
Multi-Objective Sensor-Based Replanning
for a Car-Like Robot

D. K. Grady∗, M. Moll∗, C. Hegde†, A. C. Sankaranarayanan†, R. G. Baraniuk†, and L. E. Kavraki∗
∗Dept. of Computer Science, Rice University, Houston, TX 77005, USA. Email: {dkg1,mmoll,kavraki}@rice.edu

†Dept. of Elec. & Computer Engineering, Rice University, Houston, TX 77005, USA. Email: {ch3,saswin,richb}@rice.edu

Abstract — This paper studies a core problem in multi-objective
mission planning for robots governed by differential constraints. The
problem considered is the following. A car-like robot computes a
plan to move from a start configuration to a goal region. The robot is
equipped with a sensor that can alert it if an anomaly appears within
some range while the robot is moving. In that case, the robot tries to
deviate from its computed path and gather more information about the
target without incurring considerable delays in fulfilling its primary
mission, which is to move to its final destination. This problem is
important in, e.g., surveillance, where inspection of possible threats
needs to be balanced with completing a nominal route. The paper
presents a simple and intuitive framework to study the trade-offs
present in the above problem. Our work utilizes a state-of-the-art
sampling-based planner, which employs both a high-level discrete
guide and low-level planning. We show that modifications to the
distance function used by the planner and to the weights that the
planner employs to compute the high-level guide can help the robot
react online to new secondary objectives that were unknown at
the outset of the mission. The modifications are computed using
information obtained from a conventional camera model. We find that
for small percentage increases in path length, the robot can achieve
significant gains in information about an unexpected target.

Keywords: motion planning, navigation, sensor-based planning

I. INTRODUCTION

A classic task for a robot is that of motion planning. Given
a start state A and a destination region B, the problem is to
find a continuous path that the robot can execute to reach
B. The robot is in general governed by a set of differential
constraints [1], [2]. In this paper we consider a variation of the
problem above. The robot computes a plan to move from A to
region B. However, the robot is equipped with a sensor that
can alert it if an anomaly (a target of interest to be sensed)
is detected within some range while the robot is moving. In
that case, the robot tries to deviate from its computed path and
gather more information about the target without incurring a big
delay while fulfilling its primary mission, which is to move to
destination B (see Figure 1). The paper develops a framework
in which this problem can be studied. A powerful state-of-the
art sampling based planner (SYCLOP [3]) is modified and used
in a replanning loop. The generality of the planner allows the
consideration of many realistic robots with complex dynamics.
However, only car-like robots are considered in this paper.

The novelty of this work lies in the fact that the planner
automatically computes deviations from the original path
without asking the user to specify viewpoints and without
forcing the robot to always go close to the point of interest.
This is achieved by modifying a key step of the planner and
providing a single parameter that can be easily tuned to control
the trade-off between gathering information about the secondary

R

obstacle obstacle

target

robotdestination

orig. trajectory

detour

Fig. 1. A schematic representation of a car-like robot making a detour from
a path towards its primary destination to opportunistically gather additional
information about a secondary target (indicated by a blue star) once the
presence of the latter has been detected at distance R. The concentric circles
indicate isocontours of probability of gathering enough information to, e.g.,
classify a target. The probability decreases quadratically with the distance to
the target with the sensor model used in this paper.

target and the time required to complete the primary mission.
This work touches upon the broader topic of the need to

balance multiple objectives mainly for mobile robots. It would
be ideal if a planning algorithm manages this balancing process
with minimal or no human intervention. Implementation on a
physical platform would introduce additional complexity that
we do not explore, and is well described in [4]. Applications
exist in search and rescue operations, reconnaissance missions,
maintenance of mobile wireless networks, mine clearing, and
others. What complicates multi-objective planning in these
domains is that some of the objectives may not be known
beforehand, but are triggered by sensor readings (e.g., when
anomalies are detected). It is challenging to balance the primary
objectives stated at the start of the mission with secondary
objectives as they arise. In this paper we consider moving a
robot to a final destination as the primary task, and maximizing
sensor information gain about a detected anomaly as the
secondary task. A more formal definition of this scenario is
presented in Section II. Although the problem is presented in
the case of a simple robot, it also makes sense (and is more
challenging) in a multi-robot setting.

