subspaces (with

LK ≪
(

N
K

)
). If Σ = {σ1, σ2, . . . , σLK

} denotes the restricted set of admissible supports, then a

structured sparsity model[7] is the set

MK := {x : σ(x) ∈ Σ}. (2)

B. Signal acquisition via nonadaptive linear measurements

Suppose that instead of collecting all the coefficients of a vectorx ∈ RN , we merely record

M inner products (measurements) ofx with M < N pre-selected vectors; this can be represented

in terms of the linear transformationy = Φx, Φ ∈ RM×N . Φ is called thesampling matrix; it

is at most rank-M and hence has a nontrivial nullspace. The central result in the Compressive

Sensing (CS) theory is that, despite the non-invertible nature of Φ, if x is sparse, then it can

be exactly recovered fromy if Φ satisfies a condition known as the restricted isometry property

(RIP) [10]:

Definition 1: An M ×N matrix Φ has theK-RIP with constantδK if, for all x ∈ ΣK ,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22. (3)
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A matrix Φ with theK-RIP essentially ensures astable embeddingof the set ofall K-sparse

signalsΣK into a subspace of dimensionM . The RIP requiresΦ to leave the norm of every

sparse signal approximately invariant; also,Φ must necessarily not contain any sparse vectors

in its nullspace. At first glance, it is unclear if a matrixΦ that satisfies the RIP should even

exist whenM < N ; indeed, deterministic design of a sampling matrix having the RIP is an

NP-complete problem. Nevertheless, it has been shown that providedM ≥ O (K log(N/K)), a

matrix Φ whose elements are i.i.d. samples from a random subgaussiandistribution possesses

the RIP with high probability [10]. Thus,M can be linear in the sparsity of the signal setK

andonly logarithmicin the signal lengthN .

An analogous isometry condition holds for structured sparsity models containingLK canon-

ical subspaces [7, 8, 11]. This is known as themodel-based RIPand is defined thus:Φ satisfies

theMK-RIP if (3) holds for allx ∈MK . It can be shown [11] that the number of measurements

M necessary for a subgaussian sampling matrix to have theMK-RIP with constantδ and with

probability 1− e−t is bounded as

M ≥ c

δ2

(
ln(2LK) + K ln

12

δ
+ t

)
. (4)

We can make two inferences from (4). First, the number of measurementsM is logarithmic in

the numberof subspaces in the model; thus, signals belonging to a more concise model can be

sampled using fewer random linear measurements. Second,M is at least linearin the sparsity

K of the measured signal.

C. Recovery methods

Given measurementsy = Φx, CS recovery methods aim to find the “true” sparse signalx

that generatedy. One possible method is to seek the sparsestx that generates the measurements

y, i.e.,

x̂ = arg min
x′

‖x′‖0 subject to y = Φx′. (5)

where theℓ0 “norm” of a vectorx′ denotes the number of nonzero entries inx′. This method can

be used to obtain the true solutionx providedM ≥ 2K. However, minimizing theℓ0 norm can

be shown to be NP-complete and is not stable in the presence ofnoise in the measurements [10].
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If the sampling matrixΦ possesses the RIP, then tractable algorithms for CS recovery can

be developed. These broadly follow two different approaches. The first approach entails solving

a convex relaxation of (5):

x̂ = arg min
x′

‖x′‖1 subject to y = Φx′, (6)

which corresponds to a linear program and hence can be solvedin polynomial time. A common

variant of this formulation includes accounting for noise of bounded magnitude in the measure-

ments [6]. The second approach entails an iterative, greedyselection of the supportσ(x) of the

true solutionx. This approach is employed by several algorithms such as orthogonal matching

pursuit (OMP) [5], compressive sampling matching pursuit (CoSaMP) [9], and iterative hard

thresholding [12].

Both optimization and greedy approaches provide powerful stability guarantees in the pres-

ence of noise while remaining computationally efficient. Given noisy measurements of any signal

x ∈ RN so thaty = Φx+n, if Φ possesses the RIP, then the signal estimatex̂ obtained by these

algorithms has bounded error:

‖x− x̂‖2 ≤ C1‖x− xK‖2 +
C2√
K
‖x− xK‖1 + C3‖n‖2, (7)

wherexK is the bestK-sparse approximation tox as defined in (1) andC1, C2 are constants.

Furthermore, with a simple modification, algorithms like CoSaMP and iterative hard thresholding

can be used to reconstruct signals belonging to any structured sparsity model [7].

To summarize, at the core of CS lie three key concepts: a signal model exhibiting a particular

type of low-dimensional geometry in high-dimensional space, a low-rank linear mapping that

provides a stable embedding of the signal model into a lower dimensional space, and algorithms

that perform stable, efficient inversion of this mapping.

III. SIGNAL MODELS FORPULSE STREAMS

Our objective is to extend the CS theory and algorithms to pulse stream signals. The conven-

tional sparse signal modelΣK does not take into account the dependencies between the values

and locations of the nonzeros in such signals. Indeed, thesedependencies cannot be precisely

captured by any structured sparsity modelMK that merely comprises a reduced subset of the
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subspaces inΣK . This necessitates richer models that capture theconvolutionalstructure present

in the nonzero coefficients of pulse streams.

A. General model

Consider the following deterministic model for signals that can be modeled by the convolution

of an S-sparse spike streamx ∈ RN with an F -sparse impulse responseh ∈ RN .

Definition 2: Let MS ⊂ R
N be a union ofS-dimensional canonical subspaces, as defined

in (2). Similarly, letMF ⊂ RN be a union ofF -dimensional canonical subspaces. Consider the

set

Mz
S,F := {z ∈ R

N : z = x ∗ h, such thatx ∈MS andh ∈MF}, (8)

where∗ denotes the circular convolution operator. Then,Mz
S,F is called apulse stream model.

