Sampling and Recovery of Pulse Streams

Chinmay Hegde and Richard G. Baraniuk
Department of Electrical and Computer Engineering

Rice University

Abstract

Compressive Sensing (CS) is a new technique for the effigiequisition of signals, images, and
other data that have a sparse representation in some brasiee,for dictionary. By sparse we mean
that the N-dimensional basis representation has jiSt« N significant coefficients; in this case,
the CS theory maintains that jud/ = O (K log N) random linear signal measurements will both
preserve all of the signal information and enable robustaligeconstruction in polynomial time. In this
paper, we extend the CS theorypalse streandata, which correspond t§-sparse signals/images that
are convolved with an unknowR'-sparse pulse shape. Ignoring their convolutional stregta pulse
stream signal i = SF sparse. Such signals figure prominently in a number of agipdies, from
neuroscience to astronomy. Our specific contributions lameefold. First, we propose a pulse stream
signal model and show that it is equivalent to an infinite arod subspaces. Second, we derive a lower
bound on the number of measuremehfsrequired to preserve the essential information presentlisep
streams. The bound is linear in the total number of degredseetiomsS + F', which is significantly
smaller than the naive bound based on the total signal $pdtsi= SF. Third, we develop an efficient
signal recovery algorithm that infers both the shape of thyeulse response as well as the locations and
amplitudes of the pulses. The algorithm alternativelyneates the pulse locations and the pulse shape
in a manner reminiscent of classical deconvolution algarg. Numerical experiments on synthetic and

real data demonstrate the advantages of our approach ewetastl CS.
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. INTRODUCTION

Digital signal processing systems face two parallel chgis. On the one hand, with ubig-
uitous computing power, memory and communication bandwitlite pressure is ocacquisition
devices, such as analog-to-digital converters and digi¢amheras, to capture signals at ever
increasing sampling rates. To date, signal acquisitiorbeas governed by the Shannon/Nyquist
sampling theorem, which states that all the informationtaimed in a signal is preserved if it
is uniformly sampled at a rate twice the bandwidth of its keutransform. On the other hand,
to counter the resulting deluge of Nyquist-rate samplesP B8stems must utilize efficient
compressiorschemes that preserve the essential information containix signals of interest.
Transform compression of a discrete-time sigmnat R involves representing the signal in
a suitable basis expansian= V«, with ¥ an N x N basis matrix, and storing only th&
largest basis coefficients. The number of large coefficients is known as thesparsity K of
the signal in the basi¥. For many classes of interesting signals,< N, and hence efficient
signal compression can be achieved.

An intriguing question can thus be asked: can a system samediusly attain the twin goals of

signal acquisition and compression? Surprisingly, thevansn many cases iges This question
forms the core of the burgeoning field of Compressive Sengu®) [3, 4]. A prototypical CS
system works as follows: a signalof length N is sampled by measuring its inner products with
M < N vectors; the output of the sampling system is thus given by#ttory = &z = dVa,
where® € RM*¥ is a non-invertible matrix. The CS theory states that, witghhprobability,
x can be exactly reconstructed fraymprovided that {) the elements ofb are chosen randomly
from certain probability distributions, and:Y the number of sampled/ is O (K log(N/K)).
Further, this recovery can be carried out in polynomial tinseng efficient greedy approaches
or optimization based methods (e.g., [5, 6]).

For some applications, there exist more selective signaefsahan simple sparsity that en-

code various types of inter-dependencies among the losatbthe nonzero signal components.



Recent work has led to the development of CS theory and #tmasibased ostructured sparsity
models that are equivalent to a finite union of subspaceg.[ByBexploiting the dependencies
present among the nonzero coefficients,can be significantly reduced; for certain structured
sparsity models, with high probability the number of measugnts\/ required for exact recovery
is merelyO (K) (without the additional logarithmic dependence on the aigength V).

Despite the utility of sparsity models, in many real-woréhsing applications the assumption
of sparsity itself is an oversimplification. For example, electrophysiological recording of a
neuron is often approximated as a series of narrow spikedsbuotore accurately modeled
as a series of more elongated pulses, the pulse shape beangcighistic to the particular
neuron. As another example, a high-resolution image of igatrsky consists of a field of
points (corresponding to the locations of the stars) camalwith the point spread function of
the imaging device. Such signals can be modeled aS-aparsespike streanthat have been
convolved with an unknowrf’-sparseimpulse responsso that the resulting overall sparsity
K = SF. We call such a signal aulse streamApplying standard compressive sensing and
recovery to such a pulse stream would requife= O (SF log(N/SF')) measurements, and thus
incur a corresponding multiplicative increase by a facfof'as compared to sensing merely the
underlying spike stream (in which cagé = O (Slog N/S)); this can be prohibitive in some
situations. Thus, it is essential to develop a CS framewtak ¢an handle not just sparse signals
but also more general pulse streams.

In this paper, we take some initial steps towards such a CSemiteam framework. First,
we propose a deterministic signal model for pulse streanesshéw that our proposed model is
equivalent to a specific instance of iaufinite union of subspaceSecond, as our main theoretical
contribution, we derive a bound on the number of random fimeeasurementd/ required to
preserve the essential information contained in such Egii&e proof relies on the particular
high-dimensional geometry exhibited by the pulse streandehoOur derivation shows that
M = 0O ((S+ F)logN); i.e., M must be proportional to the number of degrees of freedom of
the signalS + F' but only sublinearin the total sparsitys’ = SF'. Third, we develop algorithms
to recover signals from our model. Under certain additioaatrictions on the signals of interest,
one of the algorithms provably recovers both the spike straad the impulse response. We

analyze its convergence, computational complexity, arlmligtmess to variations in the pulse
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Fig. 1. (a) Test signal of lengttN = 1024 obtained by convolving a spike stream wh= 6 spikes with an

(=}

impulse response of lengith = 11, so that the total signal sparsily = SF = 66. (b) Profile of one pulse . Signal
recovery fromM = 100 random Gaussian measurements performed using (c) a $ttite-art CS recovery algorithm

(CoSaMP [9], MSE = 13.42), and (d) our proposed Algorithm 5/ 0.0028).

shape. Numerical experiments on real and synthetic dasadeghonstrate the benefits of the
approach. As demonstrated in Figure 1, we obtain signifigaims over conventional CS recovery
methods, particularly in terms of reducing the number of sneaments required for recovery.
This paper is organized as follows. In Section Il, we revié tudiments of standard and
structured sparsity-based CS. In Section Ill, we proposetarphinistic signal model for pulse
streams and discuss its geometric properties. In Sectipmwé&/derive bounds on the number of
random measurements required to sample signals belorgog fproposed model. In Section V,
we develop an algorithm for stable signal recovery and aeaiis convergence and robustness
to model mismatch. Numerical results are presented in &@edfi, followed by a concluding

discussion in Section VII.