Related Work: This paper brings together ideas from
diverse topics in robotics, including kinodynamic motion
planning, replanning, and view selection. For systems with
second-order dynamics, such as the car-like robot considered
in this work, it is hard to find solutions for motion planning
problems [1], [2], [5], [6], but many practical approaches
have been proposed. Sampling-based algorithms [6] have been
successfully used for replanning for dynamic systems [7]–[9].
The typical approach in replanning is to use relatively short
time periods called planning cycles to plan a robot’s motion

To appear in Proc. 10th IEEE Intl. Symp. on Safety, Security, and Rescue Robotics (SSRR), 2012.



for the next planning cycle while at the same time the robot
is executing the plan computed in the previous cycle.

Sampling-based algorithms have also been combined with
cost maps to find paths that minimize some cost function
over paths (such as the amount of work) [10]. Cost maps
typically consist of a grid decomposition of the workspace with
a traversal cost associated with each grid region. Cost maps are
very relevant to our work. They have been used successfully in
[11] in combination with a rich set of precomputed maneuvers
to effectively plan motions for a car in the DARPA Urban
Challenge. In our work a generalization of cost maps will be
used that not only depend on distance or path length, but also
on sensor-derived information about possible viewpoints of
a target. Unlike many other grid-based planning techniques,
the completeness of the planner is not limited by the grid
resolution.

Most of the work on viewpoint selection ignores whether a
viewpoint is reachable for a given robot. This is problematic,
since a robot may be asked to go to a position that is
unreachable. At the same time, many other viewpoints that are
almost as good may be easily reachable. In [12] the authors
present an algorithm to find points with large visibility polygons
at frontiers of explored areas of unknown environments.
Reachability is considered, but viewpoint selection and path
planning are decoupled and treated as separate problems.
A similar approach has been presented in [13] for model
reconstruction; here, the authors use a sampling-based planner
to compute collision-free paths to the best viewpoints, but no
differential constraints are considered. The approach in [14]
combines the next best view (NBV) with cost maps that include
secondary costs. In that work, a candidate path from the current
location to the NBV is recursively deformed to obtain good
views “on the way” to the best view, as opposed to directly
constructing a sensor-based plan. Bayesian approaches often
do not capture the motion constraints underlying the problem.
In [15], a Bayesian sensor model computes a cost map and
waypoints are selected. Unlike our work, the considered motion
planner does not receive this cost information. It receives
only the waypoints, and reachability is assumed. However,
the proposed Bayesian sensor model could be used in our
framework with minimal modification and this is in our future
plans.

Overall approach: Our work relies on a sampling-based
planner called SYCLOP [3]. It poses few constraints on
the underlying dynamics of the robot. SYCLOP works by
automatically defining a decomposition of the workspace,
creating an adjacency/abstraction graph, and searching that
graph for a high-level guide. A low-level planning layer
computes the actual dynamically feasible paths and informs the
upper layer for how to assign informative weights to the edges
of the abstraction graph, so that new meaningful leads can
be recomputed if needed. This is critical for (probabilistic)
completeness. SYCLOP has been shown to perform well
experimentally with a variety of widely-used sampling-based
planners such as RRT [16] and EST [17]. In this paper, the
weights of the abstraction graph are further influenced via

cost factors that encode the presence of new information as
explained in Section III. Our work does not explicitly utilize a
cost map, but rather a cost graph between regions that form an
arbitrary decomposition of the configuration space. The costs
in our approach encode both the quality of potential viewpoints
as well as the travel time required to reach them with a car-like
robot.

Organization of this paper: In Section II we give a formal
definition of the problem addressed in this paper as well as
the models used for the robot’s dynamics and its sensing
capabilities, respectively. Section III describes our sensor-based
replanning algorithm. In Section IV we present simulation
results. In Section V we conclude with a brief discussion and
describe directions for future research.