We make two immediate observations:

1) Commutativity:Owing to the commutative property of the convolution operator, an ele-

mentz in Mz
S,F can be represented in multiple ways:

z = x ∗ h = h ∗ x = Hx = Xh, (9)

whereH (respectively,X) is a square circulant matrix with its columns comprising circularly

shifted versions of the vectorh (respectively,x). Therefore, Definition 2 remains unchanged

if the roles ofx and h are reversed. We exploit this property during signal recovery from CS

measurements in Section V.

2) Geometry:It is useful to adopt the following geometric point of view: for a fixedh ∈MF ,

the set{h ∗ x : x ∈ MS} forms a finite union ofS-dimensional subspaces, owing to the fact

that it is generated by the action ofh on LS canonical subspaces. Denote this set byh(MS).

Then, the pulse stream model in (8) can be written as

Mz
S,F =

⋃

h∈MF

h(MS).

Thus, our signal model can be interpreted as a specific instance of aninfinite union of subspaces.1

Note that (4) cannot be applied in this case since it only considers finite unions of subspaces.

1A general theory for sampling signals from infinite unions ofsubspaces has been introduced in [13].
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However, letK = SF denote the maximum sparsity of the signals in Definition 2. Then, it is

clear that the setMz
S,F is a very small subset ofΣK , the set of allSF -sparse signals. We exploit

this property while proving our main sampling results in Section IV.

Note that the exact definition of the convolution operator changes depending on the domain

of the signals of interest. For one-dimensional (1D) time domain signals of lengthN , the square

matrix H is formed by allN circular shifts of the vectorh; for 2D images of sizeN pixels,H

is formed by all 2D circular shifts ofh, and so forth.

B. Special case: Disjoint pulses

The model proposed in Definition 2 is general and applicable even to signals in which

successive pulses overlap with each other. In Section IV we develop a lower bound on the

number of samples required to preserve the essential information contained in an arbitrary pulse

stream. However, feasible recovery of such general pulse streams from CS measurements is

rather difficult; we examine this in detail in Section V. Therefore, we will also consider a more

restrictive model where the pulses are assumed to not overlap.

For concreteness, consider 1D time domain signals as specified by (9). Note thatH and x

need not be unique for a givenz; any ordered pair(αH, x/α) satisfies (9), and so does(H ′, x′),

where H ′ is generated by a circularly shifted version ofh by a time delay+τ and x′ is a

circularly shifted version ofx by −τ . In particular, to eliminate the ambiguity due to circular

shifts, we make the following two assumptions:

1) the impulse responseh is concentrated, i.e., theF nonzero coefficients ofh are contigu-

ously located in its firstF indices. Thus, the structured sparsity modelMF for the vector

h consists of the lone subspace spanned by the firstF canonical unit vectors.

2) the spikes are sufficiently separated in time. In particular, any two consecutive spikes in

the vectorx are separated at least by∆ locations, where∆ ≥ F . A structured sparsity

model for time-domain signals with sufficiently separated nonzeros has been introduced

in [14].

The notion of disjoint pulses can be immediately generalized to signals defined over domains

of arbitrary dimension. ConsiderS-sparse spike streamsx defined over a domain of dimension

n. Suppose that at most one spike inx can occur in a hypercube inRn with side∆. This defines
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a special structured sparsity model for the spike streams ofinterest; denote this model asM∆
S .

Further, let theF nonzero coefficients inh be concentrated within a hypercube centered at the

domain origin whose side length is no greater than∆. Then, a deterministic model for sums of

non-overlapping pulses of arbitrary dimension can be proposed as follows.

Definition 3: LetM∆
S be the structured sparsity model for spike streams as definedabove.

LetMF be the subspace of concentrated impulse responses of sparsity F . Define the set

M(S, F, ∆) = {z ∈ R
N : z = x ∗ h, such thatx ∈M∆

S andh ∈MF}. (10)

Then,M(S, F, ∆) is called thedisjoint pulse stream model.

This model eliminates possible ambiguities that arise due to the shift-invariant nature of

convolution; i.e., the locations of the nonzero spikes thatgenerate a disjoint pulse stream are

uniquelydefined. This property proves to be essential in developing and analyzing a feasible

method for signal recovery (Section V). See Figure 1(a) for an example stream of disjoint pulses

in 1D.

IV. SAMPLING THEOREMS FORPULSE STREAMS

Pulse streams can be modeled as an infinite union of low-dimensional subspaces. The next

ingredient in the development of a CS framework for such signals is a bound on the number of

linear samples required to preserve the essential information of this signal set.

A. General pulse streams

We derive a sampling theorem for signals belonging to the modelMz
S,F proposed in Defi-

nition 2. Again, note that here the pulses are allowed to overlap with one another. Suppose that

K = SF . As mentioned above,Mz
S,F is a subset of the set of allK-sparse signalsΣK . On the

other hand, only a small fraction of allK-sparse signals can be written as the convolution of an

S-sparse spike stream with anF -sparse impulse response. Thus, intuition suggests that weshould

be able to compressively sample signals from this set using fewer random linear measurements

than that required for the set of allK-sparse signals. The following theorem makes this precise.

Theorem 1:SupposeMz
S,F is the pulse stream model from Definition 2. Lett > 0. Choose

an M ×N i.i.d. Gaussian matrixΦ with

M ≥ O
(

1

δ

(
(S + F ) ln

(
1

δ

)
+ log(LSLF ) + t

))
. (11)
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Then,Φ satisfies the following property with probability at least1− e−t: for every pairz1, z2 ∈
Mz

S,F ,

(1− δ)‖z1 − z2‖22 ≤ ‖Φz1 − Φz2‖22 ≤ (1 + δ)‖z1 − z2‖22. (12)

The proof of this theorem is presented in Appendix A. An important consequence of the

theorem is that, by definition,MS is a subset of the set of allS-dimensional canonical subspaces.

