
Lecture 9: Reinforcement Learning (I)

In which we introduce the basics of reinforcement learning.

Reinforcement Learning (I)
Throughout this course, we have primarily focused on supervised learning (building a prediction
function from labeled data), and briefly also discussed unsupervised learning (generative models and
word embeddings). In both cases, we have assumed that the data to the machine learning algorithm is
static and the learning is performed offline.

Neither assumption is true in the real world! The data that is available is often influenced by
previous predictions that you have made. (Think, for example, of stock markets.) Moreover, data is
continuously streaming in, so one needs to be able to adapt to uncertainties and unexpected pitfalls in
a potentially adverse environment.

Applications that fall into this category include:

• AI for games (both computer/video games as well as IRL games such as Chess or Go)
• teaching robots how to autonomously move in their environment
• self-driving cars
• algorithmic trading in markets

among others.

This set of applications motivates a third mode of ML called reinforcement learning (RL). The field of
RL is broad and we will only be able to scratch the surface. But several of the recent success stories in
deep learning are rooted in advances in RL – the most high profile of them are Deepmind’s AlphaGo
and OpenAI’s DOTA 2 AI, which were able to beat the world’s best human players in Go and DOTA
2 respectively. These AI agents were able to learn winning strategies entirely automatically (albeit by
leveraging massive amounts of training data; we will discuss this later.)

To understand the power of RL, consider – for a moment – how natural intelligence works. An infant
presumably learns by continuously interacting with the world, trying out different actions in possibly
chaotic environments, and observing outcomes. In this mode of learning, the input(s) to the learning
module in the infant’s brain is decidedly dynamic; learning has to be done online; and very often, the
environment is unknown before hand.

For all these reasons, the traditional mode of un/supervised learning does not quite apply, and new
ideas are needed.

A quick aside: the above questions are not new, and the formal study of these problems actually
classical. The field of control theory is all about solving optimization problems of the above form.

1



But the approaches (and applications) that control theorists study are rather different compared to
those that are now popular in machine learning.

Figure 1: Temple Run

Setup
We will see that RL is actually “in-between” supervised and unsupervised learning.

The basis of RL is an environment (modeled by a dynamical system), and a learning module (called
an agent) makes actions at each time step over a period of time. Actions have consequences: actions
periodically lead to reward, or penalty (equivalently, negative reward). The goal is for the agent to
learn the best policy that maximizes the cumulative reward. All fairly intuitive!

Here, the “best policy” is application-specific – it could refer to the best way to win a game of
Space Invaders, or the best way to allocate investments across a portfolio of stocks, or the best way
to navigate an autonomous vehicle, or the best way to set up a cooling schedule for an Amazon
Datacenter.

All this is a bit abstract, so let us put this into concrete mathematical symbols, and interpret them (as
an example) in the context of the classic iOS game Temple Run, where your game character is either
Guy Dangerous or Scarlett Fox and your goal is to steal a golden idol from an Aztec temple while
being chased by demons. (Fun game. See Figure 1.) Here,

• The environment is the 3D game world, filled with obstacles, coins, etc.
• The agent is the player.
• The agent receives a sequence observations (in the form of e.g. image pixels) about the

environment.
• The state at time t, st, is the instantaneous relevant information of the agent (e.g. the 2D

position and velocity of the player).
• The agent can choose an action, at, at each time step t (e.g. go left, go right, go straight). The

next state of the game is determined by the current state and the current action:

st+1 = f(st, at).

Here, f is the state transition function that is entirely determined by the environment. In
control theory, we typically call this a dynamical system.

2



• The agent periodically receives rewards (coins/speed boosts) or penalties (speed bumps, or
even death!). Rewards are also modeled as a function of the current state and action, r(st, at).

• The agent’s goal is to decide on a strategy (or policy) of choosing the next action based on all
past states and actions: st, at−1, st−1, . . . , s1, a1, s0, a0.

• The sequence of state-action pairs τt = (s0, a0, s1, a1, . . . , at, st) is called a trajectory or
rollout. Typically, it is impractical to store and process the entire history, so policies are chosen
only over a fixed time interval in the past (called the horizon length L).

So a policy is simply defined as any function π that maps τ to at. Our goal is to figure out the best
policy (where “best” is defined in terms of maximizing the rewards).

But as machine learning engineers, we can fearlessly handle minimization/maximization problems!
Let us try and apply the ML tools we know here. Pose the cumulative negative reward as a loss
function, and minimize this loss as follows:

minimize R(τ) =
L−1∑
t=0

−r(st, at),

subject to st+1 = f(st, at)

at = π(τt).

The cumulative reward function R(τ) is sometimes replaced by the discounted cumulative reward, in
case we exponentially decay the reward across time with some factor γ > 0:

Rdiscounted(τ) =

L−1∑
t=0

−γtr(st, at).