II. OPPORTUNISTIC PLANNING

Problem Statement: The problem addressed in this paper
can be formulated as follows: given a car-like robot in an
initial workspace pose A, compute a dynamically feasible path
to region B while optimizing for both low path length and
high information gain about an unexpected target, if the latter
is detected while executing an initial trajectory that leads to
B. Getting to B is considered the robot’s primary objective,
while collecting information about a target T is considered
its secondary objective. Depending on the application, the
information is used to, e.g., classify, recognize, or model the
target. The robot is able to detect a target’s position when
it is within a distance R, but a stochastic model (described
below) is used to define when sufficient information about the
target has been obtained to, e.g., classify it. Due to differential
constraints on the robot’s motion, the robot cannot simply drive
straight toward a good viewpoint for T , but needs to carefully
plan a path that respects these constraints, avoids obstacles,
gets close to T and quickly reaches B.

Because this work relies on the interaction between a sensing
framework and a navigation framework, we need to carefully
define several terms that we will use to describe our methods.
The robot discovers the target T when it is within R of it. The
robot senses the target when a sensor measurement of the target
is deemed to be of high quality, as described in Section II. The
mission is complete when the robot arrives at B. The mission
is successful when it is completed and the robot has sensed
every target that was discovered.

Robot Model: The robot used in this paper has second-
order, car-like dynamics:

ẋ = v cosφ cos θ, ẏ = v cosφ sin θ, θ̇ = v sinφ,

v̇ = u0, φ̇ = u1,

where (x, y, θ) is the pose of the robot, v its velocity, φ its
steering angle, and the control vector u = (u0, u1) controls
the acceleration and turning rate. The velocities and controls
are bounded, so the robot cannot stop or change direction
instantaneously. This makes navigation in environments with
obstacles very challenging; the robot cannot rely on purely
reactive behaviors and needs to plan ahead. While only car-like
robots are considered in this paper, our planning algorithm



is applicable to robots with even more general differential
constraints.

As discussed above, due to the complex dynamics, the robot
cannot simply follow a potential based on some function of
sensor payoff and distance to goal, but needs to plan to obtain
control inputs that drive it through low-cost areas.

Sensor Model: This paper uses a simple model of a sensor
to provide a proof of concept on the method, but our approach
generalizes to other kinds of sensors. There are two types of
sensor measurements, as indicated in Section II:

1) Presence and location of a discovered target within
distance R from the sensor/robot, and

2) Determination if a high-quality sensor measurement of
the target has been achieved.

Both measurements are obtained once every planning cycle as
described in Section III. High-quality measurements (type 2)
are more complicated because the modeled sensor parameters
must be taken into account.

Our sensing model is similar to the models that can be
found in field robotics research [18]. We model the event of
acquiring a high-quality measurement as a Gaussian process:
the robot could fail to detect a target even if, with a perfect
sensor, it is in theory able to do so. This is more realistic than
simply choosing a distance cut-off within which a high-quality
measurement is always obtained.

We have used the parameters from an amateur-level digital
still camera as our sensor. Specifically, we assume a sensor size
of 23.6mm×15.7mm (APS-C standard), an image pixel size of
4592×3056, a focal length of 24mm, and a target pixel size of
100×100. Additionally, we need to choose a typical target size,
which was arbitrarily set to 1m2. We assume that the camera is
pointed directly at the target once it is within discovery range.
For comparison, the environment that the robot is operating in
is 400m×400m and the robot is approximately 0.5m×0.25m.

Once these parameters are defined, we define a high-quality
sensing event (e.g., for classifying a target) as occurring when
a sample from a Gaussian distribution centered at 0 has a
magnitude greater than 1. The standard deviation σ of this
Gaussian takes into account the distance r between the robot
and the target as follows:

σ =
4592

r · 0.024
0.0236

· 3056

r · 0.024
0.0157

· 1

10000
≈ 902

r2

The first two terms describe the number of pixels that the
modeled camera sensor will capture that are of the target.
There are 4592 horizontal pixels, which is divided by r times
the horizontal field of view of the lens. The horizontal field
of view is computed as the focal length of 24mm divided
by the horizontal sensor size of 23.6mm. The result of the
first term is the horizontal size of the target in pixels for a
single image frame. Vertical size is calculated similarly. The
target is assumed to present a square visible region to our
sensor to make this calculation easier to understand, however,
this is certainly not a requirement. Once the total number
of target pixels in a particular image frame is computed,
we compare it to our set goal of 10, 000 target pixels. The

