
Introduction

In which we provide a brief crash course on machine learning.

Overview
Why machine learning, and why now?

As of today, ML (and more broadly, “AI” or “data science”) is an off-the-charts hot topic. Virtually
every scientific, engineering, and social discipline is undergoing a major foundational shift towards
an increasing use of AI. A major driver of this progress has been the development of DL tools and
techniques, particularly over the last 5 years.

There are several reasons why this is the case; the foremost being that computing devices and sensors
have pervasively been ingrained our daily personal and professional lives, and that it is easier and
cheaper to acquire and process data than ever before. As we will learn later in the course, a common
set of algorithmic tools in DL uses these devices to extract useful, actionable information from
datasets of unprecedented sizes and varieties.

It is common to hear and read pithy newspaper headlines about AI, such as this:

“AI is the new electricity.”

or even

“AI is the new oil.”

It is true that a renewed focus on AI and data-driven analysis and decision making has had considerable
impact on a lot of fields. It is equally true that several important questions remain unanswered, and
that much of the deep learning tools used by practitioners are deployed as “black-boxes” with
little-to-no understanding of what goes on under the hood.

The only way to place deep learning on a solid footing is to build it bottom-up from the first principles
upwards; in other words, ask the same foundational questions that computer scientists would ask:
correctness, soundness, efficiency, and so on. This course may not provide all the answers to these
questions (much of which are still unknown!) but let’s treat this as a first step.

What is machine learning?

There is no unique answer. My own personal definition is the following diagram:

• Data –> (Machine learning system) –> Actionable information

To come up with a good ML system, there are three main computational ingredients.

1

• a representation of the system (also called an “ML model”)

• a measure of goodness (also called a “loss function” in machine learning).

• a method to optimize for this measure (also called a “training algorithm”).

Once we come up with such a (Machine learning system), we can use it to make predictions (also
called “inference”).

All of the above assumes that the data itself obeys a certain mathematical form. A common approach
in ML is to use vector spaces. Let us formalize this.

Vector spaces
In several applications, “data” usually refers to a list of numerical attributes associated with an object
of interest.

For example: consider meteorological data collected by a network of weather sensors. Suppose each
sensor measures:

• wind speed (w) in miles per hour
• temperature (t) in degrees Fahrenheit

Consider a set of such readings ordered as tuples (w, t); for example: (4,27), (10,32), (11,47),

It will be convenient to model each tuple as a point in a two-dimensional vector space. More generally,
if data has d attributes (that we will call features), then each data point can be viewed as an element
in a d-dimensional vector space, say Rd.

Here are some examples of vector space models for data:

1. Sensor readings (such as the weather sensor example as above).

2. Image data. Every image can be modeled as a vector of pixel intensity values. For example, a
1024× 768 RGB image can be viewed as a vector of d = 1024× 768× 3 dimensions.

3. Time-series data. For example, if we measure the price of a stock over d = 1000 days, then
the aggregate data can be modeled as a point in 1000-dimensional space.

Properties of vector spaces
Recall the two fundamental properties of vector spaces:

• Linearity: two vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) can be added to obtain:

x+ y = (x1 + y1, . . . , xd + yd).

• Scaling: a vector x = (x1, . . . , xd) can be scaled by a real number α ∈ R to obtain:

αx = (αx1, . . . , αxd).

Vector space representations of data are surprisingly general and powerful. Moreover, several tools
from linear algebra/Cartesian geometry will be very useful to us. Here are a few.

2

Norms. Each vector can be associated with a norm, loosely interpreted as the “length” of a vector.
For example, the `2, or Euclidean, norm of x = (x1, . . . , xd) is given by:

‖x‖2 =

√√√√ d∑
i=1

x2i .

Similarly, the `1, or Manhattan, norm of x is given by:

‖x‖1 =

d∑
i=1

|x|i.