OK, this looks similar to a loss minimization setting that we are all familiar with. We can begin to
apply any of our optimization tools (e.g. SGD) to solve it. Several caveats emerge, however, and we
have to be more precise about what we are doing.

First, what are the optimization variables? We are seeking the best among all policies π (which, above,
are defined as functions from trajectories to actions), so this means that we will have to parameterize
these policies somehow. We could imagine π to be a linear model that maps trajectories to actions, or
kernel model, or a deep neural network. It really does not matter conceptually.

Second, what are the “training samples” provided to us and what are we trying to learn? The key
assumptions in RL is that everything in the general case is probabilistic:

• the policy is stochastic. So what π is actually predicting from a given trajectory is not a
single best action but a distribution over actions. More favorable actions get assigned higher
probability and vice versa.

• the environment’s dynamics, captured by f , can be stochastic.
• the reward function itself can be stochastic.

The last two assumptions are not critical – for example, in simple games, the dynamics and the reward
are deterministic functions; but not so in more complex environments, such as the stock market – but
the first one (stochastic policies) is fundamental in RL. This also hints to why we are optimizing over
probabilistic policies in the first place: if there was no uncertainty and everything was deterministic,
an oracle could have designed an optimal sequence of actions for all time before hand. (In older

3



Atari-style or Nintendo video games, this could indeed be done and one could play an optimal game
pretty much from memory).

Since policies are probabilistic, they induce probability distribution over trajectories, and hence the
cumulative negative reward is also probabilistic. (It’s a bit hard to grasp this, considering that all the
loss functions that we have talked about until now in deep learning have been deterministic, but the
math works out in a similar manner.) So to be more precise, we will need to rewrite the loss in terms
of the expected value over the randomness:

minimize Eπ(τ)R(τ) =
L−1∑
t=0

−r(st, at),

subject to st+1 = f(st, at)

at = π(τt), for t = 0, . . . , L− 1.

This probabilistic way of thinking makes the role of ML a bit more clear. Suppose we have a yet-to-
be-determined policy π. We pick a horizon length L, and execute this policy in the environment (the
game engine, a simulator, the real world, . . . ) for L time steps. We get to observe the full trajectory
τ and the sequence of rewards r(st, at) for t = 0, . . . , L− 1. This pair is called a training sample.
Because of the randomness, we simulate multiple such rollouts, and compute the cumulative reward
averaged over all such rollouts, and adjust our policy parameters until this expectation is maximized.

We now return to the first sentence of this subsection: why RL is “in-between” supervised and
unsupervised learning. In supervised learning we need to build a function that predicts label y from
data features x. In unsupervised learning there is no separate label y; we typically wish to predict
some intrinsic property of the dataset of x. In RL, the “label” is the action at the next time step, but
once taken, this action becomes part of the training data and influences the subsequent action. This
issue of intertwined data and labels (due to the possibility of complicated feedback loops across time)
makes RL considerably more challenging.

Policy gradients
Let us now discuss a technique to numerically solve the above optimization problem. Basically, it
will be akin to ‘trial-and-error’ – sample a rollout with some actions; if the reward is high then make
those actions more probable (i.e., “reinforce” these actions), and if the reward is low then make those
actions less probable.

In order to maximize expected cumulative rewards, we will need to figure out how to take gradients
of the reward with respect to the policy parameters.

Recall that trajectories/rollouts τ are a probabilistic function of the policy parameters θ. Our goal is
to compute the gradient of the expected reward, Eπ(τ)R(τ) with respect to θ. To do so, we will need
to take advantage of the log-derivative trick. Observe the following fact:

∂

∂θ
log π(τ) =

1

π(τ)

∂π(τ)

∂θ
, i.e.

∂π(τ)

∂θ
= π(τ)

∂

∂θ
log π(τ).

4



Therefore, the gradient of the expected reward is given by:

∂

∂θ
Eπ(τ)R(τ) =

∂

∂θ

∑
τ

R(τ)π(τ)

=
∑
τ

R(τ)
∂π(τ)

∂θ

=
∑
τ

R(τ)π(τ)
∂

∂θ
log π(τ)

= Eπ(τ)[R(τ)
∂

∂θ
log π(τ)].

So in words, the gradient of an expectation can be converted into an expectation over a closely related
quantity. So instead of computing this expectation, like in SGD we sample different rollouts and
compute a stochastic approximation to the gradient. The entire pseudocode is as follows.

Repeat:

1. Sample a trajectory/rollout τ = (s0, a0, s1, . . . , sL).

2. Compute R(τ) =
∑L−1
t=0 −r(st, at)

3. θ ← θ − ηR(τ) ∂∂θ log π(τ)

There is a slight catch here, since we are reinforcing actions over the entire rollout; however, actions
should technically be reinforced only based on future rewards (since they cannot affect past rewards).
But this can be adjusted by suitably redefining R(τ) in Step 2 to sum over the tth time step until the
end of the horizon.