factor of 10, 000 pixels is chosen using the following heuristic:
suppose that the pixels on target can be robustly identified using
foreground-background subtraction. Then, an affine-invariant
feature extraction algorithm (e.g., SIFT [19]) can be employed
on these pixels for robust target detection. For highly textured
images, it is typical to obtain around 100 reliable SIFT feature
descriptors in a 100 × 100 pixel image [20]. Therefore, at
a range of approximately 30m, σ = 1, and the robot has a
32% chance to obtain a high-quality measurement of the target.
When the robot gets closer, success probability increases as
r2, and of course decreases in a similar fashion as the robot
moves farther away. There is a hard cutoff at R, assuming that
if the robot cannot tell the location of the target, it cannot be
expected to classify it either.

III. ALGORITHM

To build a solution framework, we extend a previously
proposed sampling-based planner called SYCLOP [3], im-
plemented in the Open Motion Planning Library (OMPL) [21].
The use of SYCLOP is critical to our solution because its
structure allows information to flow between a high-level
discrete planning layer and low-level continuous sampling-
based planning layer. An illustration is offered in Figure 2. The
discrete layer of SYCLOP can be used to encode information
about coarse characteristics of the workspace (e.g., where
the obstacles are) but also, as shown in this paper, other
information such as the information gathered by sensors.
A critical advantage of SYCLOP is that it incorporates a
structured way to pass information from the discrete layer to
the continuous layer and vice-versa, an advantage that boosts
its performance as shown in [3]. In the scenario investigated
in this paper, the bidirectional information flow enables the
motion planner to take into account both reachability and sensor
information at the same time. Our implementation of SYCLOP
uses RRT [22] as the underlying continuous planner.

The inputs to our modified SYCLOP are a motion planning
problem with dynamics (workspace obstacles, current and goal
positions), and expected sensor informativeness of regions in
the workspace supplied by the sensor model. SYCLOP and the
sensor model operate in a replanning loop as explained in [9].
The duration of each iteration of the loop is called the planning
cycle. During each cycle the robot executes the plan from the
previous cycle, while it plans a new path to the destination
with the sensor measurements passed to SYCLOP at the end
of the previous planning cycle. The sensor model estimates
help guide the robot to interesting areas as described below.
The replanning loops continues until the mission is complete.

In the original SYCLOP, the discrete guide (or high-level
plan as indicated in Figure 2) is recomputed at fixed small
intervals to take into account new reachability information
“discovered” by the analysis done by the continuous sampling-
based motion planner. The discrete model is typically chosen
to be a 2D grid decomposition of the workspace. A directed
acyclic graph (DAG) is then constructed by the high-level
discrete planner between adjacent regions of the decomposition,
starting from the region that the robot is currently in. Edge



Fig. 2. Diagram illustrating the interaction between the modules in the
SYCLOP planner. The highlighted modules have been modified by adding
information about the expected sensor payoff.

weights are assigned to this graph of adjacent regions, starting
with all equal values. These edge weights will be modified by
the progress estimates that the sampling-based planner provides.
A guide path (high-level plan) in the discrete model is computed.
The sampling-based motion planning tree is mapped to the
regions of the discrete model, and tree nodes in regions further
along the guide path are more likely to be selected for a
exploration by the sampling-based planner. This exploration
runs RRT for k iterations, where random samples are only
drawn from the subset of the state space that projects to the
selected region. Starting from these samples, RRT operates
without modification. The same discrete guide path is sampled
for a region to expand from in this manner 100 times. After
the total of 100k RRT expansions, the reachability information
is updated in the progress estimation module, changing the
weights on the discrete layer, and a new guide path is computed,
taking these new weights into account. SYCLOP repeats this
series of steps until the end of the planning cycle has been
reached. The discrete guide path on the DAG is computed by
a shortest path algorithm 95% of the time, and by a random
depth first search, ignoring edge weight, the other 5%. All
SYCLOP internal parameters were left at their defaults. For
additional details on the inner workings of SYCLOP see [3].