Distances. Vector spaces can be endowed with a notion of distance as follows: the “distance” between
x and y can be interpreted as the norm of the vector x−y. For example, the `2, or Euclidean, distance
between x and y is given by:

‖x− y‖2 =

√√√√ d∑
i=1

(xi − yi)2.

One can similarly define the `1-distance. The choice of distance will be crucial in several applications
when we wish to compare how close two vectors are.

Similarities. These are, in some sense, the opposite of distances. Define the Euclidean inner product
between vectors x and y as:

〈x, y〉 =
d∑

i=1

xiyi.

Then, the cosine similarity is given by:

sim(x, y) =
〈x, y〉
‖x‖2‖y‖2

.

The inverse cosine of this quantity is the generalized notion of angle between x and y.

Warmup: Linear Models
Suppose we have observed data-label pairs {(x1, y1), (x2, y2), . . . , (xn, yn)} and there is some
(unknown) functional relationship between xi and yi. We will assume the label yi can be any real
number. The problem of regression is to discover a function f such that yi ≈ f(xi). (Later, we will
study a special case known as binary classification, where the labels are assumed to be ±1). The
hope is that once such a function f is discovered, then for a new, so-far-unseen data point x, we can
simply apply f to x to predict its label.

Examples include:

3

• predicting stock prices (y) from econometric data such as quarterly revenue (x)
• predicting auto mileage (y) from vehicle features such as weight (x). We have introduced this

as a class lab exercise.
• forecasting Uber passenger demand (y) from population density (x) for a given city block
• . . . and many others.

As our simplest case, we assume a linear model on the function (i.e., the label yi is a linear function
of the data xi).

An aside: why should do we care about linearity? For starters, linear models are simple to understand
and interpret and intuitively explain to someone else. (“If I double some quantity, my prediction
doubles too..”) Linear models are also (relatively) easy from a computation standpoint. We will
analytically derive below examples of linear models for a given training dataset in closed form.

From a mathematical perspective, if we recall the concept of Taylor series expansions, functions that
arise in natural applications can often be locally expressed as linear functions. We will see later how
Taylor series approximations arise all over the place in deep learning.

Let us focus on the case of high-dimensional (vector-valued) data. In this case, the functional form
for the prediction made by linear models is as follows:

yi = 〈w, xi〉, i = 1, . . . , n.

where w ∈ Rd is a vector containing all the regression coefficients.

(For simplicity, we have dropped the intercept term in the linear model. In ML jargon, this is called
the bias, and can be handled analogously but the closed-form expressions below are somewhat more
tedious.)

The second step is the loss function. Let us define the MSE loss in this case:

L(w) =
1

2

d∑
i=1

(yi − 〈x,w〉)2,

For conciseness, we write this as:

L(w) =
1

2
‖y −Xw‖2

where the norm above denotes the Euclidean norm, y = (y1, . . . , yn)
T is an n× 1 vector containing

the y’s and X = (xT1 ; . . . ;x
T
n) is an n × d matrix containing the x’s, sometimes called the “data

matrix”. Statisticians like to call this the design matrix.

In high dimensions, the vector of partial derivatives (or the gradient) of L(W) is given by:

∇L(w) = −XT (y −Xw).

4

The above function L(w) is a quadratic function of w. The value of w that minimizes this (say, w∗)
can be obtained by setting the gradient of L(w) to zero and solving for w:

∇L(w) = 0,

−XT (y −Xw) = 0,

XTXw = XT y, or

w = (XTX)−1XT y.

The above represents a set of d linear equations in d variables, and are called the normal equations. If
XTX is invertible (i.e., it is full-rank) then the solution to this set of equations is given by:

w∗ =
(
XTX

)−1
XT y.

So there we have it – the solution to linear regression in closed form. Unfortunately, there are two
issues here:

• Existence: If n ≥ d then one can generally (but not always) expect XTX to be invertible; if
n < d, this is not the case and the matrix is singular, so the above expression is not valid.

• Computation: Computing XTX takes O(dn2) time, and inverting it takes O(d3) time. So, in
the worst case (assuming n > d), we have a running time of O(nd2), which can be problematic
for large n and d. Can we do something simpler?