That’s it! This form of policy gradient is sometimes called REINFORCE. Since we are sampling
rollouts, this is also called Monte Carlo Policy Gradient.

In the above algorithm, notice that we never require direct access to the environment (or more
precisely, the model of the environment, f ) – only the ability to sample rollouts, and the ability to
observe corresponding rewards. This setting is therefore called model-free reinforcement learning. A
parallel set of approaches is model-based RL, which we will briefly touch upon next week.

Second, notice that since we don’t require gradients, this works even for non-differentiable reward
functions! In fact, the reward can be anything – non-smooth, non-differentiable, even discontinuous
(such as a 0-1 loss).

Connection to random search
In the above algorithm, in order to optimize over rewards, observe we only needed to access function
evaluations of the reward, R(τ), but never its gradient. This is in a departure from the regular
gradient-based backpropagation framework we have been using thus far. The REINFORCE algorithm
is in fact an example of derivative free optimization, which involves optimizing functions without
gradient calculations.

Another way to do derivative free optimization is simple: just random search! Here is a quick
introduction. If we are minimizing any loss function f(θ), recall that gradient descent updates θ
along the negative direction of the gradient:

θ ← θ − η∇f(θ).

5



But in random search, we pick a random direction v to update θ, and instead search for the (scalar)
step size that provides maximum decrease in the loss along that direction. This is a rather inefficient
way to minimize a loss function (for the same intuition that if we are trying to walk to the bottom
of a valley, it is much better to follow the direction of steepest descent, rather than bounce around
randomly.) But in the long run, random search does provably work as well. The pseudocode is as
follows:

• Sample a random direction v
• Search for the step size (positive or negative) that minimizes f(θ + ηv). Let that step size be
ηopt.

• Set θ ← θ + ηoptv.

Again, observe that the gradient of f never shows up! The only catch is that we need to do a step size
search (also called line search). However, this can be done quickly using a variation of binary search.
Notice the similarity of the update rules (at least in form) to REINFORCE.

Let us apply this idea to policy gradients. Instead of the log-derivative trick, we will simply assume
deterministic policies (i.e., a particular choice of policy θ leads to a deterministic rollout τ ) use the
above algorithm, with f being the reward function. The overall algorithm for policy gradient now
becomes the following.

Repeat:

1. Sample a new policy update direction v.

2. Search for the step size η that minimize R(θ + ηv).

3. Update the policy parameters θ ← θ + ηv.

Done!

Details and extensions
We have only touched upon the bare minimum required to understand policy gradients in RL. This is
a very vast area of emerging work and we cannot unfortunately do justice to all of it. Let us touch
upon some practical aspects/concerns that may be of importance while trying to build RL systems.

First, the problem with REINFORCE is that we are replacing the expected value with a sample
average in the gradient calculation, but unlike in standard SGD-type training, the variance of the
sample average will be typically too high. This means that vanilla policy gradients will be far too
slow and unreliable.

The standard solution is to perform variance reduction. One way to adjust the variance is via
insertion of a quantity called the reward baseline. To understand this, observe that unlike regular
gradient descent type training methods (which by definition depend on the slope/gradient of the loss),
REINFORCE depends on the absolute value, not the change, of the reward function R(τ). This does
not quite make sense: if a constant bias (of say +1000) is added uniformly to the reward function, the
problem does not change fundamentally (we are just rewriting the reward on a different scale) but
the algorithm changes quite a bit: in every iteration, every set of weights is likely to be reinforced
positively no matter whether the action taken was good or bad.

A simple fix is to baseline-adjusted descent: subtract a baseline b from the reward function R(τ)− b.
Here is the method: we learn a baseline such that good actions are always associated with positive

6



reward, and bad actions are associated with negative reward. This is hard to do properly, and it is
important to re-fit the baseline estimate each time. In the discounted reward case, we have to re-adjust
the baseline depending on γ.

Also, note that in policy gradients we do not require a differentiable reward/loss, but we do require
that the mapping π from trajectories to actions is differentiable — that’s the only way we can properly
define ∂ log π in the policy gradient update step (and that’s where standard neural net training methods
such as backprop enter the picture).

To fix this, there is a class of techniques in RL called Evolutionary search (ES) that removes backprop
entirely. The idea is to define the choice of policy itself as probabilistic functions (so π itself can be
viewed as being drawn from a distribution over functions) and apply the log-derivative trick there.
It’s a bit complicated (and the gains over policy gradient are somewhat questionable) so we will not
discuss this in detail here.

7


	Reinforcement Learning (I)
	Setup
	Policy gradients
	Connection to random search
	Details and extensions