We incorporate predicted sensor payoff in the above scheme
by adding a new multiplicative edge weight factor in the
progress estimation module for the discrete layer. The same
multiplicative factor is used for the distance function in the
continuous sampling-based motion planning. This new factor
causes the discrete guide path to prefer regions of interest,
while simultaneously considering reachability. The idea behind
this multiplier, simply called factor from here on, is to allow the
incorporation of a secondary objective, while the planner still
only explicitly considers the primary objective. The secondary
objective is seen as an online optimization problem, where
factor determines the relative costs of poor performance
between the primary and secondary objectives. It typically
causes a deviation of the robot from its original path.

Each planning cycle, a new sensor measurement is available.
This is used to modify the edge weights of the discrete model
and help guide the robot to areas where the sensor is likely
to be most effective. The sensor model associates a payoff
value to each region of the discrete model. The payoff of a
region is calculated as the estimated σ value of the sensor

model, as described in Section II, as if the robot were at the
center of the region, and normalized to be between 0 and 1.
A payoff of 0 means that no sensor information is expected
and 1 means that this is the best possible location to take a
sensor reading. If no anomaly is in range, the sensor model
reports the same value everywhere. In this case, factor will be
equal across every region and not influence SYCLOP at all.
Otherwise, factor will be calculated as in the formula below:

factor =
(
1.5− 1

2 (payoff [region1] + payoff [region2])
)c

A region with sensor payoff greater than 0.5 causes factor
to be less than one, and therefore the DAG edge will have
a decreased weight. Regions where the sensor payoff is less
than 0.5 will yield an increase in edge weight. The values of
factor fall in the range [0.5c, 1.5c]. The c parameter controls
how important the sensor information is compared to path
length and reachability. Another way of looking it is that c
controls the relative importance of the secondary target with
respect to the primary target. There is no easy way to decide
this automatically and, thus, c has to be specified by the user.
Although in our sensing model the payoffs do not change other
than when targets enter or leave the maximum range, there is
no restriction against a sensor model that provides different
payoffs for every planning cycle.

Finally, to bias the sampling-based motion planner towards
informative paths, the distance function used in this motion
planner is similarly multiplied by factor, turning it into a
problem-specific cost function. This is because the discrete
guide may encourage the continuous layer in the correct
direction, but the randomized continuous layer finds and selects
a path that is closer to the goal than one that acquires extra
sensor information. By weighting distance as distance× factor,
we ensure that the distance from the goal is correctly balanced
against the potential payoff of greater sensor information at
both planning levels.

The exponent c is hence a control parameter of the system,
where c = [0,∞). This is used to define how much the sensor
information influences SYCLOP by specifying the balance
of how much sensor information is worth compared to extra
distance traveled. c = 0 reduces to the case where sensor
information is not utilized in the planning, and we use this for
a baseline benchmark.

The output at the end of each planning cycle is a sequence of
control inputs for the robot that last for the duration of the next
planning cycle. The robot then begins executing that plan and
takes a new sensor measurement. For the first planning cycle,
the robot does not move, and all subsequent cycles follow until
the robot arrives at the destination.

IV. EXPERIMENTAL RESULTS

To provide proof of concept, we change c in our scenario. As
the exponential control parameter c increases, we expect to see
that the robot takes longer to reach the goal, but successfully
senses the target more often.

In each experimental run below, the robot executes a
replanning loop with cycle time of 2s. The world model,



Fig. 3. Representative execution paths of the robot with c = 1.0, 1.7, 2.0.
The robot starts at position A, needs to travel to destination B, and discovers
a secondary objective to sense a target at position T.

robot, and visualization utilize the interprocess communication
infrastructure available in ROS [23].

Figure 3 shows the environment that was simulated with
three paths overlaid on it. The first, with c = 1.0, shows no
meaningful deviation from the c = 0.0 case. We do not show
c = 0.0 because of the significant overlap it would have. The
second, with c = 1.7, is a path with clear deviation from the
case with little or no sensor information, but still does not
deviate too far from the initial path of the robot. Finally, the
third path, with c = 2.0, has a very large deviation, where the
planner leads the robot almost to the target. When the robot
gets close, it has a very high probability of sensing the target
as defined in Section II. Once the sensor model detects a high
quality measurement, it no longer considers the target to be
an anomaly, and reports that no region in the workspace is
expected to provide sensor information. Thus, after a success,
the subsequent replanning operations head to the goal without
further influence by the sensor.