II. BACKGROUND ON COMPRESSIVESENSING
A. Sparse signal models

A signalz € R” is K-sparsein the orthonormal basi& ¢ RV*" if the corresponding basis
representationy = U7z contains no more thai' nonzero elements. Without loss of generality,
we assume the sparsity badisto be the identity matrix foR”. The locations of the nonzeros
of z can additionally be encoded by a binary vector of lenfjthwith a 1 indicating a nonzero;
this vectoro(z) is called thesupportof 2. Denote the set of all{-sparse signals iiRY asX.
Geometrically,Xx can be identified as the union ()ﬁ) subspaces dR”, with each subspace
the linear span of exactlx canonical unit vectors dR”. For a generak: ¢ RY, we define its

best K-sparse approximationy as
Tx = arg min ||z — ul|s. @)
UEX i

Many signals of interest exhibit more complex dependenci¢ésrms of their nonzero values
and locations. Signals that permit only a small number ofiasinle support configurations can
be modeled by a restricted union of subspaces, consistitygobri. ;- canonical subspaces (with
L < (%)) If ¥ = {01,09,...,0L,} denotes the restricted set of admissible supports, then a

structured sparsity modgV] is the set

Mg ={x:0(x) € X}. 2

B. Signal acquisition via nonadaptive linear measurements

Suppose that instead of collecting all the coefficients otetarz € R, we merely record
M inner products (measurements)ofvith M < N pre-selected vectors; this can be represented
in terms of the linear transformatiop= &z, ® € RM*N, $ is called thesampling matrix it
is at most rankd/ and hence has a nontrivial nullspace. The central resuhendompressive
Sensing (CS) theory is that, despite the non-invertibleimeabf @, if = is sparse then it can
be exactly recovered from if ¢ satisfies a condition known as the restricted isometry ptgpe
(RIP) [10]:

Definition 1: An M x N matrix & has theK-RIP with constanb if, for all z € Y,

(1= dx)l2ll3 < |Pll3 < (1+ o) l]l3. 3)
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A matrix ® with the K-RIP essentially ensuresséable embeddingf the set ofall K-sparse
signalsXx into a subspace of dimensiaW. The RIP requiresb to leave the norm of every
sparse signal approximately invariant; aldomust necessarily not contain any sparse vectors
in its nullspace. At first glance, it is unclear if a matidx that satisfies the RIP should even
exist whenM < N; indeed, deterministic design of a sampling matrix havihg RIP is an
NP-complete problem. Nevertheless, it has been shown tbaided M/ > O (K log(N/K)), a
matrix & whose elements are i.i.d. samples from a random subgaudisiibution possesses
the RIP with high probability [10]. Thus)M can be linear in the sparsity of the signal gét
andonly logarithmicin the signal lengthV.

An analogous isometry condition holds for structured spamodels containing., canon-
ical subspaces [7,8,11]. This is known as thedel-based RIRnNnd is defined thush satisfies
the M -RIPif (3) holds for allz € M. It can be shown [11] that the number of measurements
M necessary for a subgaussian sampling matrix to haveéu\iheRIP with constant and with
probability 1 — e~* is bounded as

M > 5—02 (1n(2LK) + Kl %2 + t) . (4)

We can make two inferences from (4). First, the number of oremsents)M is logarithmic in
the numberof subspaces in the model; thus, signals belonging to a nmreise model can be
sampled using fewer random linear measurements. Seddnid,at least linearin the sparsity

K of the measured signal.

C. Recovery methods

Given measurementg = ®x, CS recovery methods aim to find the “true” sparse signal
that generateg. One possible method is to seek the sparsdbiat generates the measurements
Y, i.e.,

T = arg n;}ln |2'||o subject to y = ®x'. (5)

where the/, “norm” of a vectorz’ denotes the number of nonzero entries/inThis method can
be used to obtain the true solutienprovided M > 2K . However, minimizing th&, norm can

be shown to be NP-complete and is not stable in the presenuas# in the measurements [10].



If the sampling matrixd possesses the RIP, then tractable algorithms for CS recoeer
be developed. These broadly follow two different approachée first approach entails solving

a convex relaxation of (5):
T = argmin [|2']|; subject to y = &/, (6)

which corresponds to a linear program and hence can be swlysalynomial time. A common
variant of this formulation includes accounting for noigebounded magnitude in the measure-
ments [6]. The second approach entails an iterative, greebhction of the support(z) of the
true solutionz. This approach is employed by several algorithms such d&®gonhal matching
pursuit (OMP) [5], compressive sampling matching purs@o$aMP) [9], and iterative hard
thresholding [12].

Both optimization and greedy approaches provide powethbikty guarantees in the pres-
ence of noise while remaining computationally efficientv&i noisy measurements of any signal
xr € RN so thaty = &z +n, if ® possesses the RIP, then the signal estimaibtained by these
algorithms has bounded error:

G2
VK

wherez is the bestK-sparse approximation to as defined in (1) and’,, C, are constants.

|z — 2l < Cillv — 2k l]2 + |z — 2k |ls + Csl[n|2, (7)

Furthermore, with a simple modification, algorithms likeS2®P and iterative hard thresholding
can be used to reconstruct signals belonging to any stedtsparsity model [7].

To summarize, at the core of CS lie three key concepts: alsigodel exhibiting a particular
type of low-dimensional geometry in high-dimensional spa& low-rank linear mapping that
provides a stable embedding of the signal model into a lowaedsional space, and algorithms

that perform stable, efficient inversion of this mapping.