In particular,

LS ≤
(

N

S

)
≈

(
eN

S

)S

. (13)

Similarly, LF ≤
(

eN
F

)F
. Therefore, the logarithmic term in the expression forM in (11) scales

as

log(LSLF ) ≤ S + S log(N/S) + F + F log(N/F ) ≤ 2(S + F ) logN (14)

Thus, (11) indicates that the number of measurementsM required for sampling signals inMz
S,F is

proportional to(S + F ). Therefore,M is sublinearin the total sparsity of the signalsK = SF .

In contrast, conventional structured sparsity models would require at least2K = 2SF linear

measurements to ensure a stable embedding of the signal set [11]. In addition, the number of

degrees of freedom of each signal can be considered to beO (S + F ), corresponding to the

positions and locations of the coefficients of the sparse signal and impulse response. Therefore,

the bound in Theorem 1 is essentially optimal for the signal classMz
S,F .

B. Special case: Disjoint pulse streams

Theorem 1 is valid for signals belonging to the general modelMz
S,F . In the case of disjoint

pulse streams, we can derive a more stringent lower bound. Bydefinition, the F nonzero

coefficients ofh are concentrated in a hypercube around the domain origin. Therefore,h lies

in a lone subspace spanned byF basis vectors ofRN , and henceLF = 1. Further, a simple

modification of Theorem 1 of [14] states that the number of subspaces in the structured sparsity

modelM∆
S is given by

LS =

(
N − S∆ + S − 1

S − 1

)
. (15)
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Thus, for the disjoint pulse stream modelM(S, F, ∆), we obtain the following easy corollary

to Theorem 1.

Corollary 1: If t > 0 and

M ≥ O
(

1

δ

(
(S + F ) ln

(
1

δ

)
+ S log(N/S −∆) + t

))
, (16)

then anM × N i.i.d. Gaussian matrixΦ will satisfy (12) with probability at least1 − e−t for

any pair of signalsz1, z2 belonging to theM(S, F, ∆) model.

Note that the parameter∆ can be at mostN/S, sinceS spikes must be packed intoN

coefficient locations with at least∆ locations separating any pair of spikes. A higher value of

∆ implies that the modelM∆
S admits a smaller number of configurations; thus, (16) implies

that fewer measurements are needed to sample pulse streams in which the pulses are widely

separated.

V. RECOVERY OFPULSE STREAMS

The final ingredient in our extended CS framework for pulse streams consists of new algo-

rithms for the stable recovery of the signals of interest from compressive measurements. This

problem can be stated as follows. Supposez ∈Mz
S,F . If w are given the noisy measurements

y = Φz + n = ΦHx + n = ΦXh + n,

then we aim to reconstructz from y. The main challenge stems from the fact thatboth x

(respectively,X) andh (respectively,H) are unknown and have to be simultaneously inferred.

This problem is similar to performing sparse approximationwith incompleteknowledge of

the dictionary in which the target vector (eitherx or h) is sparse. This problem has received

some interest in the literature [15, 16]; the common approach has been to first assume that a

training set of vectors{xi} exists for a fixed impulse responseh, and then to infer the coefficients

of h using a sparse learning algorithm (such as basis pursuit [6]), and finally to solve for the

coefficients{xi}. In the absence of training data, we must infer both the spikelocations and the

impulse response coefficients. Therefore, our task is also similar to blind deconvolution[17];

the main differences are that we are only given access to the random linear measurementsy as

opposed to the Nyquist rate samplesz and that our primary aim is to reconstructz as faithfully

as possible as opposed to merely reconstructingx.
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Our general approach will be to fix an estimate ofh, obtain the “best possible” estimate of

x, update our estimate ofh, and iterate. This is commonly known asalternating minimization

(AM) and has been shown to be suitable for blind deconvolution settings [18]. As demonstrated

below in the proof of Theorem 2, we require that the best possible estimate of the spike stream

x and the impulse responseh at each iteration are unique. For this reason, we will assumethat

our target signalz belongs to the disjoint pulse stream modelM(S, F, ∆).

A. Alternating minimization with exhaustive search

Considerz ∈M(S, F, ∆), so thatz = x∗h. This implies that the spikes inx are separated by

a minimum separation distance∆ and that the impulse responseh is concentrated. Suppose first

that we are given noiseless CS measurementsy = Φz. We fix a candidate support configuration

σ for the spike stream (so thatσ containsS nonzeros.) Then, we form the circulant matrix̂H

from all possible shifts of the current estimate of the impulse responsêh (denote this operation

as Ĥ = C(ĥ)). Further, we calculate the dictionaryΦĤ for the spike streamx and select

the submatrix formed by the columns indexed by the assumed spike locationsσ (denote this

submatrix as(ΦĤ)σ). This transforms our problem into an overdetermined system, which can

be solved using least-squares. In summary, we use a simple matrix pseudoinverse to obtain the

estimate

x̂ = (ΦĤ)†σy.

This provides an estimate of the spike coefficientsx̂ for the assumed support configurationσ.

We now exploit the commutativity of the convolution operator ∗. We form the circulant matrix

X̂, form the dictionaryΦX̂ for the impulse response and select the submatrix(ΦX̂)f formed

by its first F columns. Then, we solve a least-squares problem to obtain anestimatêh for the

impulse response coefficients:

ĥ = (ΦX̂)†fy.

