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ABSTRACT

We propose a new method for linear dimensionality reduction
of manifold-modeled data. Given a training set X’ of () points
belonging to a manifold M C RY, we construct a linear op-
erator P : RY — RM that approximately preserves the norms
of all (g) pairwise difference vectors (or secants) of X. We
design the matrix P via a trace-norm minimization that can be
efficiently solved as a semi-definite program (SDP). When X’
comprises a sufficiently dense sampling of M, we prove that
the optimal matrix P preserves all pairs of secants over M.
We numerically demonstrate the considerable gains using our
SDP-based approach over existing linear dimensionality reduc-
tion methods, such as principal components analysis (PCA) and
random projections.

Index Terms— Adaptive sampling, Linear Dimensionality
Reduction, Whitney’s Theorem

1. INTRODUCTION

In many signal processing applications, we seek low-
dimensional representations (or embeddings) of data that can
be modeled as elements of a high-dimensional ambient space.
The classical approach to construct such embeddings is princi-
pal components analysis (PCA), which involves linearly map-
ping the original /N-dimensional data into the K -dimensional
subspace spanned by the dominant eigenvectors of the data co-
variance matrix; typically, K < N. Over the last decade, more
sophisticated nonlinear data embedding (or “manifold learn-
ing”) methods have also emerged; see, for example, [1-4].

Linear dimensionality reduction is advantageous in sev-
eral aspects. First, linear dimensionality reduction methods are
marked by their computational efficiency: techniques such as
PCA can be very efficiently performed using a singular value
decomposition (SVD) of a linear transformation of the data.
A second key appeal is their generalizability: linear methods
produce smooth, globally defined mappings that can be easily
applied to unseen, out-of-sample test data points.

Nevertheless, existing linear dimensionality reduction
methods such as PCA are marked by the important shortcom-
ing that the produced embedding potentially distorts pairwise
distances between sample data points. This phenomenon is ex-
acerbated when the data arises from a nonlinear submanifold
of the signal space [5]. Due to this behaviour, two distinct
points in the ambient signal space are often be mapped to a sin-
gle point in the low-dimensional embedding space. This ham-
pers the application of PCA-like techniques to some important
problems such as reconstruction and parameter estimation of
manifold-modeled signals.

An intriguing alternative to PCA is the method of ran-
dom projections. Consider X, a cloud of ) points in a high-
dimensional Euclidean space R™. The Johnson-Lindenstrauss
lemma [6] states that X’ can be linearly mapped to a subspace
of dimension M = O (log Q)) with minimal distortion of the
pairwise distances between the () points (in other words, the
mapping is near-isometric). Further, this linear mapping can
be easily implemented in practice. One simply constructs a
matrix ® € RM*N with M <« N whose elements are ran-
domly drawn from certain probability distributions. Then, with
high probability, ¢ is approximately isometric under a certain
lower-bound on M [5,7].

The method of random projections can be extended to more
general signal classes beyond finite point clouds. For exam-
ple, random linear projections provably preserve the isomet-
ric structure of compact, differentiable low-dimensional mani-
folds [8, 9], as well as the isometric structure of the set of sparse
signals [10, 11]. Random projections are conceptually simple
and useful in many signal processing applications. Yet, they
too suffer from certain shortcomings. Their theoretical guar-
antees are probabilistic and asymptotic. Further, the mapping
itself is independent of the data and/or task under consideration
and hence cannot leverage the presence of labeled/unlabeled
training data.

In this paper, we propose a novel method for deterministic
construction of linear, near-isometric embeddings of data aris-
ing from a nonlinear manifold M. Given a set of training points
X belonging to M, we consider the secant manifold S(X') that
consists of all pairwise difference vectors of X', normalized to
lie on the unit sphere. Next, we formulate an affine-rank mini-
mization problem (3) to construct a matrix W that preserves the
norms of all the vectors in S(X) up to a desired distortion pa-
rameter ¢. This problem is known to be NP-hard, and so we per-
form a convex relaxation to obtain a trace-norm minimization
(4), which can be efficiently solved as a semi-definite program
(SDP). Once calculated, the matrix ¥ represents an approxi-
mately isometric linear embedding over all pairwise secants of
the original manifold M, given a sufficiently high number of
training points (see Proposition 2 below).