[1l. SIGNAL MODELS FORPULSE STREAMS

Our objective is to extend the CS theory and algorithms tegstream signals. The conven-
tional sparse signal model, does not take into account the dependencies between thesvalu
and locations of the nonzeros in such signals. Indeed, tdependencies cannot be precisely

captured by any structured sparsity modédl, that merely comprises a reduced subset of the



subspaces i . This necessitates richer models that capturectmvolutionalstructure present

in the nonzero coefficients of pulse streams.

A. General model

Consider the following deterministic model for signalsttban be modeled by the convolution
of an S-sparse spike streamec R”" with an F-sparse impulse respongec RY.

Definition 2: Let Mg c R" be a union ofS-dimensional canonical subspaces, as defined
in (2). Similarly, let M C RY be a union ofF’-dimensional canonical subspaces. Consider the
set

tri={z €RY:z=uxh, suchthatr € Mg andh € Mp}, (8)

wherex denotes the circular convolution operator. Thén; ;. is called apulse stream model
We make two immediate observations:
1) Commutativity:Owing to the commutative property of the convolution operaan ele-

mentz in M% . can be represented in multiple ways:
z=xxh=hxx=Hx= Xh, 9)

where H (respectively,X) is a square circulant matrix with its columns comprisingcglarly
shifted versions of the vector (respectively,z). Therefore, Definition 2 remains unchanged
if the roles ofz and h are reversed. We exploit this property during signal repp¥eom CS
measurements in Section V.

2) Geometry:ltis useful to adopt the following geometric point of viewrfa fixedh € Mp,
the set{h xz : © € Mg} forms a finite union ofS-dimensional subspaces, owing to the fact
that it is generated by the action afon Lg canonical subspaces. Denote this sethloy1).
Then, the pulse stream model in (8) can be written as

g,F = U h(MS)-
heMp
Thus, our signal model can be interpreted as a specific iostainaninfinite union of subspaceés

Note that (4) cannot be applied in this case since it only icems finite unions of subspaces.

1A general theory for sampling signals from infinite unionssabspaces has been introduced in [13].



However, letK = SF denote the maximum sparsity of the signals in Definition 2eht is
clear that the seM 1. is a very small subset dfy, the set of allSF'-sparse signals. We exploit
this property while proving our main sampling results in t8ecIV.

Note that the exact definition of the convolution operataargies depending on the domain
of the signals of interest. For one-dimensional (1D) timendm signals of lengttV, the square
matrix H is formed by allV circular shifts of the vectoh; for 2D images of sizeV pixels, H

is formed by all 2D circular shifts ok, and so forth.

B. Special case: Disjoint pulses

The model proposed in Definition 2 is general and applicablenego signals in which
successive pulses overlap with each other. In Section IV exeldp a lower bound on the
number of samples required to preserve the essential iattymcontained in an arbitrary pulse
stream. However, feasible recovery of such general pulsarss from CS measurements is
rather difficult; we examine this in detail in Section V. Tafare, we will also consider a more
restrictive model where the pulses are assumed to not gverla

For concreteness, consider 1D time domain signals as sxedifi (9). Note that/ and x
need not be unique for a given any ordered paifaH, x/«) satisfies (9), and so doé&l’, '),
where H' is generated by a circularly shifted version lofby a time delay+r and 2’ is a
circularly shifted version oft by —. In particular, to eliminate the ambiguity due to circular
shifts, we make the following two assumptions:

1) the impulse respongeis concentrategdi.e., the ' nonzero coefficients ok are contigu-

ously located in its first” indices. Thus, the structured sparsity modéel- for the vector
h consists of the lone subspace spanned by the Airesanonical unit vectors.

2) the spikes are sufficiently separated in time. In pariGuhny two consecutive spikes in
the vectorx are separated at least By locations, whereA > F'. A structured sparsity
model for time-domain signals with sufficiently separateshzeros has been introduced
in [14].

The notion of disjoint pulses can be immediately generdlipesignals defined over domains
of arbitrary dimension. Considef-sparse spike streamsdefined over a domain of dimension

n. Suppose that at most one spikerican occur in a hypercube IR with side A. This defines
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a special structured sparsity model for the spike streamistefest; denote this model as(5.
Further, let theF’ nonzero coefficients ih be concentrated within a hypercube centered at the
domain origin whose side length is no greater tlanThen, a deterministic model for sums of
non-overlapping pulses of arbitrary dimension can be pgedas follows.

Definition 3: Let M4 be the structured sparsity model for spike streams as defihede.

Let M be the subspace of concentrated impulse responses oftgparddefine the set
M(S,F,A) = {z € RV : 2 = 2 % h,such thatr € M% andh € My}. (10)
Then, M (S, F, A) is called thedisjoint pulse stream model
This model eliminates possible ambiguities that arise du¢hé shift-invariant nature of
convolution; i.e., the locations of the nonzero spikes theterate a disjoint pulse stream are
uniquely defined. This property proves to be essential in developimd) analyzing a feasible

method for signal recovery (Section V). See Figure 1(a) foexample stream of disjoint pulses
in 1D.

IV. SAMPLING THEOREMS FORPULSE STREAMS

Pulse streams can be modeled as an infinite union of low-difoeal subspaces. The next
ingredient in the development of a CS framework for suchagims a bound on the number of

linear samples required to preserve the essential infeomaff this signal set.

A. General pulse streams

We derive a sampling theorem for signals belonging to theehgd? . proposed in Defi-
nition 2. Again, note that here the pulses are allowed tolapewrith one another. Suppose that
K = SF. As mentioned aboveM5 . is a subset of the set of al -sparse signal&x. On the
other hand, only a small fraction of ali-sparse signals can be written as the convolution of an
S-sparse spike stream with dfsparse impulse response. Thus, intuition suggests thahaad
be able to compressively sample signals from this set usgnwgif random linear measurements
than that required for the set of dll-sparse signals. The following theorem makes this precise.

Theorem 1:SupposeMy . is the pulse stream model from Definition 2. et 0. Choose

an M x N i.i.d. Gaussian matrixp with

M>0 (% ((S +F)ln (%) +log(LsLr) + t)) . (11)
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Then, ® satisfies the following property with probability at ledst e~*: for every pairz, 2, €

5P
(1= )llar — 223 < P21 — P2oll; < (1 +0)l|21 — 2ll3. (12)

The proof of this theorem is presented in Appendix A. An intaot consequence of the

theorem is that, by definition\1 is a subset of the set of alldimensional canonical subspaces.