Finally, we form our signal estimatêz = x̂ ∗ ĥ. The above two-step process is iterated until a

suitable halting criterion (e.g., convergence in norm for the estimated signal̂z). This process is

akin to the Richardson-Lucy algorithm for blind deconvolution [19].
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Algorithm 1 Alternating minimization with exhaustive search

Inputs: Sampling matrixΦ, measurementsy = Φx, model parameters∆, S, F , thresholdǫ

Output: ẑ ∈M(S, F, ∆) such thaty − Φẑ is small

x̂ = 0, ĥ = (1T
F , 0, . . . , 0)/

√
F ; i = 0 {initialize}

for σ ∈M∆
S do

while halting criterion falsedo

1. Ĥ = C(ĥ), Φh = (ΦĤ)σ {form dictionary for spike stream}
2. x̂← Φ†

hy {update spike stream estimate}
3. X̂ = C(x̂), Φx = (ΦX̂)f {form dictionary for impulse response}
4. ĥ← Φ†

xy {update impulse response estimate}
5. ẑ ← x̂ ∗ ĥ {form signal estimate}

end while

if ‖y − Φẑ‖2 < ǫ {check for energy in residual}
return ẑ

end if

end for

The overall reconstruction problem can be solved by repeating this process for every support

configurationσ belonging to the structured sparsity modelM∆
S and picking the solution with

the smallest norm of the residualr = y − Φẑ. The procedure is detailed in pseudocode form

in Algorithm 1. Thus, Algorithm 1 performs alternating minimization for a given estimate for

the support of the underlying spike streamx and exhaustively searches for the best possible

support. Under certain conditions on the sampling matrixΦ, we can study the convergence of

Algorithm 1 to the correct answerz, as encapsulated in the following theorem.

Theorem 2:Let z ∈M(S, F, ∆) and suppose thatΦ satisfies (12) with constantδ for signals

belonging toM(S, F, ∆). Suppose we observey = Φz and apply Algorithm 1 to reconstruct

the signal. Let̂zi be an intermediate estimate ofz at iterationi of Algorithm 1. Then:

1) The norm of the residual‖y − Φẑi‖2 monotonically decreases with iteration counti.
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2) If at any iterationi

‖y − Φẑi‖2 ≤ ǫ,

then we are guaranteed that

‖z − ẑi‖2 ≤ cǫ,

wherec depends only onδ.

The proof of this theorem is provided in Appendix B. The first part of the theorem implies

that for any given support configurationσ, Steps 1 through 4 in Algorithm 1 are guaranteed to

converge to a generalized fixed point [20]. The second part ofthe theorem provides a condition

on the detection of the true support configurationσ in the following weak sense: if the energy

of the residual of the signal estimate is small, then the signal has been accurately reconstructed.

Algorithm 1 involves iteratively solving a combinatorial number of estimation problems.

This becomes infeasible for even moderate values ofN . A simpler algorithm is described in

Section V-C.

B. Model mismatch

In practical situations, we would expect to have minor variations in the shapes of theS

pulses in the signalz. In this case,z can no longer be expressed asHx whereH is a circulant

matrix. Let {h1, h2, . . . , hS} be length-F vectors corresponding to each of theS pulses in the

signal, and let the length-S spike stream̃x = (α1, α2, . . . , αS). Further, letSi be the circular

shift operator that maps theith pulse shapehi into its corresponding vector inRN . Then, we

have

z =

S∑

i=1

αiSi(hi). (17)

However, Algorithm 1 attempts to estimate a single pulse shape ĥ. Thus, following the notation

in Section V-A, the matrixĤσ is anN ×S matrix. Assuming that the spikes inx are separated

by at least∆ locations, the matrix̂Hσ is quasi-Toeplitz[21], i.e., the columns of̂Hσ are circular

shifts of one another with no more than one nonzero entry in every row. Further, assume that the

measurement matrixΦ equals theidentity, i.e., we are given Nyquist-rate samples ofz. Then the

matricesΦh andΦx in Step 2 of Algorithm 1 are also quasi-Toeplitz. Thus, givenan estimate
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of the pulse shapêh0, we can derive a closed-form expression for the next impulseresponse

estimate. Additionally, we can obtain an intermediate estimate for the spike stream̃x. Suppose

that the innermost loop of Algorithm 1 converges to a fixed point estimatêh. We dub h̃ the

anchor pulsefor the set of pulse shapes{h1, h2, . . . , hS}. The following theorem provides an

expression relating the anchor pulse to the component pulseshapes.

Theorem 3:Considerz as defined in (17). Let̃h be the anchor pulse for the set of pulse

shapes{h1, h2, . . . , hS}. Defineci = 〈hi, h̃〉 for i = 1, . . . , S. Then, we have that

h̃ =

∑S
i=1 ciα

2
i hi∑S

i=1 c2
i α

2
i

. (18)

The proof of this theorem is provided in Appendix C. Equation(18) implies that the anchor pulse

h̃ is a weighted linear combination of the component pulseshi, i = 1, . . . , S, with the weights

defined by the corresponding spike coefficientsαi and the inner productsci. The anchor pulse

remains unchanged if the spike coefficient vectorx̃ is multiplied by any constantC. Therefore,

the anchor pulse can be viewed as ascale-invariant averageof the component pulse shapes.