We show that our approach is particularly useful for ef-
ficient signal reconstruction and parameter estimation using a
very small number of samples. Further, by carefully pruning
the secant set S(X'), we can extend our approach to other, more
general inference tasks (such as supervised binary classifica-
tion). Several numerical experiments in Section 4 demonstrate
the advantages of our approach over PCA as well as random
projections.



2. MANIFOLD EMBEDDINGS

The basis for our approach stems from the observation that any
smooth K-dimensional submanifold M can be mapped down
to a Euclidean space of dimension 2K + 1 such that the geo-
metric structure of M is preserved. This is succinctly captured
by two celebrated results in differential topology.

Theorem 1 (Whitney) [12] Let M be a K-dimensional com-

pact manifold. Then there exists a C* embedding of M in
R2K+1.

Theorem 2 (Nash) [12] Let M be a K-dimensional Rieman-
nian manifold. Then there exists a C* isometric embedding of
M in REE+L

An important notion in the proofs of Theorems 1 and 2 is the
normalized secant manifold of M:
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The secant manifold S(M) forms a 2K -dimensional subman-
ifold of the (N — 1)-dimensional unit sphere in RY. Any ele-
ment of the unit sphere can be equated to a projection from R
to RNV ~!. Therefore, by choosing a projection direction that
does not belong to S(M), one can map M into RY 1 injec-
tively (i.e., without overap). If 2K < N — 1, this is always
possible.

Theorem 1 (Whitney’s (weak) Embedding Theorem) is
based upon this intuition. Whitney’s Theorem shows that there
exists a low-dimensional projective embedding of M in RZX+1
such that no two points of M are mapped to the same point
in R2X*1 Theorem 2 (Nash’s Embedding Theorem) makes a
stronger claim: the manifold M can in fact be isometrically
mapped into R*2 T je., the distance between every pair of
distinct points on M is preserved by the mapping. This map-
ping is nonlinear and has been shown to be the solution of a
system of nonlinear partial differential equations [12]. Indeed,
isometry (as a notion of stability) is a crucial and desirable
property for practical applications.

Unfortunately, the proofs of both Theorem 1 and Theo-
rem 2 are non-constructive and thus do not lend themselves to
easy implementation in practice. In Section 3, we take some
initial steps in this direction. We develop an efficient computa-
tional framework to produce a low-dimensional linear embed-
ding that isometrically preserves the secant set of a manifold
M.

Our proposed method is not the first attempt to develop
stable linear embeddings for secant manifolds. Specifically,
we build upon and improve the Whitney Reduction Network
(WRN) approach for computing auto-associative graphs [13].
The WRN approach is a greedy, heuristic technique algorith-
mically very similar to PCA. Our approach follows a com-
pletely different path: the optimization formulation (4) is based
on convex programming and is guaranteed to produce a near-
isometric, linear embedding. Further, our constructed linear
embedding enjoys provable global isometry guarantees over the
entire manifold M.

3. ISOMETRIC LINEAR EMBEDDINGS

Given a manifold M C R", we wish to find a linear embed-
ding P : RN — RM M <« N, such that the embedded
manifold P M is isometric (or approximately isometric) to M,
ie., forx,x’ € M, x # x/, P satisfies
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where § > 0 represents the distortion factor. As a practical
assumption, suppose that we are given access to the training
data X = {x1,X2,...,%X¢o} sampled from M. We first form
the secant set S(X) using (1) to obtain a set of Q" = (%) unit
vectors

S(X) = {V1,V2,. .

We seek a measurement matrix ¥ € of low rank that
preserves the norms of the secants of X up to a distortion pa-
rameter § > 0, such that ||| ¥v; — 1H2}2 < 4, for all secants
v; in S(&X). Following [8], we will refer to ¢ as the desired
isometry constant.