S
Ls < (ﬁg):w (fgf) . (13)

Similarly, Ly < (%)F Therefore, the logarithmic term in the expression idrin (11) scales

In particular,

as
log(LsLp) < S+ Slog(N/S)+ F + Flog(N/F) <2(5+ F)log N (14)

Thus, (11) indicates that the number of measuremehtsquired for sampling signals i3 . is
proportional to(S + F'). Therefore,M is sublinearin the total sparsity of the signals = SF.

In contrast, conventional structured sparsity models @aeQuire at leasRK = 2SF linear
measurements to ensure a stable embedding of the signdlljetr addition, the number of
degrees of freedom of each signal can be considered t© fe+ F'), corresponding to the
positions and locations of the coefficients of the sparseatignd impulse response. Therefore,

the bound in Theorem 1 is essentially optimal for the sigm@sAM 1.

B. Special case: Disjoint pulse streams

Theorem 1 is valid for signals belonging to the general modg| ... In the case of disjoint
pulse streams, we can derive a more stringent lower boundddinition, the F' nonzero
coefficients ofh are concentrated in a hypercube around the domain origierefdre,h lies
in a lone subspace spanned Bybasis vectors ofRY, and hencel.r = 1. Further, a simple

modification of Theorem 1 of [14] states that the number ofspalses in the structured sparsity

N—SA+5—1
LS:< . ). (15)

model M5 is given by

11



Thus, for the disjoint pulse stream model (.S, F, A), we obtain the following easy corollary
to Theorem 1.

Corollary 1: If ¢ > 0 and

M>0 (% ((S +F)n (%) + Slog(N/S — A) + t)) | (16)

then anM x N i.i.d. Gaussian matrixp will satisfy (12) with probability at least — e~* for
any pair of signals;, z; belonging to theM (S, F, A) model.

Note that the parameteh can be at mostV/S, since S spikes must be packed inty
coefficient locations with at leagk locations separating any pair of spikes. A higher value of
A implies that the mode/M% admits a smaller number of configurations; thus, (16) insplie
that fewer measurements are needed to sample pulse streantsch the pulses are widely

separated.

V. RECOVERY OFPULSE STREAMS

The final ingredient in our extended CS framework for pulseashs consists of new algo-
rithms for the stable recovery of the signals of interesimfroompressive measurements. This

problem can be stated as follows. Suppese M .. If w are given the noisy measurements
y=Pz4+n=>0Hr+n=>Xh+n,

then we aim to reconstruct from y. The main challenge stems from the fact thath
(respectively,X) and h (respectively,H) are unknown and have to be simultaneously inferred.
This problem is similar to performing sparse approximatrdth incompleteknowledge of
the dictionary in which the target vector (eitheror 1) is sparse. This problem has received
some interest in the literature [15, 16]; the common apgrda&s been to first assume that a
training set of vector$z;} exists for a fixed impulse responseand then to infer the coefficients
of h using a sparse learning algorithm (such as basis pursyitd6f finally to solve for the
coefficients{z;}. In the absence of training data, we must infer both the Sipikations and the
impulse response coefficients. Therefore, our task is atedas to blind deconvolution17];
the main differences are that we are only given access toatigom linear measurementsas
opposed to the Nyquist rate sampleand that our primary aim is to reconstructs faithfully

as possible as opposed to merely reconstructing
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Our general approach will be to fix an estimatehgfobtain the “best possible” estimate of
x, update our estimate df, and iterate. This is commonly known aliernating minimization
(AM) and has been shown to be suitable for blind deconvatusiettings [18]. As demonstrated
below in the proof of Theorem 2, we require that the best piss&stimate of the spike stream
x and the impulse respongeat each iteration are unique. For this reason, we will assiinaie

our target signat belongs to the disjoint pulse stream model(S, F, A).

A. Alternating minimization with exhaustive search

Consider: € M(S, F,A), so that: = xxh. This implies that the spikes inare separated by
a minimum separation distance and that the impulse responkeas concentrated. Suppose first
that we are given noiseless CS measuremgnrtsdz. We fix a candidate support configuration
o for the spike stream (so that containsS nonzeros.) Then, we form the circulant matfix
from all possible shifts of the current estimate of the inspuiesponsé (denote this operation
as H = C(h)). Further, we calculate the dictionadyH for the spike stream: and select
the submatrix formed by the columns indexed by the assumik@ $pcationso (denote this
submatrix as(@?[)g). This transforms our problem into an overdetermined sgstehich can
be solved using least-squares. In summary, we use a simpgite mpseudoinverse to obtain the
estimate

T=(PH)ly.

This provides an estimate of the spike coefficientir the assumed support configuration
We now exploit the commutativity of the convolution operato We form the circulant matrix
X, form the dictionary®X for the impulse response and select the submafbix ), formed
by its first I columns. Then, we solve a least-squares problem to obtagstmateh for the
impulse response coefficients:

h=(2X)ly.

Finally, we form our signal estimate = 7 % h. The above two-step process is iterated until a
suitable halting criterion (e.g., convergence in norm foe estimated signal). This process is
akin to the Richardson-Lucy algorithm for blind deconvaut[19].

13



Algorithm 1 Alternating minimization with exhaustive search

Inputs: Sampling matrixb, measurementg = ®x, model parametera, S, F, thresholde
Output:z € M(S, F, A) such thaty — ¢z is small

7=0h=(1%0,...,0)/VF;i=0 {initialize}

for o0 € M% do

while halting criterion falsedo

1. H = C(h), ®), = (PH), {form dictionary for spike streapn
2.7 — <I>Ily {update spike stream estimate
3. X =C(3),d, = (@)?)f {form dictionary for impulse responke
4. h — iy {update impulse response estinjate
5.7« Zxh {form signal estimate

end while

if |y — @2, <e {check for energy in residull

return z
end if
end for

The overall reconstruction problem can be solved by repgdhis process for every support
configurations belonging to the structured sparsity model5 and picking the solution with
the smallest norm of the residual= y — ®Z. The procedure is detailed in pseudocode form
in Algorithm 1. Thus, Algorithm 1 performs alternating nmmization for a given estimate for
the support of the underlying spike streamand exhaustively searches for the best possible
support. Under certain conditions on the sampling matrjxve can study the convergence of
Algorithm 1 to the correct answer, as encapsulated in the following theorem.

