
Lecture 8: Applications in NLP

In which we see the power of deep networks in natural language processing.

Deep Learning in NLP
We will continue our discussion on neural architectures for NLP below, but first:

Transformers: Wrapup
One part that we didn’t emphasize too much in the previous lecture is the fact that unlike sequence
models (such as RNNs or LSTMs), self-attention layers are permutation-equivariant. This means
that sentences of the form:

“Jack gave water to Jill”

and

“Jill gave water to Jack”

will learn the exact same features. In order to incorporate positional information, some more effort is
needed.

One way to achieve this is via positional embedding, or positional encoding. We create, in addition to
the word embedding, a vector that encodes the location of the token. This vector can either be learned
(just as word embeddings – see below) or just fixed. The latter is typically used in Transformer
architectures.

What kind of positional encodings are useful? One-hot encoding the position is possible (although
quickly becomes cumbersome – can you reason why this is the case?). Just adding an integer feature
encoding the position is fine too, although we may run into scale/dynamic range issues, sinc the value
of the feature can become very large for one sequences. A common approach is to use sinuisoidal
encoding:

pt = [sin(ω1t); sin(ω2t); . . . sin(ωd)t]

where ωk = 1
10000k/d represents different frequencies. Thus the values of the positional encoding

vector are always bounded, and because of the periodic nature of the definition this can be applied for
any choice of d and t.

Unsupervised Pre-training
In our discussion on neural architectures for NLP, we have mainly focused on the middle part of this
picture:
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Figure 1: NLP overview

All neural network models assume real-valued vector inputs, and we have assumed that there is some
magical way to convert discrete data (such as text) to a form that neural networks can process.

Today we will focus on the bottom part. Where do the word encodings come from? And how do they
interact with the rest of the learning?

Word2vec
The easiest way to encode words/tokens into real-valued vectors is one that we have already used for
image-classification type applications: one-hot encoding.

Pros: this is dead simple to understand and implement.

Cons: there are two major drawbacks of using one-hot encodings.

• Each encoding can become very high dimensional. By definition, the encoded vectors are now
the size of the vocabulary/dictionary. At the character level this is fine; at the word level it
becomes very difficult; and at any higher level the space of symbols becomes combinatorially
large.

• More than just computation: one-hot encodings do not capture semantic similarities (all words
are equally far in L1/L2/Hamming distance than every other word). It would be nice to have
similar words share similar features (where the meaning of “similar” depends on the language
and/or context).

This was recognized by early NLP researchers. In the mid-2000s, a host of encoding methods were
proposed, includng Latent semantic analysis (LSA), singular value decomposition (SVD). All of
these were superseded by Word2vec, which came up in the early 2000s.

Word2vec is a word encoding framework that uses one of two approaches: skip-grams and continuous
bag-of-words.
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Skip-grams

In skip-grams, each word has two vector embeddings: vi and ui. Let us first motivate why we need
two such embeddings. As a running example, we will keep in mind a sentence such as:

“It is raining right now”.

and imagine it being represented as a sequence of words x1, x2, x3, x4, x5.

We already discussed n-grams briefly before while motivating language models. For n = 2, these
are the joint probabilities P (x1, x2), P (x2, x3), . . ., each of which can be empirically calculated by
counting the number of co-occurences of pairs of words in a database. Equivalentl, it is easier to
express this in terms of conditional probabilities P (x2|x1), P (x3|x2), . . ..

The term “skip-gram” comes from the fact that we consider conditional probabilities that are not-
consecutive, i.e., words can be skipped over. (The reason for exploring relationships between
non-consecutive words goes back to the non-local, long-range dependency structure of natural
languages.) In this case, the factorization is done with respect to the “center” (or “target”) word of
the sequence; the other words are called “context” words. So the above factorization becomes:

P (x1|x3) · P (x2|x3) · P (x4|x3) · P (x5|x3)

Intuitively, these probabilities tell us: “if a word xi appears in a sentence, how likely is it that the
word xj will appear in its vicinity?” Here, “vicinity” would mean a window of some fixed size.