Theorem 3 applies to Nyquist-rate samples of the signalz. In the case of low-rate CS

measurementsy = Φz, the convergence analysis of Algorithm 1 for the general case of S

different pulse shapes becomes more delicate. IfΦ possesses the RIP only forz ∈M(S, F, ∆),

then it could be that two different pulse streamsz1, z2 (each with varying shapes across pulses)

are mapped byΦ to the same vector inRM , i.e.,Φz1 = Φz2; thus, the unique mapping argument

employed in the proof of Theorem 2 cannot be applied in this case. One way to analyze this case

is to recognize that by allowing arbitrary pulse shapes{h1, h2, . . . , hS}, our space of signals of

interest is equivalent to a special structured sparsity model that consists of allK-sparse signals

whose non-zeros are arranged inS blocks of sizeF and the starting locations of consecutive

blocks are separated by at least∆ locations. As discussed in Section II, stable CS reconstruction

for signals from this model requires at leastM = 2SF = 2K measurements; thus, Algorithm 1

converges in the general case given thatM is proportional toK. Thus, in the case of arbitrary

pulse shapes, the number of measurements required by Algorithm 1 is on the same order as the

number of measurements required for conventional structured sparsity-based CS recovery.
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C. Iterative support estimation

The runtime of Algorithm 1 is exponential inN . Fortunately there is a simpler means to the

same end. Instead of cycling through every possible supportconfigurationσi for the spike stream

x, we instead retain anestimateof the support configuration, based on the current estimatesof

the spike stream̂x and impulse responsêh, and update this estimate with each iteration. In

order to ensure that the support estimate belongs toM∆
S , we leverage a special CS recovery

algorithm for signals belonging toM∆
S that is based on CoSaMP [9]. We provide an outline of

the algorithm here for completeness; see [14] for details.

At each iteration, given an estimate of the spike coefficients x, we need to solve for the best

M∆
S -approximation tox. Letx = (x1, x2, . . . , xN)T . Given any binary vectors = (s1, s2, . . . , sN)T

of lengthN , let

x|s := (s1x1, s2x2, . . . , sNxN ),

so thatx|s is the portion of the signalx lying within the supports. Our goal is to solve for

the choice of supports so thatx|s belongs toM∆
S and‖x− x|s‖2 is minimized. The following

constraints on the support vectors follow from the definition ofM∆
S :

s1 + s2 + . . . + sN ≤ S, (19)

sj + sj+1 . . . + sj+∆−1 ≤ 1, for j = 1, . . . , N, (20)

where the subscripts are computed moduloN . The first inequality (19) specifies that the solution

contains at mostS nonzeros; the otherN inequalities (20) specify that there is at most one spike

within any block of∆ consecutive coefficients in the solution.

It can be shown that minimizing‖x − x|s‖2 is equivalent to maximizingcT s where c =

(x2
1, x

2
2, . . . , x

2
N ), i.e., maximizing the portion of the energy ofx that lies withins. DefineW ∈

R(N+1)×N as a binary indicator matrix that captures the left hand sideof the inequality constraints

(19) and (20). Next, defineu ∈ RN+1 = (S, 1, 1, . . . , 1); this represents the right hand side of the

constraints (19) and (20). Thus, we can represent (19) and (20) by the following binary integer

program:

s∗ = arg min
s∈{0,1}

cT s, subject toWs ≤ u.
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Next, we relax the integer constraints ons to obtain a computationally tractable linear program.

Denote this linear program byD(·). In [14], it is shown that the solutions to the integer program

and its relaxed version are identical. Thus, we have a computationally feasible method to obtain

an estimate of the support of the bestM∆
S -approximation tox.

Once an updated support estimate has been obtained, we repeat Steps 2, 3 and 4 in Algo-

rithm 1 to solve for the spike streamx and impulseh. This process is iterated until a suitable

halting criterion (e.g., convergence in norm for the estimated pulse stream̂z.) The overall

algorithm can be viewed as an iterative sparse approximation procedure for theM∆
S model

that continually updates its estimate of the sparsifying dictionary. The procedure is detailed in

pseudocode form in Algorithm 2.

D. Stability and convergence

Like many algorithms for blind deconvolution, the analysisof Algorithm 2 is not straightfor-

ward. The dictionariesΦX̂ andΦĤ are only approximately known at any intermediate iteration,

and hence the proof techniques employed for the analysis forCoSaMP do not apply. In principle,

given access to a sufficient number of measurements, we may expect similar convergence

behavior for Algorithm 2 as Algorithm 1. Empirically, Algorithm 2 can be shown to be stable to

small amounts of noise in the signal as well as in the CS measurements and to minor variations

in the pulse shape. We demonstrate this with the help of various numerical experiments in

Section VI.

E. Computational complexity

The primary runtime cost of Algorithm 2 is incurred in solving the linear programD(·). For

a length-N signal, the computational complexity of solving a linear program is known to be

O (N3.5). The total computational cost also scales linearly in the number of iterationsT of the

outer loop. An overall upper bound runtime of the algorithm is thusO (N3.5T ).

VI. NUMERICAL EXPERIMENTS

We now present the results of a number of numerical experiments that validate the utility of

our proposed theory and methods. All experiments reported in this section have been performed

using Algorithm 2 for the recovery of disjoint pulse streams.
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Algorithm 2 Iterative support estimation

Inputs: Sampling matrixΦ, measurementsy = Φz + n, model parameters∆, S, F .

Output:M(S, F, ∆)-sparse approximation̂z to true signalz

Initialize x̂ = 0 , ĥ = (1T
F , 0, . . . , 0), i = 0

while halting criterion falsedo

1. i← i + 1

2. ẑ ← x̂ ∗ ĥ {current pulse stream estimate}
{estimate spike locations and amplitudes}
3. Ĥ = C(ĥ), Φh = ΦĤ {form dictionary for spike stream}
4. e← ΦT

h (y − Φhx̂) {residual}
5. ω ← σ(D(e)) {obtain model-approximation of residual}
6. σ ← ω ∪ σ(x̂i−1) {merge supports}
7. x|σ ← (Φh)

†
σy, x|σC = 0 {update spike stream estimate}

8. x̂← D(x) {prune spike stream estimate}
{estimate impulse response}
9. X̂ = C(x̂), Φx = (ΦX̂)f {form dictionary for impulse response}
10. ĥ← Φ†

xy {update impulse response estimate}
end while

return ẑ ← x̂ ∗ ĥ

A. Synthetic 1D pulse streams

Figure 1 demonstrates the considerable advantages that Algorithm 2 can offer in terms of the

number of compressive measurements required for reliable reconstruction. The test signal was

generated by choosingS = 8 spikes with random amplitudes and locations and convolvingthis

spike stream with a randomly chosen impulse response of length F = 11. The overall sparsity

of the signalK = SF = 88; thus, standard sparsity-based CS algorithms would require at least

2K = 176 measurements. Our approach (Algorithm 2) returns an accurate estimate of both the

spike stream as well as the impulse response using merelyM = 90 measurements.