Theorem 2:Let z € M(S, F, A) and suppose that satisfies (12) with constantfor signals
belonging toM(S, F, A). Suppose we observg= ®z and apply Algorithm 1 to reconstruct

the signal. Letz; be an intermediate estimate ofat iterationi of Algorithm 1. Then:

1) The norm of the residudly — ®z;||» monotonically decreases with iteration count

14



2) If at any iteration:

ly — @Zill2 <,

then we are guaranteed that

Iz = Zill2 < ce,

wherec depends only on.

The proof of this theorem is provided in Appendix B. The firstrtpof the theorem implies
that for any given support configuratien Steps 1 through 4 in Algorithm 1 are guaranteed to
converge to a generalized fixed point [20]. The second patti@theorem provides a condition
on the detection of the true support configuratioin the following weak sense: if the energy
of the residual of the signal estimate is small, then theadigas been accurately reconstructed.

Algorithm 1 involves iteratively solving a combinatoriabmber of estimation problems.
This becomes infeasible for even moderate valuesvofA simpler algorithm is described in
Section V-C.

B. Model mismatch

In practical situations, we would expect to have minor e in the shapes of th§
pulses in the signal. In this case;z can no longer be expressed ds where H is a circulant
matrix. Let{hq, hs, ..., hs} be length# vectors corresponding to each of tRepulses in the
signal, and let the length-spike streanit = («ay,as,...,ag). Further, letS; be the circular
shift operator that maps th& pulse shape:; into its corresponding vector iR". Then, we

have

S
1=1

However, Algorithm 1 attempts to estimate a single puIsepsﬁaThus, following the notation
in Section V-A, the matrixiZ, is an N x S matrix. Assuming that the spikes inare separated
by at leastA locations, the matrix, is quasi-Toeplit421], i.e., the columns ofi, are circular
shifts of one another with no more than one nonzero entry émyerow. Further, assume that the
measurement matrik equals thedentity, i.e., we are given Nyquist-rate samples:zofThen the

matrices®, and ®, in Step 2 of Algorithm 1 are also quasi-Toeplitz. Thus, giwnestimate
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of the pulse shapéo, we can derive a closed-form expression for the next imprdsponse
estimate. Additionally, we can obtain an intermediateneste for the spike stream. Suppose
that the innermost loop of Algorithm 1 converges to a fixednp@istimateﬁ. We dub’ the
anchor pulsefor the set of pulse shapds:, ho, ..., hs}. The following theorem provides an
expression relating the anchor pulse to the component ghiapes.

Theorem 3:Considerz as defined in (17). Leh be the anchor pulse for the set of pulse
shapes{h, ha,...,hs}. Definec; = (hi,ﬁ) fori=1,...,5. Then, we have that

S 2
7 > Cio hy
oYl
=1 "1 1

(18)
The proof of this theorem is provided in Appendix C. Equati®8) implies that the anchor pulse
Lis a weighted linear combination of the component pulsesi = 1, ...,.S, with the weights
defined by the corresponding spike coefficientsand the inner products. The anchor pulse
remains unchanged if the spike coefficient vecatas multiplied by any constant'. Therefore,
the anchor pulse can be viewed ascale-invariant averagef the component pulse shapes.
Theorem 3 applies to Nyquist-rate samples of the signaln the case of low-rate CS
measurementy = ®z, the convergence analysis of Algorithm 1 for the generakcassS
different pulse shapes becomes more delicaté. ffossesses the RIP only fere M(S, F, A),
then it could be that two different pulse streamsz, (each with varying shapes across pulses)
are mapped by to the same vector iR, i.e., ®z; = ®z); thus, the unique mapping argument
employed in the proof of Theorem 2 cannot be applied in thé& c®ne way to analyze this case
is to recognize that by allowing arbitrary pulse shapks, h., ..., hg}, our space of signals of
interest is equivalent to a special structured sparsityehtitht consists of allK-sparse signals
whose non-zeros are arrangeddnblocks of sizeF' and the starting locations of consecutive
blocks are separated by at ledstocations. As discussed in Section Il, stable CS recontstmc
for signals from this model requires at ledgt= 25 F = 2K measurements; thus, Algorithm 1
converges in the general case given thatis proportional toK. Thus, in the case of arbitrary
pulse shapes, the number of measurements required by #lgoti is on the same order as the

number of measurements required for conventional stredtaparsity-based CS recovery.
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C. lterative support estimation

The runtime of Algorithm 1 is exponential iV. Fortunately there is a simpler means to the
same end. Instead of cycling through every possible sugpafigurations; for the spike stream
x, we instead retain aastimateof the support configuration, based on the current estinaftes
the spike strean¥ and impulse responslA%, and update this estimate with each iteration. In
order to ensure that the support estimate belongstp, we leverage a special CS recovery
algorithm for signals belonging t8145 that is based on CoSaMP [9]. We provide an outline of
the algorithm here for completeness; see [14] for details.

At each iteration, given an estimate of the spike coeffigentwe need to solve for the best
M5 -approximation tac. Letx = (1, 7o, ..., zy)T. Given any binary vectot = (sq, s, ..., sn)T
of length NV, let

T)s = (5121, S22, . . ., SNTN ),
so thatz|, is the portion of the signat lying within the supports. Our goal is to solve for

the choice of support so thatz|; belongs toM% and ||z — x| is minimized. The following

constraints on the support vecterfollow from the definition of M%:

S1+S2+ ...+ SN S, (19)

IN

Sj—|—5j+1...—|—5j+A—l < 1, fOI’jzl,...,N, (20)

where the subscripts are computed modailoThe first inequality (19) specifies that the solution
contains at mos$ nonzeros; the othel inequalities (20) specify that there is at most one spike
within any block of A consecutive coefficients in the solution.

It can be shown that minimizingz — z|s||» is equivalent to maximizing”s wherec =
(22,22 ... 2%), i.e., maximizing the portion of the energy ofthat lies withins. DefineW e
RWV+DXN as a binary indicator matrix that captures the left hand sfdke inequality constraints
(19) and (20). Next, define € R¥*1 = (S,1,1, ..., 1); this represents the right hand side of the
constraints (19) and (20). Thus, we can represent (19) abdbi2 the following binary integer
program:

s* =arg min c’s, subject tolVs < w.
s€{0,1}
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Next, we relax the integer constraints o obtain a computationally tractable linear program.
Denote this linear program Hy(-). In [14], it is shown that the solutions to the integer progra
and its relaxed version are identical. Thus, we have a ccatiputlly feasible method to obtain
an estimate of the support of the bests-approximation tar.