Define P = ¥TW. Clearly, P is a positive semi-definite,
symmetric matrix. Following the technique in [14], we can for-
mulate P as the solution to the matrix recovery problem:
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minimize rank(P) 3)
P=0, P=P",

1-6<viPv; <1496, vieSX).

subject to

In general, rank minimization is NP-hard, and so we instead
propose solving a trace-norm relaxation of (3):

minimize Tr(P) 4)
P>0, P=PT,
1-6<viPv;<146, v € S(X).

subject to

The matrix recovery problem (4) consists of a linear objective
function as well as linear inequality constraints and hence can
be efficiently solved via a semi-definite program (SDP) [15].
The only inputs to (4) are the @) training vectors v; sampled
from the manifold and the desired isometry constant 6 > 0.

We observe that the optimization in (4) is always feasible.
This is because the identity matrix I always satisfies the con-
straints in (4) regardless of the underlying manifold M, the
training set X', and the distortion parameter §. Therefore, by
invoking the main result of [16], we obtain that the rank of the
optimum P* is no greater than 1/2@Q)’. We summarize this more
precisely as follows.

Proposition 1 Ler r* be the rank of the optimum to the semi-
definite program (4). Then,
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Once the solution P* = UAUT to (4) is found, the desired
linear embedding W can be calculated using a simple matrix
square root:

U = A)PUY, 5)



where Ay = diag{\1, ..., An} denotes the M leading (non-
zero) eigenvalues of P* for any M < r*. In this manner, we
obtain a low-rank matrix ¥ € RM>*¥ that is approximately
isometric on the secant set of the training samples S(&X’), up to
a distortion 0. We claim that if the training set X" represents
a sufficiently dense sampling of M, then ¥ is approximately
isometric for the entire manifold M. This statement is a di-
rect consequence of the e-cover construction method in Section
3.2.2 in [8]. We summarize this claim as follows, with proof
omitted for brevity.

Proposition 2 Suppose the training set X is an e-cover of M,
i.e., for every m € M, there exists an x € X such that
minkex dam(m, x) < €. Then, the optimum ¥ obtained by
solving (4) and (5) satisfies the approximate isometry condition
(2) on M with distortion factor §, where § = Ce and C is a
constant that depends only on the volume and curvature of M.

Summarizing, the SDP (4) results in a measurement matrix
U e RM*N M « N, that preserves approximate isometry
over all pairwise secants of a given manifold. We will dub W as
the SDP Secant measurement matrix.

Task adaptivity. We observe that the matrix inequality con-
straints in (4) are derived by enforcing an approximate isom-
etry condition on all pairwise secants {Vz}lell However, this
can often prove to be too restrictive. For example, consider a
supervised classification scenario where the signal of interest
x can arise from one of two classes that are modeled by low-
dimensional manifolds M, M’. The goal is to infer the signal
class of x from the linear embedding Px. Here, the measure-
ment matrix ¥ should be designed such that signals from dif-
ferent classes are mapped to sufficiently distant points in the
low-dimensional space. However, it does not matter if signals
from the same class are mapped to the same point. Geometri-
cally speaking, we seek P that preserves merely the inter-class
secants S(IM, M') = { reM, 2 eM
an isometry constant 6. This represents a reduced set of linear
constraints in (4). Therefore, the solution space to (4) is larger,
and the optimal P* will necessarily be of lower rank, thus lead-
ing to a further reduction in the dimension of the embedding
space.
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4. EXPERIMENTS

We demonstrate the applicability of our approach using simu-
lated data. We solve the SDP optimization (4) using a Lagrange
multiplier method similar to the Singular Value Thresholding
algorithm [15]. First, we consider a synthetic manifold M that
comprises binary images of shifts of a white disk on a black
background (see Fig. 2 (a)). We construct a training database of
Q' = 900 secants from this manifold using (1), normalize the
secants, and solve (4) with desired isometry constant 6 = 0.05
to obtain a positive semi-definite symmetric matrix P* (for this
problem, N = 256). We then form a rank-M matrix accord-
ing to (5), compute linear embeddings of 1000 test secants, and
calculate the empirical isometry constants on the test secants.
We repeat the empirical estimation of isometry constants
obtained by projecting on to the PCA basis functions learned
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Fig. 1: Empirical isometry constant § vs. number of measure-
ments M using various types of embeddings. The SDP secant
approach ensures global approximate isometry using the fewest
number of measurements.