Figure 2 displays the averaged results of a Monte Carlo simulation of Algorithm 2 over
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Fig. 2. Normalized reconstruction MSE vs.M/K for different reconstruction algorithms averaged over 200sample

trials. Signal parameters:N = 1024, S = 8, F = 11. Algorithm 2 outperforms standard and structured sparsity-based

methods, particularly whenM/K is small.

200 trials. Each trial was conducted by generating a sample signal belonging toM(S, F, ∆),

computingM linear random Gaussian measurements, reconstructing withdifferent algorithms,

and recording the magnitude of the recovery error for different values ofM/K. Each test signal

was generated by convolving a signalx belonging toM∆
S with a minimum phase impulse

responseh of orderF , with coefficients of bothx andh independently drawn from a Gaussian

distribution with zero mean and unit variance. It is clear from the figure that Algorithm 2

outperforms both conventional CS recovery (CoSaMP [9]) with target sparsityK = SF as well

as block-based reconstruction [7] with knowledge of the size and number of blocks (respectively

F andS). In fact, our algorithm performs nearly as well as the “oracle decoder” that possesses

perfect prior knowledge of the impulse response coefficients and aims to solve only for the spike

stream. In practice, the algorithm converges in fewer than 20 iterations; empirically, the number

of iterations decreases with an increasing number of compressive measurements.

We show that Algorithm 2 is stable to small amounts of noise inthe signal and the measure-

ments. In Figure 3, we generate a lengthN = 1024 signal from a disjoint pulse stream model

with S = 7 and F = 11; add a small amount of Gaussian noise (SNR = 14.83dB) to all its

components, computeM = 150 noisy linear measurements, and reconstruct using Algorithm 2.

The reconstructed signal is clearly a good approximation ofthe original signal.
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Fig. 3. (a) Original noisy signal (SNR = 14.83dB). (b) Recovered estimate fromM = 150 random measurements

using Algorithm 2. (c) Residual error vector. Recovery SNR =4.99dB.
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Fig. 4. CS recovery of a real-world neuronal signal. (a) Original recording. (b) Recovered signal usingM = 150

random measurements. (c) Zoom-in on estimated anchor pulseshape (F = 11).

B. Neuronal signals

We test Algorithm 2 on a real-world neuronal recording. Figure 4(a) shows the temporal

electrochemical spiking potential of a single neuron. The shape of the pulses is characteristic of

the neuron and should ideally be constant across different pulses. However, there exist minor

fluctuations in the amplitudes, locations and profiles of thepulses. Despite the apparent model

mismatch, our algorithm recovers a good approximation to the original signal (Figure 4(b)) as

well as an estimate of the anchor pulse shape (Figure 4(c)).
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(a) (b) (c)

Fig. 5. Example CS recovery of a sum of 2D pulses. (a) Synthetic test image:N = 4096, S = 7, F = 25. Images are

recovered fromM = 290 random Gaussian measurements using (b) CoSaMP (MSE = 16.95), and (c) Algorithm 2

(MSE = 0.07).

C. Synthetic 2D pulse streams

Theorem 1 and Algorithm 2 can easily be extended to higher dimensional signals. For

instance, suppose that the signals of interest are 2D imagesthat can be modeled by a sparse

sum of disjoint 2D pulses. We test Algorithm 2 on a synthetic image (Figure 5(a)) of size

N = 64× 64 = 4096 that comprisesS = 7 spikes blurred by an unknown 2D impulse response

of sizeF = 5×5 = 25, so that the overall sparsityK = SF = 175. We acquire merelyM = 290

random Gaussian measurements (approximately 7% the size ofthe imageN) and reconstruct

the image using CoSaMP as well as Algorithm 2. We assume that both algorithms possess an

oracular knowledge of the number of spikesS as well as the size of the impulse responseF .

Figure 5 displays the results of the reconstruction procedures using CoSaMP and Algorithm 2.

It is evident both perceptually and in terms of the MSE valuesof the reconstructed images that

our proposed approach is superior to traditional CS recovery.

D. Astronomical images

Finally, we test Algorithm 2 on a real astronomical image. Our test image is anN = 64×64

region of a high-resolution image of V838 Monocerotis (a nova-like variable star) captured by

the Hubble Space Telescope [22] (highlighted by the green square in Figure 6(a)). Note the
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Fig. 6. (a) Black-and-white image of V838 Monocerotis, a nova-likestar, captured by the Hubble Space Telescope

on February 8, 2004 [22]. (b) Test image is a zoomed in-version of the region at left highlighted in green (resolution

N = 64 × 64 = 4096). Reconstruction of test image is performed fromM = 330 random Gaussian measurements

using (c) CoSaMP and (d) Algorithm 2.

significant variations in the shapes of the three large pulses in the test image (Figure 6(b)). We

measure this image usingM = 330 random measurements and reconstruct using both CoSaMP

and Algorithm 2. For our reconstruction methods, we assumedan oracular knowledge of the

signal parameters; we useS = 3, F = 120, K = 360 and ∆ = 20. As indicated by Figure 6,

conventional CS does not provide useful results with this reduced set of measurements. In

contrast, Algorithm 2 gives us excellent estimates for the locations of the pulses. Further, our

algorithm also provides a circular impulse response estimate that can be viewed as the anchor

pulse of the three original pulses.
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VII. D ISCUSSION ANDCONCLUSIONS

In this paper, we have introduced and analyzed a new framework for the compressive sampling

of pulse streams. Our signals of interest are modeled as lying in an infinite union of subspaces

with exhibits a particular geometric structure. This structure enables us to quantitatively estimate

the number of random linear measurements needed to sample such signals. We have proposed

two methods for signal recovery. Our first method (Algorithm1) is relatively easy to analyze, but

suffers from high combinatorial complexity. Our second method (Algorithm 2) is a feasible, if

suboptimal, algorithm and formed the basis for our numerical experiments. While our framework

is applicable to signals defined over domains of arbitrary dimension, we have illustrated its

benefits in the context of 1D time signals and 2D images.