Once an updated support estimate has been obtained, wea &pea 2, 3 and 4 in Algo-
rithm 1 to solve for the spike streamand impulseh. This process is iterated until a suitable
halting criterion (e.g., convergence in norm for the estedapulse streant.) The overall
algorithm can be viewed as an iterative sparse approximaiiocedure for theMs model
that continually updates its estimate of the sparsifyingidinary. The procedure is detailed in

pseudocode form in Algorithm 2.

D. Stability and convergence

Like many algorithms for blind deconvolution, the analysisAlgorithm 2 is not straightfor-
ward. The dictionarie®X and®H are only approximately known at any intermediate itergtion
and hence the proof techniques employed for the analysiSd&aMP do not apply. In principle,
given access to a sufficient number of measurements, we magcesimilar convergence
behavior for Algorithm 2 as Algorithm 1. Empirically, Algithm 2 can be shown to be stable to
small amounts of noise in the signal as well as in the CS measents and to minor variations
in the pulse shape. We demonstrate this with the help of warimumerical experiments in
Section VI.

E. Computational complexity

The primary runtime cost of Algorithm 2 is incurred in solgithe linear prograni(-). For
a length#V signal, the computational complexity of solving a lineaogmam is known to be
O (N35). The total computational cost also scales linearly in thenloer of iterationsl” of the

outer loop. An overall upper bound runtime of the algorittenthiusO (N35T).

VI. NUMERICAL EXPERIMENTS

We now present the results of a number of humerical expetsréat validate the utility of
our proposed theory and methods. All experiments reportetis section have been performed

using Algorithm 2 for the recovery of disjoint pulse streams
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Algorithm 2 Iterative support estimation

Inputs: Sampling matrixp, measurementg = ®z + n, model parametera, S, F.
Output: M(S, F, A)-sparse approximation to true signalz
Initialize 7 =0, h = (1%,0,...,0), i =0

while halting criterion falsedo

l.o—i+1

2.7 T*h {current pulse stream estiméate
{estimate spike locations and amplitules

3.H= (C(ﬁ), O, = dH {form dictionary for spike strean

4. — O (y — 0)7) {residua}

5w« o(D(e)) {obtain model-approximation of residgal
6.0 —wUo(T;_1) {merge supporis

7. 2]y — (P1)ly, 2|,c =0 {update spike stream estimate

8.7 — D(x) {prune spike stream estimate

{estimate impulse resporise

9. X =C(2),d, = (0X); {form dictionary for impulse response
10. 7 « iy {update impulse response estinjate
end while

return 2 — 7 x h

A. Synthetic 1D pulse streams

Figure 1 demonstrates the considerable advantages thatithig 2 can offer in terms of the
number of compressive measurements required for relisgdenstruction. The test signal was
generated by choosingj = 8 spikes with random amplitudes and locations and convolting
spike stream with a randomly chosen impulse response ofHefig= 11. The overall sparsity
of the signalK = SF = 88; thus, standard sparsity-based CS algorithms would recuiteast
2K = 176 measurements. Our approach (Algorithm 2) returns an arestimate of both the
spike stream as well as the impulse response using méfely 90 measurements.

Figure 2 displays the averaged results of a Monte Carlo sitimn of Algorithm 2 over

19



=
N

¢ QOracle Decoder
- CoSaMP i
-+ -Block-based recovery
——Algorithm 2

I
N

[

o
fos)

Normalized MSE
o
(2]

©
»

Fig. 2. Normalized reconstruction MSE v&[/ K for different reconstruction algorithms averaged over 28@iple
trials. Signal parametersdi = 1024, S = 8, F' = 11. Algorithm 2 outperforms standard and structured spatsityed
methods, particularly whehl / K is small.

200 trials. Each trial was conducted by generating a samgtelkbelonging toM (S, F, A),
computingM linear random Gaussian measurements, reconstructingdiffdrent algorithms,
and recording the magnitude of the recovery error for défférvalues of\/ /K. Each test signal
was generated by convolving a signalbelonging toM% with a minimum phase impulse
response: of order F', with coefficients of both: and # independently drawn from a Gaussian
distribution with zero mean and unit variance. It is cleawnir the figure that Algorithm 2
outperforms both conventional CS recovery (CoSaMP [9]huatrget sparsity< = SF as well
as block-based reconstruction [7] with knowledge of the siad number of blocks (respectively
F and?5). In fact, our algorithm performs nearly as well as the “¢eadecoder” that possesses
perfect prior knowledge of the impulse response coeffisiantd aims to solve only for the spike
stream. In practice, the algorithm converges in fewer thaitérations; empirically, the number
of iterations decreases with an increasing number of cossp@ measurements.

We show that Algorithm 2 is stable to small amounts of noisthesignal and the measure-
ments. In Figure 3, we generate a length= 1024 signal from a disjoint pulse stream model
with S = 7 and F' = 11; add a small amount of Gaussian noise (SNR = 14.83dB) tosall it
components, comput& = 150 noisy linear measurements, and reconstruct using Algarzh

The reconstructed signal is clearly a good approximatiotheforiginal signal.
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Fig. 3. (@) Original noisy signal (SNR = 14.83dB). (b) Recoveredheate fromM = 150 random measurements

using Algorithm 2. (c) Residual error vector. Recovery SNR ¢9dB.
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Fig. 4. CS recovery of a real-world neuronal signal. (a) Originaloreling. (b) Recovered signal using = 150

random measurements. (c) Zoom-in on estimated anchor phdge ' = 11).

B. Neuronal signals

We test Algorithm 2 on a real-world neuronal recording. Feggd(a) shows the temporal
electrochemical spiking potential of a single neuron. Thape of the pulses is characteristic of
the neuron and should ideally be constant across differelsep. However, there exist minor
fluctuations in the amplitudes, locations and profiles of ghéses. Despite the apparent model
mismatch, our algorithm recovers a good approximation &dhginal signal (Figure 4(b)) as

well as an estimate of the anchor pulse shape (Figure 4(c)).
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(@) (b) (€)
Fig. 5. Example CS recovery of a sum of 2D pulses. (a) Syntheticteagé:N = 4096, S = 7, F = 25. Images are

recovered from\l = 290 random Gaussian measurements using (b) CoSaMP (MSE = 16éribjc) Algorithm 2
(MSE = 0.07).