An important graph to present is Figure 4, showing the
success of missions as the c exponent is varied across different
mission executions. Each data point represents the mean of 30
independent runs. As can be seen, the average mission success
probability increases when we increase c to make the expected
sensor information more valuable. It is interesting to note that
success rate is near 100% at c ≈ 2.0 and thus does not increase
at higher c values. This is because the system already deviates
enough to acquire good sensor information, so more deviation
does not help.

The data shows that under the Gaussian sample sensor
criteria, the robot is never successful at c values under 1.5.
Above 1.5, success rates very quickly jump to 90%. Upon
observing this jump, more experiments were run at intermediate
values. It is still a very fast jump, and the authors plan
to investigate whether this behavior is a property of the
environment, the weighting factor, the robot dynamics, or
another unforeseen interaction.

0% 
25% 
50% 
75% 

100% 

0 1 2 3 Pe
rc

en
t S

uc
ce

ss
fu

l 

Exponent c 

Mission Success

Fig. 4. The percentage of successful missions, leveling off at approximately
c = 2.2

0.9 

1.1 

1.3 

1.5 

0
 

1
 

2
 

3
 N
or

m
al

ize
d 

Pa
th

 D
ur

ati
on 

Exponent c

Path Length Comparison 

Fig. 5. Higher c values result in higher completion times, as expected.

We can see from Figure 5 that, as expected, modifying
the distance function and DAG weights guide the robot along
longer paths. At around c = 2.0 and above, the system is
heading directly for the target until the target has been in a high
quality sensor measurement and then it heads away towards the
destination. This causes a plateau in the completion time, as the
sensor values stop influencing the behavior of the planner once
the target has been determined to be successfully sensed. The
Euclidean distance between the start and destination is 300m,
while the distance from start to target to destination is ≈ 424m.
The plateau seen in this graph is at approximately 1.5×, which
is near the theoretically expected 424

300 ≈ 1.42×, if the robot
could turn instantly. At the intermediate value of c = 1.7 we
observe that the average deviation is approximately 1.3×, and
the system is successfully sensing the target 60% of the time.
At a high value of c = 2.0 we see that the average deviation
is approximately 1.4×, and the system is successfully sensing
the target more than 80% of the time. This makes sense in the
context of success probability changing as r2.

To demonstrate the generality of our approach, we also
simulated the same start, goal and target locations in a different
workspace. There, the obstacles are much harder to navigate
around for a car-like robot. Figure 6 shows solution paths
for the c = 0 and c = 3.0 cases. In both paths, the car-like
robot has to make several changes in direction, which are costly
because the robot reverses direction and turns to a new heading.
The system does not collide with any obstacles although it
does get quite close—the line drawn along the path is thicker
than the robot is wide. Figure 7 shows a very similar trend
as in the simpler environment, where each data point is the
success rate across 10 executions from start to destination.

V. DISCUSSION

We have developed a structured way of taking into account
secondary sensing objectives that are not completely specified
when the robot starts its mission. Depending on how important
the secondary objective is, a parameter c can be used for the



Fig. 6. A complex environment, with sensor range (R), start (A), destination
(B) and target location (T) marked, as well as two example execution paths.

0% 

25% 

50% 

75% 

100% 

0 0.5 1 1.5 2 2.5 3 P
e

rc
e

n
t 

Su
cc

e
ss

fu
l 

Exponent c 

Mission Success 

Fig. 7. A very similar trend across c values can be seen when success rates
are plotted in the complex environment.

robot to automatically adjust its path an appropriate amount to
capture sensor information about the target once it has been
discovered. More secondary objectives could be considered in
a number of ways, e.g., by making the payoff of a region the
weighted sum of information gain related to each objective or
by making factor a weighted sum of terms for each objective.

The method presented here can be improved by incorporating
more realistic sensor models. This can be done in a fairly
straightforward fashion if sensor values can be translated into
payoff values for the planner. Extending the framework in this
paper to multiple robots is another direction to pursue in future
work. Coordinating multiple robots with secondary objectives
adds some very challenging coordination, communication, and
optimization problems. We theorize that the framework used
in [9] could be used here as well. Finally, we are interested
in extending this framework to handle many-layered mission
parameters rather than only primary navigation and secondary
sensing.