There are several avenues for future work. We have discussedsparse signals and images as

represented in the identity basis; our method can be extended to wavelet-sparse and Fourier-sparse

signals. While our results are promising, we still do not possess a complete characterization of

the convergence properties of Algorithm 2 as well as its sensitivity to factors such as noise and

model mismatch under random projections. Additionally, itis unclear how to deal with situations

where the pulses in the signal of interest are allowed to overlap. To the best of our knowledge,

the issue of robust recovery of signals convolved with an unknown arbitrary impulse response

is an open question even for the case of Nyquist-rate samples. We defer these challenging open

questions to future research.

The framework developed in this paper can be related to various existing concepts in the

literature such as finite rate of innovation [23], blind compressed sensing [24], simultaneous

sparse approximation and dictionary learning [25], and theclassical signal processing problem

of blind deconvolution [17]. Compressive sensing of time-domain pulse streams has been studied

by Naini et al. [16]. However, in their setting the impulse response is assumed to be known,

and hence the CS measurement system can be viewed as a modification of random Fourier

subsampling.

Our framework is related to recent results on compressed blind deconvolution by Saligrama

and Zhao [26]. As opposed to pulse streams, their signals of interest consist of sparse signals

driven through an all-pole auto-regressive (AR) linear system. They propose an optimization-

based algorithm for recovery of the signal and impulse response from CS measurements. How-
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ever, their measurement system is tailored to impulse responses corresponding to linear AR

models; in contrast, our approach can handle arbitrary impulse responses. Further, our main

theoretical result indicates that the number of measurements to compressively sample a pulse

stream is linear only in the number of degrees of freedom of the signal and thus answers an

open question (Remark 3.1) posed by the authors in the affirmative.

Finally, the main approach in this paper can be related to recent work by Asif et al. [27, 28],

who propose channel coding methods to combat the effect of unknown multipath effects in a

communication channel that can be described by a sparse impulse response. Their channel code

consists of a random matrixΦ ∈ RM×N with M > N , so that the linear mappingy = Φx is

now not undercomplete, but overcomplete. Thus, their observations consist of an unknown sparse

channel responseh convolved with the transmitted signaly and their objective is to reconstruct

the original signalx. The main aspects of our theoretical analysis could conceivably be modified

to quantify system performance in this setting.
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APPENDIX A

We prove Theorem 1. By Definition 2, the modelMz
S,F is generated via the convolution

operation by the structured sparsity modelsMS andMF . Recall that both structured sparsity

models are themselves defined in terms of canonical subspaces of RN and their convolution

results in a low-dimensional geometrical structure that isbest described by an infinite union of

subspaces. Thus, ifx ∈ MS lies in a particular subspaceΩ and h ∈ MF lies in a particular

subspaceΛ, then every signalz ∈ Mz
S,F can be identified with at least one infinite union of

subspacesUΩ,Λ. The overall approach closely follows the technique used in[29] and can be

summarized as follows: we first construct a net of pointsQ in RN such that

min
q∈Q
‖z − q‖ < δ,
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for all z ∈ UΩ,Λ with ‖z‖ = 1 and some constantδ. We then apply the Johnson-Lindenstrauss

Lemma [30] for stable embedding of point clouds to this finitenet of pointsQ, and extend the

stable embedding to all possible signalsz ∈ UΩ,Λ. Finally, we obtain our main result through a

union bound over all possible choices of subspacesΩ andΛ.

First, we construct the net of pointsQ. Recall thatz ∈ Mz
S,F if z = h ∗ x, whereh ∈ Λ

and x ∈ Ω. Following [29], we will only consider the case where‖x‖, ‖h‖ ≤ 1; it is easy to

check that the corresponding circulant matricesX, H also satisfy‖X‖, ‖H‖ ≤ 1. The extension

to all x, h follows from the subspace property ofΩ andΛ. Consider anS-dimensional subspace

Ω ⊂MS. By Lemma 5.1 of [29], we can find a finite set of pointsQΩ,x ⊂ Ω with cardinality

|QΩ,x| ≤ (3/δ′)S such that

min
qx∈QΩ,x

‖x− qx‖ ≤ δ′, ∀ ‖x‖ ≤ 1, x ∈ Ω,

i.e., QΩ,x is a δ′-net for Ω. Similarly, we can find a set of pointsQΛ,h ⊂ Λ with cardinality

|QΛ,h| ≤ (3/δ′)F that forms aδ′-net for Λ. Consider the product setQΩ,Λ ∈Mz
S,F defined by:

QΩ,Λ = {zi,j = xi ∗ hj | xi ∈ QΩ,x, hj ∈ QΛ,h}.

Observe that the cardinality of this setQΩ,Λ = (3/δ′)S(3/δ′)F . We claim that the finite set

Q forms a2δ′-net for the infinite union of subspacesUΩ,Λ. To see this, consider an arbitrary

z = x ∗ h = Hx ∈ UΩ,Λ, andzi,j ∈ QΩ,Λ. Then, we have that

‖z − zi,j‖ = ‖Hx−Hixj‖ = ‖Hx−Hix + Hix−Hixj‖

≤ ‖Hx−Hix‖ + ‖Hix−Hixj‖

≤ ‖X‖‖h− hi‖+ ‖Hi‖‖x− xj‖

≤ δ′(‖X‖+ ‖Hi‖) ≤ 2δ′,

with appropriate choices fori and j.