C. Synthetic 2D pulse streams

Theorem 1 and Algorithm 2 can easily be extended to higheredsional signals. For
instance, suppose that the signals of interest are 2D imidgeéscan be modeled by a sparse
sum of disjoint 2D pulses. We test Algorithm 2 on a synthetiage (Figure 5(a)) of size
N = 64 x 64 = 4096 that comprisess = 7 spikes blurred by an unknown 2D impulse response
of sizeF = 5 x5 = 25, so that the overall sparsity = SF = 175. We acquire merely/ = 290
random Gaussian measurements (approximately 7% the sitee afmage/N) and reconstruct
the image using CoSaMP as well as Algorithm 2. We assume thtat digorithms possess an
oracular knowledge of the number of spik€sas well as the size of the impulse resporse
Figure 5 displays the results of the reconstruction proeesiusing CoSaMP and Algorithm 2.
It is evident both perceptually and in terms of the MSE valokthe reconstructed images that

our proposed approach is superior to traditional CS regover

D. Astronomical images

Finally, we test Algorithm 2 on a real astronomical imager @st image is anV = 64 x 64
region of a high-resolution image of V838 Monocerotis (a awike variable star) captured by

the Hubble Space Telescope [22] (highlighted by the greerarsqin Figure 6(a)). Note the
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Fig. 6. (a) Black-and-white image of V838 Monocerotis, a nova-kkar, captured by the Hubble Space Telescope

on February 8, 2004 [22]. (b) Test image is a zoomed in-varsfahe region at left highlighted in green (resolution
N = 64 x 64 = 4096). Reconstruction of test image is performed frofn= 330 random Gaussian measurements

using (c) CoSaMP and (d) Algorithm 2.

significant variations in the shapes of the three large pulse¢he test image (Figure 6(b)). We
measure this image using = 330 random measurements and reconstruct using both CoSaMP
and Algorithm 2. For our reconstruction methods, we assuaredracular knowledge of the
signal parameters; we use= 3, F = 120, K = 360 and A = 20. As indicated by Figure 6,
conventional CS does not provide useful results with thduced set of measurements. In
contrast, Algorithm 2 gives us excellent estimates for theations of the pulses. Further, our
algorithm also provides a circular impulse response eséirttat can be viewed as the anchor

pulse of the three original pulses.
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VIlI. DIScussSION ANDCONCLUSIONS

In this paper, we have introduced and analyzed a new frankeiwothe compressive sampling
of pulse streams. Our signals of interest are modeled ag Iyiran infinite union of subspaces
with exhibits a particular geometric structure. This stiwe enables us to quantitatively estimate
the number of random linear measurements needed to sanghesgnals. We have proposed
two methods for signal recovery. Our first method (Algorithjris relatively easy to analyze, but
suffers from high combinatorial complexity. Our second moet (Algorithm 2) is a feasible, if
suboptimal, algorithm and formed the basis for our numéggperiments. While our framework
is applicable to signals defined over domains of arbitrametision, we have illustrated its
benefits in the context of 1D time signals and 2D images.

There are several avenues for future work. We have discugsmde signals and images as
represented in the identity basis; our method can be extilodeavelet-sparse and Fourier-sparse
signals. While our results are promising, we still do notgess a complete characterization of
the convergence properties of Algorithm 2 as well as itsisigitg to factors such as noise and
model mismatch under random projections. Additionallys tinclear how to deal with situations
where the pulses in the signal of interest are allowed tolapeifo the best of our knowledge,
the issue of robust recovery of signals convolved with annomkn arbitrary impulse response
is an open question even for the case of Nyquist-rate sampeslefer these challenging open
guestions to future research.

The framework developed in this paper can be related to warexisting concepts in the
literature such as finite rate of innovation [23], blind caegsed sensing [24], simultaneous
sparse approximation and dictionary learning [25], anddassical signal processing problem
of blind deconvolution [17]. Compressive sensing of tinevain pulse streams has been studied
by Naini et al. [16]. However, in their setting the impulsespense is assumed to be known,
and hence the CS measurement system can be viewed as a ntiodificarandom Fourier
subsampling.

Our framework is related to recent results on compressed lleconvolution by Saligrama
and Zhao [26]. As opposed to pulse streams, their signalatefast consist of sparse signals
driven through an all-pole auto-regressive (AR) lineartasys They propose an optimization-

based algorithm for recovery of the signal and impulse naspdrom CS measurements. How-
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ever, their measurement system is tailored to impulse regsocorresponding to linear AR
models; in contrast, our approach can handle arbitrary iseptesponses. Further, our main
theoretical result indicates that the number of measur&srmencompressively sample a pulse
stream is linear only in the number of degrees of freedom efdignal and thus answers an
open question (Remark 3.1) posed by the authors in the affirena

Finally, the main approach in this paper can be related tentework by Asif et al. [27, 28],
who propose channel coding methods to combat the effect kfiavan multipath effects in a
communication channel that can be described by a sparsdsenmsponse. Their channel code
consists of a random matri@ € R*Y with M > N, so that the linear mapping = &z is
now not undercomplete, but overcomplete. Thus, their elasiens consist of an unknown sparse
channel responsk convolved with the transmitted signaland their objective is to reconstruct
the original signal:. The main aspects of our theoretical analysis could coabgnbe modified

to quantify system performance in this setting.
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APPENDIX A

We prove Theorem 1. By Definition 2, the mod#( . is generated via the convolution
operation by the structured sparsity modalss and M. Recall that both structured sparsity
models are themselves defined in terms of canonical subsmdd@” and their convolution
results in a low-dimensional geometrical structure thdiast described by an infinite union of
subspaces. Thus, if € Mg lies in a particular subspade and h € My lies in a particular
subspace\, then every signat € M5, can be identified with at least one infinite union of
subspaced/y ». The overall approach closely follows the technique use{l$] and can be

summarized as follows: we first construct a net of poigtén RY such that

i — <0
gnelgﬂz qll <6,
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for all z € Ug a with ||z|| = 1 and some constat We then apply the Johnson-Lindenstrauss
Lemma [30] for stable embedding of point clouds to this fimet of points(, and extend the
stable embedding to all possible signals U, 4. Finally, we obtain our main result through a
union bound over all possible choices of subspde¢emnd A.