In the next lecture, we will develop an algorithm called gradient descent that will resolve both of
these issues.

Classification and the perceptron
The perceptron algorithm was an early attempt to solve the problem of artificial intelligence. Indeed,
after its initiation in the early 1950s, people believed that perfect AI was not far off. (Of course, that
didn’t quite work out yet.) Let us see how our 3-step recipe described above applies here.

Step 1: Representation: The goal of the perceptron is to learn a linear model that can perfectly
distinguish between two classes. In particular, the perceptron will output a vector w ∈ R and a scalar
b ∈ R such that for each input data vector x, its predicted label is:

y = sign(〈w, x〉+ b).

If we assume that the learned separator w is homogeneous and passes through the origin then b = 0.
Geometrically, the boundary of the decision regions between the two classes is the hyperplane defined
by:

〈w, x〉 = 0

and w denotes a vector that is perpendicular to this hyperplane.

5

Step 2: Loss function: The next step is to define a measure of goodness. In classification applications,
since the output is discrete/categorical, the mean-squared error is generally not meaningful. Instead,
one can use, for example, the Hamming distance, which aggregates the number of

L(w) =
1

n

n∑
i=1

1(yi 6= sign(〈w, x〉+ b)

where 1 denotes the indicator function that is 1 when the condition with the parenthesis is satisfied,
and 0 otherwise.

Step 3: Optimization: We have been doing good so far, but now we come to a roadblock: staring
at this a bit, we realize that there is no closed form expression for the minimizer of the above loss
function!

Attempts to set the gradient to zero and solve for w are not fruitful: observe that both the Hamming
distance as well as the sign function are not differentiable, and hence the gradients may not even
exist.

We could look to brute-force our way through it by examining all choices of w and picking the best
one, but we quickly run into computational intractability concerns here. We need a different class of
algorithmic techniques (and indeed, computational concerns might have been the reason that the buzz
around AI died down in the 60s).

We will see next lecture that a variant of the aforementioned gradient descent algorithm (called
stochastic gradient descent) can resolve both these issues can elegantly solve the perceptron training
problem.

From linear models to neural networks
With the above two examples in mind, let us try to make this connection between linear models and
neural networks a bit more formal. The key concept linking these different models is to imagine the
computations as being composed of layers in a directed graph.

For example, while training/testing a linear regression model, the following steps are involved:

• The input x is dotted with a weight vector w, i.e., 〈w, x〉.
• The predicted output 〈w, x〉 is compared with the label y using the squared error loss

l(y, wTx) = 0.5‖y − wTx‖22.

• Training is done by figuring out the best possible choice of w that minimizes this loss.

Try building a graphical picture for the perceptron.

On the other hand, while training a (k-class) logistic regression model, we have an extra step:

• The input x is dotted with k weight vectors wj .

• The (intermediate) output z = (〈w1, x〉, . . . , 〈wk, x〉 is passed through a softmax layer to get
the prediction:

6

ŷ = softmax(z), where ŷj =
exp 〈wj , x〉∑k
j=1 exp 〈wj , x〉

.

• The predicted output is compared with the label using cross-entropy loss:

l(y, ŷ) = −
k∑

i=1

y log(ŷ).

Here, y is a label indicator, or one-hot vector indicating the correct class.

Figure 1: Linear and logistic regression: a network interpretation

Each of the above procedures can be illustrated as a graph as illustrated in Figure 1. A shared picture
starts to emerge:

• several standard ML models can be viewed as graphs;
• which are directed, acyclic, feedforward;
• the edges of the graph are associated with parameters (or weights) of the ML model,
• which can be iteratively, greedily updated via gradient descent.

As we will see in the coming two lectures, the core of modern deep learning systems consists of the
very same steps discussed above.

7

	Overview
	What is machine learning?
	Vector spaces
	Properties of vector spaces
	Warmup: Linear Models
	Classification and the perceptron
	From linear models to neural networks