Now, suppose thatδ = 4δ′. By the Johnson-Lindenstrauss Lemma, ifΦ ∈ RM×N with

the elements ofΦ drawn from a random Gaussian distribution, then for all pairs of vectors

z1, z2 ∈ QΩ,Λ, (12) will hold with failure probability

pΩ,Λ = 2

(
3

δ

)S (
3

δ

)F

e−c0(δ/2)M .
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By virtue of the fact thatQΩ,Λ forms a net forQΩ,Λ, (12) will simultaneously hold for all pairs

of vectorsz1, z2 ∈ QΩ,Λ with the same failure probabilitypΩ,Λ.

This expression forpΩ,Λ is for a fixed pair of subspaces(Ω, Λ) ∈ MS ×MF . There are

LS × LF such pairs of subspaces. Applying a simple union bound over all possible pairs, we

obtain the overall failure probability as

p ≤
∑

(Ω,Λ)

pΩ,Λ ≤ LSLF

(
3

δ

)S+F

e−c0(δ/2)M .

Rearranging terms, we have that for a suitably chosen constant C (that depends onc0) and for

any t > 0, if

M ≥ C

(
log(LSLF ) + (S + F ) log

(
3

δ

)
+ t

)
,

the failure probability for the sampling bound is smaller than e−t. The main result follows.

APPENDIX B

We prove Theorem 2. Let̂zi = x̂i ∗ ĥi be any intermediate estimate of Algorithm 1. Let

Ĥi = C(ĥi). Suppose that our candidate configuration for the support ofx is given by the

sparsity patternσ belonging to the structured sparsity modelM∆
S . Then, if (·)σ indicates the

submatrix formed by the columns indexed byσ, the dictionary for the spike stream is given by

(ΦĤi)σ = Φ(Ĥi)σ. By virtue of the least-squares property of the pseudo-inverse operator, the

subsequent estimatêxi+1 according to Step 2 is given by

x̂i+1 = arg min
x
‖y − Φ(Ĥi)σx‖22, (21)

wherex belongs to theK-dimensional subspace defined by the support configurationσ. Since

we are minimizing a convex loss function (squared error) on asubspace inRN , the minimum

x̂i+1 is unique. Therefore, we may view Step 2 of the algorithm as a unique-valuedinfimal

map f from a givenĥi ∈ MF to a particularx̂i+1 ∈ M∆
S . Similarly, we may view Step 4 of

Algorithm 1 as another unique-valued infimal mapg fromM∆
S toMF . Therefore, the overall

algorithm is a repeated application of the composite mapf ◦ g. From a well-known result on

single-valued infimal maps [20, 31], the algorithm is strictly monotonic with respect to the loss

function. Thus, the norm of the residualy − Φẑi decreases with increasing iteration counti.
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Further, any intermediate estimatêzi also belongs to the modelM(S, F, ∆). We know from

(12) that

‖y − Φẑi‖22 = ‖Φz − Φẑi‖22 ≥ (1− δ)‖z − ẑi‖22.

Therefore, if‖y − Φẑi‖ ≤ ǫ, then‖z − ẑi‖ ≤ ǫ/
√

1− δ, thus proving the result.

APPENDIX C

We prove Theorem 3. Suppose the target signalz comprisesS pulses{h1, . . . , hS}, so that

z =

S∑

i=1

αiSi(hi).

Assume we are given access to the Nyquist samplesz, i,e., Φ = IN×N . Suppose the estimate

of the impulse response at an intermediate iteration is given by ĥ. Let Ĥ be the matrix formed

by the operatorC(·) acting onĥ and letσ be the candidate support configuration for the spike

stream, so that the dictionaryΦh in this case is given by the submatrix̂Hσ. Note thatĤσ is

quasi-Toeplitz, owing to the assumption that the separation ∆ is at least as great as the impulse

response lengthF . Thus, Step 2 of Algorithm 1 can be represented by the least-squares operation

x̂ = Ĥ†
σz.

Due to the quasi-Toeplitz nature of̂Hσ, the pseudo-inversêH†
σ = (Ĥ⊤

σ Ĥσ)
−1Ĥ⊤

σ essentially

reduces to a scaled version of the identity multiplied by thetranspose ofĤ (the scaling factor

is in fact the squared norm of̂h). Thus, the spike coefficients are given by

x̂ =
1

‖ĥ‖2
Ĥ⊤

σ H̃x̃.

Simplifying, we obtain the expression for the estimatedith spike coefficient̂αi as

α̂i = αi
〈hi, ĥ〉
‖ĥ‖2

.

If ĥ is normalized, then we may writêαi = ciαi, whereci = 〈hi, ĥ〉.
Once the spike coefficientŝx = (c1α1, . . . , cSαS) have been estimated, we can form the

dictionaryΦx by considering the quasi-Toeplitz matrix̂X formed by the operationC(x̂). In the

same manner as above, an updated estimate of the pulse shapê̂
h is given by

̂̂
h = X̂†z =

1
∑S

i=1 c2
i α

2
i

X̂T z.
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Writing out X̂ andz in terms of(h1, . . . , hS) and (α1, . . . , αS) and simplifying, we obtain

̂̂
h =

∑S
i=1 ciα

2
i hi∑S

i=1 c2
i α

2
i

,

wherecj = 〈hj , ĥ〉. Thus, we have a closed-expression for the updated estimateof the impulse

response coefficientŝ̂h in terms of the previous estimatêh. In the event that the algorithm

converges to a fixed point, we can replace
̂̂
h by h̃, thus proving the theorem.
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