First, we construct the net of pointg. Recall thatz € M3 . if 2 = h* z, whereh € A
andz € ). Following [29], we will only consider the case wheje||, |k|| < 1; it is easy to
check that the corresponding circulant matriéeés also satisfy|| X ||, || H|| < 1. The extension
to all z, h follows from the subspace property G@fand A. Consider an5S-dimensional subspace
1 C Mg. By Lemma 5.1 of [29], we can find a finite set of poirtds,, C 2 with cardinality
|Qa..| < (3/4")° such that

min [z~ gl <&, Vel <LzeQ,
QZGQQ,w

i.e., Qq. is ad’-net for Q. Similarly, we can find a set of point9,, C A with cardinality
|Qan| < (3/0")F that forms ay'-net for A. Consider the product s€q x € Mg ;» defined by:

Qan = {Zi,j =x; * h; | x; € Qo hj € QA,h}-

Observe that the cardinality of this s€, A = (3/8)°(3/d")". We claim that the finite set
() forms a2é’-net for the infinite union of subspacés, ». To see this, consider an arbitrary
z=axxh=Hx €Uy, andz;; € Qo . Then, we have that
Iz =zl = [[He— Hijl| = [|[He — Hix + Hix — Hizj|
< |Ha — Hal| + | Hiw - Hia|
< [ X|IR = Bill + [[Hil[ |z — ]|

< S(IXT+ IHll) < 20",

with appropriate choices farand ;.
Now, suppose tha = 4¢’. By the Johnson-Lindenstrauss Lemma®if ¢ RM*V with
the elements ofb drawn from a random Gaussian distribution, then for all paif vectors

21, 22 € Qa.a, (12) will hold with failure probability

3\° /3\" _
ma=2(5) (5) o
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By virtue of the fact that)q » forms a net forQq a, (12) will simultaneously hold for all pairs
of vectorszy, zo € Qq a With the same failure probability, 4.

This expression fopg, , is for a fixed pair of subspaces2, A) € Mg x Mp. There are
Ls x L such pairs of subspaces. Applying a simple union bound aVgroasible pairs, we
obtain the overall failure probability as

3 S+F
p < Z paor < LsLp <5> e~ 0(6/2M
@A)
Rearranging terms, we have that for a suitably chosen aon&tdthat depends on,) and for

anyt > 0, if

J

the failure probability for the sampling bound is smallearile—t. The main result follows.

M>C (log(LgLF) + (S + F)log <§> + t) :

APPENDIX B

We prove Theorem 2. Let;, = 7; * ﬁi be any intermediate estimate of Algorithm 1. Let
H; = (C(E—). Suppose that our candidate configuration for the support &f given by the
sparsity patternr belonging to the structured sparsity model. Then, if (-), indicates the
submatrix formed by the columns indexed dythe dictionary for the spike stream is given by
(®H;), = ®(H;),. By virtue of the least-squares property of the pseudorse@perator, the

subsequent estimat€,; according to Step 2 is given by
Tir = argmin [y — S(H,)o 3, (21)

wherez belongs to the-dimensional subspace defined by the support configuratidgince
we are minimizing a convex loss function (squared error) suldspace iRY, the minimum
Z;41 1S unique. Therefore, we may view Step 2 of the algorithm asigue-valuedinfimal
map f from a givenﬁi € My to a particularz;; € M%. Similarly, we may view Step 4 of
Algorithm 1 as another unique-valued infimal magrom M4 to M. Therefore, the overall
algorithm is a repeated application of the composite rfiapg. From a well-known result on
single-valued infimal maps [20, 31], the algorithm is styichonotonic with respect to the loss

function. Thus, the norm of the residugl— ®Z; decreases with increasing iteration count
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Further, any intermediate estimatge also belongs to the model1(S, I, A). We know from
(12) that
ly — @Z3 = |22 — ©Z[13 > (1 - )|z — Z]3.

Therefore, if||ly — ®Z;|| <, then||z — Z|| < ¢/+v/1 — 6, thus proving the result.

APPENDIX C

We prove Theorem 3. Suppose the target signebmprisesS pulses{h, ..., hs}, so that

S
Z = Z OéiSi(hi).
1=1

Assume we are given access to the Nyquist sampleg., & = Iy.y. Suppose the estimate
of the impulse response at an intermediate iteration isngli))geﬁ. Let H be the matrix formed
by the operatofC(-) acting onh and lete be the candidate support configuration for the spike
stream, so that the dictionady, in this case is given by the submatriX,. Note thatH, is
guasi-Toeplitz, owing to the assumption that the separakias at least as great as the impulse

response lengtl’. Thus, Step 2 of Algorithm 1 can be represented by the lepsires operation
T=Hlz
Due to the quasi-Toeplitz nature df,, the pseudo-inversél! = (HI H,)"H] essentially

reduces to a scaled version of the identity multiplied by tia@spose o] (the scaling factor

is in fact the squared norm 311‘) Thus, the spike coefficients are given by

i— A HF
17212
Simplifying, we obtain the expression for the estimatédspike coefficienty; as
hi h
a — ai< i )
[[72]]?

If % is normalized, then we may write; = c;«;, wherec; = <hi,ﬁ).
Once the spike coefficient8 = (c;a1,...,csas) have been estimated, we can form the
dictionary ®, by considering the quasi-Toeplitz matri formed by the operatiof©(7). In the

same manner as above, an updated estimate of the pulsefsﬁmgda/en by
1 vT

S 2.2
Zi:l G 0
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Writing out X andz in terms of(hy,...,hs) and(ay,.. ., as) and simplifying, we obtain
ﬁ _ Zf:l cioth

25:1 cjof ’
wherec; = <hj,ﬁ). Thus, we have a closed-expression for the updated estimhabe impulse
response coefficientd in terms of the previous estimafe In the event that the algorithm

converges to a fixed point, we can reple?cday h, thus proving the theorem.
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