Having defined non-local conditional probabilities, the algorithmic question now becomes: how to
estimate them? Again, one could just use frequency of co-occurence counts in some large text corpus.

However, we will depart from the standard approach, and instead train a simple neural network that
predicts P (xj |xi). The network will be two layers deep (i.e., a single hidden layer of neurons with
linear activations), followed by a softmax. Here is the architecture:

Some more details about this network. Say we have a dictionary of N words. The input is a one-hot
encoding xi of any given word i (so, N input neurons). The output is a vector of pre-softmax logits
(so, N output neurons). We can imagine (say) a hidden layer of d (linear) neurons. So if we call
V ∈ Rd×N and U ∈ Rd×N the two layers, then the conditional probability of any context word
given the center is given by:

P (xj |xi) = softmax(UTV xi)

= softmax(UT vi)

= softmax([uT
1 vi;u

T
2 vi; . . . u

T
Nvi]).

So examining the rows of U and V give us precisely what we want – the word embeddings for the
target and the context words respectively. Typically, d� N , so the embedding dimension is much
smaller than the size of the vocabulary.

Using the rows of U and V as embeddings also intuitively makes sense: similar words/synonyms
should give us similar output probabilities, and in order for two outputs to be similar, both target and
context probabilities must match.

How do we train this network? First, we need to define a loss function. We can just use the standard
cross-entropy loss, where the network is fed pairs of words (one-hot encoded) as data-label pairs. So
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for a particular pair of target-context words i and j, we get the loss term:

l(i, j) = uT
j vi − log

∑
j

exp(uT
j vi)


whose derivative can then be used to update all the weights.

There are a more few issues here to be considered. In English, for example, there are about N = 10K
commonly used words. So we already have approximately 6M weights to learn. Second, training
can be extremely slow, since for every sample pair we have to touch all the weights. The word2vec
paper did a few extra hacks (hierarchical softmax, negative sampling) to make this work, which we
won’t dive into here – more details in an NLP course perhaps. See Chapter 14 of the textbook if you
are interested.

Continuous Bag of Words (CBOW)

The CBOW model is very similar to the skip-gram model, so we won’t get into too much detail. THe
main difference is that the CBOW model flips things around: instead of the center word defining the
context, the context words are used to predict the target. So the conditional probabilities become:

P (x3|x1, x2, x4, x5)

which cannot be easily factorized the way we did so above. But the expression remains similar, if we
approximate the embedding of the context as the (vector) average of the individual embeddings:

P (xi|x1, . . . xj . . .) =
exp(uT

i Ave(xj))∑
i exp(u

T
i Ave(xj))

.

Given this approximation of the conditional probabilities, the training is done just the same way as
described above using the cross-entropy loss.

Which embedding is better? Both are roughly equivalent and we could use one or the other.

GloVe
The main problem with the word2vec framework is that both skip-gram and CBOW models rely on
predicting output probabilities, and hence have to be trained with the cross-entropy loss.

For very large dictionaries, calculating cross-entropy can be troublesome: each gradient update
requires computing softmaxes (and hence calculating all the outputs and marginalizing over them).
Global vector (GloVe) embeddings resolve this in a slightly different manner. The idea is to use
matrix factorization (a la PCA), and since it is not neural network-based we won’t go into too much
detail here: take an NLP class if interested. The main steps are as follows:

• We construct a word-context co-occurence matrix and try to factorize it using PCA (i.e., find
the low-rank decomposition that minimizes the reconstruction loss).

• Not trivial, but this is a very sparse matrix! Can train using SGD type methods.

• Word distributions have a long tail, so very common words will dictate the loss function. To
make things more equitable, log-probabilities are used.
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• In practice, a modified weighted form of the reconstruction loss is used:

L(U, V, b, c) =
∑
i,j

f(xij)(u
t
ivj + bi + cj − log xij)

2

where f(xij) = 1 for reasonable xij but quickly goes to 0 if xij gets close to zero. This avoids
the possibility that large (negative) values in the log-probabilities significantly influence the
loss function.