ACKNOWLEDGMENTS

The authors are grateful to the PRACSYS team (http://www.cse.
unr.edu/robotics/pracsys/) for their simulator framework, and to Matt
Maly for his work implementing SYCLOP in OMPL [21] and working
with the authors to debug their particular use of it.

This work was supported by grants NSF CCF-0431150, CCF-
0926127, CCF-1117939, OCI-0959097, 0713623, 0920721, 1018798;
DARPA N66001-11-C-4092 and N66001-11-1-4090; ONR N00014-
10-1-0989, N00014-11-1-0714, and N00014-12-10579; AFOSR

FA9550-09-1-0432; ARO MURI W911NF-07-1-0185 and W911NF-
09-1-0383; and the Texas Instruments Leadership University Program.
Additional support for DKG was also provided by an NSF Graduate
Fellowship.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer, 1991.
[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,

2006.
[3] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion Planning With

Dynamics by a Synergistic Combination of Layers of Planning,” IEEE
Transactions on Robotics, vol. 26, no. 3, pp. 469–482, June 2010.

[4] R. Rusu, I. Sucan, B. Gerkey, S. Chitta, M. Beetz, and L. Kavraki,
“Real-time perception-guided motion planning for a personal robot,” in
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, Oct. 2009, pp. 4245 –4252.

[5] J. Canny, The Complexity of Robot Motion Planning. Cambridge, MA:
MIT Press, 1987.

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, 2005.

[7] J. R. Bruce and M. M. Veloso, “Real-time randomized path planning
for robot navigation,” in Proc. 2002 IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, 2002, pp. 2383–2388.

[8] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under kin-
odynamic constraints,” in IEEE Intl. Conf. on Robotics and Automation,
2007, pp. 704–710.

[9] K. E. Bekris, D. K. Grady, M. Moll, and L. E. Kavraki, “Safe distributed
motion coordination for second-order systems with different planning
cycles,” Intl. J. of Robotics Research, vol. 31, no. 2, pp. 129–149, Feb.
2012.

[10] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-Based Path Planning on
Configuration-Space Costmaps,” IEEE Trans. on Robotics, vol. 26, no. 4,
pp. 635–646, Aug. 2010.

[11] M. Likhachev and D. Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” Intl. J. of Robotics Research,
vol. 28, no. 8, pp. 933–945, 2009.

[12] H. H. González-Baños and J.-C. Latombe, “Navigation Strategies for
Exploring Indoor Environments,” Intl. J. of Robotics Research, vol. 21,
no. 10-11, pp. 829–848, 2002.

[13] L. Torabi and K. Gupta, “Integrated view and path planning for an
autonomous six-DOF eye-in-hand object modeling system,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, Oct. 2010, pp. 4516–4521.

[14] E. Dunn, J. van den Berg, and J.-M. Frahm, “Developing visual sensing
strategies through next best view planning,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, Oct. 2009, pp. 4001–4008.

[15] J. Velez, G. Hemann, A. S. Huang, I. Posner, and N. Roy, “Planning to
perceive: Exploiting mobility for robust object detection,” in Intl. Conf.
on Automated Planning and Scheduling (ICAPS), 2011.

[16] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Intl. J. of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[17] J. M. Phillips, N. Bedrosian, and L. E. Kavraki, “Guided Expansive
Spaces Trees: A Search Strategy for Motion- and Cost-Constrained State
Spaces,” in Proc. 2004 IEEE Intl. Conf. on Robotics and Automation,
Apr. 2004, pp. 3968–3973.

[18] M. A. Goodrich, B. S. Morse, D. Gerhardt, J. L. Cooper, M. Quigley,
J. A. Adams, and C. Humphrey, “Supporting wilderness search and
rescue using a camera-equipped mini UAV,” Journal of Field Robotics,
vol. 25, no. 1-2, pp. 89–110, Jan. 2008.

[19] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Intl. J. of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[20] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1615–1630, 2005.

[21] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, 2012, accepted for
publication. http://ompl.kavrakilab.org.

[22] S. M. LaValle, “Randomized Kinodynamic Planning,” The International
Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[23] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in Proc. Open-Source Software workshop at the Intl. Conf. on Robotics
and Automation, 2009.