on the Q' secants (dubbed as PCA secants), as well as random
Gaussian projections. Figure 1 plots the variation of the isom-
etry constant ¢ with the number of measurements M averaged
over all the test secants. Our proposed SDP Secant embedding
W achieves the desired isometry on the secants using the fewest
number of measurements. Interestingly, both the SDP Secant
embeddings as well as the PCA Secant embeddings far outper-
form the random projection approach.

Next, we consider a supervised classification problem,
where our classes consist of binary images of shifts of a trans-
lating disk and a translating square (some examples are shown
in Fig. 2). We construct a training dataset of Q' = 2000 inter-
class secants and obtain a measurement matrix Winer via our
proposed SDP Secant approach. Using a small number of mea-
surements of a test signal, we estimate the class label using a
Generalized Maximum Likelihood Classification (GMLC) ap-
proach following the framework in [17]. We repeat the above
classification experiment using measurement basis functions
learned via PCA on the inter-class secants, as well as random
projections. Figure 2(c) plots the variation of the number of
measurements M vs. the probability of error. Again, we ob-
serve that the SDP approach outperform PCA as well as random
projections.

Finally, we test our approach on a more challenging
dataset. We consider the CVDomes dataset, a collection of
simulated X-band radar scattering databases for civilian ve-
hicles [18]. The database for each vehicle class consists of
(complex-valued) short-time signatures of length N = 128 for
the entire 360° azimuth, sampled every 0.0625°. We model
each of the two classes as a one-dimensional manifold, con-
struct Q" = 2000 training inter-class secants as well as ,
and compute the SDP Secant measurement matrix Winer us-
ing our proposed SDP approach. Additionally, we obtain a
different measurement matrix Wjoiy from a training dataset of
@' = 2000 vectors that comprise both inter- and intra-class
secants. Given a new test signal, we acquire M linear measure-
ments and perform maximum likelihood classification. From
Fig. 3, we infer that the SDP approach using inter-class se-
cants yields the best classification performance among the dif-
fererent measurement techniques. In particular, Winer produces
the best classification performance, proving the potential bene-
fits of task-adaptivity using our approach.
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Fig. 2: Binary classification from low-dimensional linear embeddings. (a,b) The signals of interest comprise shifted images of a
white disk/square on a black background. We observe M linear measurements of a test image using different matrices, and classify
the observed samples using a GMLC approach. (c) Observed probability of classification error as a function of M. Our SDP Secant
approach yields high classification rates using very few measurements. (d) Illustrations of 16 linear embedding basis functions

obtained by our proposed approach, tiled in a 4x4 grid.
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Fig. 3: Classification of a Toyota Camry versus a Nissan Max-
ima using M linear measurements of length-128 radar signa-
tures. The SDP approach produces > 95% classification rates
using only a small number of measurements M < 15.

5. DISCUSSION

‘We have taken some initial steps towards a new method for con-
structing near-isometric, low-dimensional linear embeddings of
manifold-modeled signals and images. Our proposed SDP Se-
cant embedding preserves the norms of all pairwise secants of a
high-resolution sampling of the manifold and is calculated via a
novel semi-definite programming formulation (4). Our method
can be easily adapted to perform inference tasks such as classi-
fication. We have empirically demonstrated that our method is
superior to current linear embedding methods, including PCA
and random projections.

Two key challenges remain. First, our proposed approach
relies on the efficiency of the trace norm as a valid proxy for the
matrix rank in the objective function in (4). The precise con-
ditions under which the optimum of (4) equals the optimum of
(3) need to be carefully studied. Second, current SDP solvers
do not perform very well beyond signal sizes N > 500 and
constraints Q > 2000. However, in many important situa-
tions, the signals are very high-dimensional and the amount of
available training data is large. It is likely that specialized high-
performance solvers for (4) need to be developed. We defer
both issues to future research.
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