ELMO, BERT, and GPT-2
While word2vec and GloVe represented step-changes in our ability to build sophisticated language
models, they have now largely been surpassed by more modern techniques — ELMo, BERT, and
GPT. Fortunately, we now have all the ingredients to understand them. The details are a bit hairy (a
lot of engineering has gone into finetuning each of them) so we will only stick to high-level intuition
and descriptions, while relegating the specifics to the textbook (Chapter 15).

ELMo

The main problem with GloVe/word2vec is that the word embeddings are context-independent. Recall
that if we want to get a skip-gram embedding of a word, we one-hot encode it and look at the
corresponding input- and output-layer weights in the above two-layer architecture.

However, words (particularly in languages such as English) are context-dependent. E.g. consider a
sentence such as “Fish fish fish” — there are three identical words here, but the context shows that
each has rather different meanings. Can we somehow get embeddings that not just look at word-level
semantics but their usage in a given sentence?

ELMo (Embeddings from Language Models) does this. Just as how we motivated RNNs/LSTMs as
possible architectures that can capture context in a sequence of inputs, similarly we can replace the
simple feedforward architecture of word2vec with recurrent architectures.

Specifically, ELMo proposes to produce word embeddings by looking at the entire sentence both
left-to-right and right-to-left. It achieves this via bi-directional LSTMs: it looks at the hidden layer
representations (states) for both the left-to-right and right-to-left LSTMs and takes a weighted linear
combination of them as the word embedding for each word in the input. The weights are left as
trainable parameters used by downstream tasks (such as classification or sentence prediction) for
further fine-tuning.

The choice of loss function is important; ELMo uses next-word-prediction (NWP) as the task of
choice using the cross-entropy loss.

BERT

The next natural progression was to replace the bidirectional LSTM encoding used by ELMo with
Transformers. This led to BERT (bidirectional encoder representations from transformers). The main
ingredients (over and above those described above) include:

• Replacing LSTMs with transformer blocks. The output of each encoder layer in each token’s
path can be viewed as a feature embedding of that toen.
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Figure 2: BERT overview

• The loss function/training task used to learn the embeddings is for next-sentence prediction
(NSP) which is shown to be transferable to many tasks.

• To encourage generalizability, a technique called masked self-attention is used: random words
in a sentence are masked/zeroed out. This is similar to Dropout, which we have seen in the
context of training feedforward nets.

• BERT also uses word piece tokenization, which is somewhere in between character-level
and word-level encoding. This is useful for languages like English. For example, the world
“Walking” is broken into two pieces: “walk” and “ing”, each of which are tokenized.

• There are two BERT models, which differ in the depth (number of encoder blocks) used in the
Transformer architecture.

• BERT is now adopted by Google Search in most of their supported languages.

GPT-2

This line of work culminated in GPT-2 (GPT = Generative Pre-Training). Its successor (GPT-3) is
possibly the most advanced language model currently present, but is closed-source.

A key difference with BERT is that GPT-2 uses masked auto-regressive self-attention, so tokens are
not allowed to peek at words to the right of them.

GPT-2 also used much deeper architectures than BERT, and was trained on extremely massive datasets
(called the OpenWebText Corpus).

Other hacks: similar to BERT, GPT uses word piece tokenization. GPT-2 used something called Byte
Pair encodings that uses compression algorithms to figure out how to chop up regular words into
tokens.

Summary

There you have it: a brief summary of modern neural architectures for NLP (and sequential data more
broadly).
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Among the many applications they support: apart from regular classification-type problems (such as
sentiment analysis or named entity recognition), the above models support:

• Language synthesis – as used by chatbots and the like.
• Summarization: models such as GPT-2 can read a wikipedia article (without the intro paragraph)

and be asked to summarize the intro.
• Similar architectures can be fine-tuned to perform music synthesis (such as synthetic midi file

generation).
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